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Abstract. Text-to-image person search aims to identify an individual 

based on a text description. To reduce data collection costs, large-scale text-

image datasets are created from co-occurrence pairs found online. However, 

this can introduce noise, particularly mismatched pairs, which degrade re-

trieval performance. Existing methods often focus on negative samples, 

which amplify this noise. To address these issues, we propose the Dynamic 

Uncertainty and Relational Alignment (DURA) framework, which includes 

the Key Feature Selector 1(KFS) and a new loss function, Dynamic Softmax 

Hinge Loss (DSH-Loss). KFS captures and models noise uncertainty, im-

proving retrieval reliability. The bidirectional evi- dence from cross-

modal similarity is modeled asa Dirichlet distribution, enhancing adapta-

bility to noisy data. DSH adjusts the difficulty of neg- ative samples to 

improve robustness in noisy environments. Our exper- iments on three 

datasets show that the method offers strong noise re- sistance and improves 

retrieval performance in both low- and high-noise scenarios. 

Keywords: Text-Based Person Search, Noisy Correspondences, Cross- modal 

Uncertainty Learning. 

1 Introduction 

Person Re-identification (Re-ID) is a key task in computer vision, important for 

applications like intelligent video surveillance, urban security, and smart retail [17]. 

Text-to-image person search aims to identify a person based on tex- tual descriptions. 

However, current Re-ID methods rely on specific images of individuals, which 

may not be available in real-world emergency situations. In these cases, eyewitness 

descriptions can be the only information. To address this, text-based person search is 

used to identify individuals from image collections based on text queries. 
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Text-to-image person search is a sub-domain of both image-text retrieval [25, 31, 

35] and image-based person Re-ID [ 7 , 29, 36]. Text descriptions offer an in- tuitive 

way to express a person’s features, often easier to access than images. 

This has led to growing interest in the field, with applications in personal photo 

searches and public safety. The main challenge is accurately measuring the sim- ilarity 

between text descriptions and images to retrieve the correct individual from the 

image database based on the provided text query. 

To address these issues, current methods [2] use techniques to increase the simi-

larity of positive text-image pairs while reducing that of negative pairs. Ap- proaches 

like common representation learning [24] and similarity learning [10] have been 

applied. While these methods show promise, many depend on large, well-annotated 

datasets. To reduce data collection costs, co-occurring text-image pairs are often gath-

ered from online sources, creating a large, cost-effective cross- modal dataset. However, 

such data often contains noise, known as noisy corre- spondence, which weakens the 

reliability of cross-modal relationships and affects retrieval performance. This prob-

lem is especially severe with hinge-based triplet ranking loss involving hard nega-

tives [24, 10], where the hard learning approach becomes more vulnerable to noise, 

lowering retrieval accuracy, as shown in our experiments (e.g., Table 1). 

Noisy correspondence is closely related to learning with noisy labels [30, 14], a con-

cept studied in classification tasks. Various methods, like co-teaching [14] and robust 

loss functions [30], have been developed to address noisy labels. However, noisy cor-

respondence involves misalignments between cross-modal pairs [16, 12, 26, 40], 

which differs from noisy labels in classification. Traditional robust learn- ing tech-

niques are inadequate for noisy correspondence, as it involves uncertainty at the in-

stance level rather than the category level. As a result, noisy correspon- dence is much 

more complex than noisy labels, as the number of instances usually exceeds the number 

of categories by far. 

To address these challenges, we propose the Dynamic Uncertainty and Rela- tional 

Alignment (DURA) framework, designed for text-to-image person search in noisy 

environments. DURA introduces a new Cross-modal Evidential Learn- ing (CEL) 

method to identify and handle uncertainty caused by noise, helping to isolate unre-

liable pairs and improve data reliability. To deal with unreliable hard negatives, 

the Dynamic Softmax Hinge (DSH) mechanism increases the difficulty of negative 

samples during training, reducing the impact of noisy cor- respondence. By com-

bining CEL and DSH, DURA effectively distinguishes and uses both clean and noisy 

data. CEL models bidirectional evidence asa Dirichlet distribution based on cross-

modal similarity, addressing uncertainty from noisy correspondence. This evidence 

helps classify the training data into clean and noisy subsets. Finally, DURA uses 

CEL and DSH loss functions to train the model, applying positive learning to the 

clean data and negative learning to the noisy data. In conclusion, the main contri-

butions of this work areas follows: 

- We propose Dynamic Uncertainty and Relational Alignment (DURA) frame- 

work to provide trusted retrieval in an effective and efficient way. Our DURA could 

be directly applied to robustly learn with noisy correspondence for Text-to-Image 

person search. 
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- A Dynamic Softmax Hinge Loss (DSH-Loss) is proposed to mitigate the 

adverse effects of unreliability caused by noisy correspondence. Specifically, DSH 

smoothly increases the difficulty of negative samples during training to improve the 

robustness against noisy correspondence. 

– Extensive experiments verify that the proposed method improves the robust- ness 

against noisy correspondence, especially the high noise rate. Moreover, we provide 

insightful analysis that the learned uncertainty could reduce the negative impacts of 

noisy correspondences, improving the robustness. 

2 Related Work 

2.1 Text-to-Image Person Search 

The concept of Text-to-Image Person Search was introduced by Li et al. [27] with 

the CUHK-PEDES dataset.  Early methods used VGG and LSTM [27 ,  3]  for 

feature extraction, aligning image-text features via matching loss functions. Later 

works [5, 15, 8] employed ResNet and BERT to enhance representations and design 

advanced matching losses. Current approaches are categorized into global-matching 

[34, 20, 42, 21], which align features in a unified space, and local- matching [6, 9, 22, 

37], which focuses on fine-grained alignments like body parts and text elements for 

better retrieval. 

Despite progress, most methods assume perfect training pairs, which is unre- alistic 

due to noise. To address this, Yang et al. [38] proposed a robust learning method 

leveraging isovariant similarity consistency for noisy data. However, it depends on 

high-quality anchor points, and poor selection can lead tomisclassi- fication. 

2.2 Uncertainty-based Learning 

Many deep models[41] have been used with great success in applications, but they use 

deterministic predictions and lack the ability to assess their output uncer- tainty. 

To overcome this challenge, many researches [13, 18, 1] proposed methods to estimate 

the output uncertainty of the models. Kendall et al. [23] proposed the Bayesian deep 

learning framework combining input-related intrinsic uncertainty with knowledge-

based uncertainty, focusing on the application of the model in per-pixel semantic 

segmentation and deep regression tasks. Chen et al. [4] simul- taneously modelled 

the output uncertainty of the models by considering multi- granularity uncertainty 

for both coarse-grained and fine-grained image retrieval, integrating uncertainty 

modelling and uncertainty regularisation to improve re- call and enhance the re-

trieval process. In contrast, our approach focuses more on modelling uncertainty 

across schema correspondences and aims to achieve robustness and reliability in 

text-to-image person search. 



3 Methodology 

In this section, we presents the proposed Dynamic Uncertainty and Relational 

Alignment (DURA) framework, which incorporates the Key Feature Selector 

(KFS) module and a novel loss function, the Dynamic Softmax Hinge Loss (DSH-Loss), 

to achieve robust cross-modal retrieval. The overview of DURA is illustrated in Fig. 1 

and the details are discussed in the following subsections. 

 

Fig. 1: The overview of our Dynamic Uncertainty and Relational Alignment frame-

work (DURA). illustrating feature extraction, evidence-based uncer- tainty mod-

eling, and evidence-guided training with TAL, CEL, DSH, and KFS .  

3.1 Feature Extraction with Dual-Encodert 

Our framework uses a dual-encoder architecture for feature extraction, utilizing pre-

trained encoders for both image and text to ensure strong cross-modal align- ment. 

Following the success of CLIP in aligning visual and textual embeddings, we ini-

tialize both the image and text encoders with the full CLIP architecture, improving 

the model’s ability to extract semantically aligned features from both modalities. 

Formally, the gallery set is represented as 𝑉 = (𝐼𝑖 , 𝑦𝑖
𝑝

, 𝑦𝑖
𝑣)𝑖 = 1𝑁𝑣, and the cor-

responding textual description set is 𝑇 = (𝑇𝑖 , 𝑦𝑖
𝑣)𝑖 = 1𝑁𝑣 , where Nv and Nt denote 

the number of images and texts, respectively. The label 𝑦𝑖
𝑝

∈ 𝑌𝑝 =1,..., C is the class 

label (person identity), with C being the total number of identities,  and 𝑦𝑖
𝑣

 
∈  𝑌𝑣

  
=

 1, . . . ,  Nv  is the image label.  The paired image-text dataset for TIPeID is defined as 

𝑃 = (𝐼𝑖 , 𝑇𝑖 , 𝑦𝑖
𝒱 , 𝑦𝑖

𝒫)𝑖=1
𝑁 , where each image-text pair shares the same image label 𝑦𝑖

𝒱  and 

class label 𝑦𝑖
𝒫. 

Image Encoder: Given an input image 𝐼 ∈ ℝ𝐻×𝑊×𝐶 ,  We use a CLIP pre-  trained 

Vsion Transformer (ViT) to extract image embeddings. An input image 𝐼 ∈ ℝ𝐻×𝑊×𝐶  

is dvided into 𝑁 =
𝐻×𝑊

𝑃2  non-overlapping patch size. Each patch is flattened and 
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transformed into a token representation {𝑓𝑣
𝑖}𝑖=1

𝑁
 
with positional embeddings added 

and a special [CLS] token prepended. This tokenized sequence is processed through L-

layer transformer blocks with self-attention, and the [CLS] token output 𝑓𝑡
𝑐𝑙𝑠 captures 

the global image representation. A linear projection maps 𝑓𝑡
𝑐𝑙𝑠to a shared image-text 

embedding space for alignment with text embeddings. 

Text Encoder: Given an input text Ti ,  We use a CLIP pre-trained transformer- 

based text encoder. Input text Ti  is tokenized using byte pair encoding (BPE) into a 

sequence of subword tokens. Special tokens [SOS] and  [EOS] are added to mark the 

boundaries, resulting in a sequence {𝑓𝑡
sos, 𝑓𝑡

1, … , 𝑓𝑡
𝑁 , 𝑓𝑡

feos}. This sequence is pro-

cessed through L-layer transformer blocks with self-attention, and the [EOS] token 

output 𝑓𝑡
feos

 captures the global text representation. A lin-ear projection maps 𝑓𝑡
feos

 to 

the shared image-text embedding space, enabling alignment with image embeddings. 

To measure the similarity between animage-text pair (𝐼𝑖 , 𝑇𝑗 ), we utilize the 

global features represented by the [CLS] and [EOS] tokens. The global embedding 

similarity 𝑆𝑖 𝑗 is computed using cosine similarity, defined as: 

 𝑆𝑖𝑗 =
𝑓𝑣

𝑐𝑙𝑠𝑇
·𝑓𝑡

Eos

‖𝑓𝑣
𝑐𝑙𝑠‖‖𝑓𝑡

Eos‖
 (1) 

Here, 𝑓𝑡
feos

 represents the global text embedding derived from the [EOS] token, 

while 𝑓𝑣
feos

 denotes the global image embedding obtained from the [CLS] token. 
These global embeddings are used to compute the similarity 𝑆𝑖𝑗 between the image 

and text in the shared multimodal embedding space. Additionally, {𝑓𝑡
𝑗
}j=1

𝑁
 and {𝑓𝑣

𝑗
}j=1

𝑁
 

correspond to the local features extracted from the N  word token  in the text 𝑇𝑖  

and the N patches in the image 𝐼𝑖  , respectively, providing fine- grained contextual 

representations. 

3.2 Key Feature Selector 

While global embeddings obtained from [CLS] and [EOS] tokens capture high-  

level similarities between image-text pairs, they often overlook subtle, fine-grained 

details essential for accurate text-to-image person search. To address this issue,  we 

introduce a Key Feature Selector (KFS) module that enhances the discriminative 

power of the learned representations by incorporating informative local features. 

We begin by applying L2 normalization to both visual and textual features: 𝑓
^

𝑣
𝑖 =

L2Norm(𝑓𝑣
𝑖) and 𝑓

^

𝑡
𝑖 = L2Norm(𝑓𝑡

𝑖) This normalization step ensures consistent mag-

nitudes across features, improving their stability and reliability, especially under noisy 

conditions. 

Next, we refine features using Max-K pooling, which selects the top k values 

and averages them. This process emphasizes the most discriminative components, 

allowing the model to focus on the critical cues that distinguish one identity from 

another. 

Before pooling, we further enhance feature representations using a combination of 

MLP, FC, and a Squeeze-and-Excitation (SE) layer at the MLP’s output. The MLP 



and FC layers transform the input features into a richer, more expressive space, 

while the SE layer adaptively recalibrates channel-wise feature responses, highlight-

ing informative dimensions and suppressing less relevant ones. 
Formally, the visual and textual features 𝐹𝑣

𝑖 and 𝐹𝑡
𝑖
  are computed as: 

 𝐹𝑣
𝑖 = MaxPool(SE(MLP(𝑉𝑖

𝑠)) + FC(𝑓𝑣
𝑖)), (2) 

 𝐹𝑡
𝑖 = MaxPool(SE(MLP(𝑇𝑖

𝑠)) + FC(𝑓𝑡
𝑖)) (3) 

By integrating global and local perspectives within DURA, the KFS module 

ensures a balanced representation that captures both high-level alignment and fine-

grained distinctions. This leads to improved robustness and accuracy in text- to-image 

person search, particularly in complex and noisy retrieval scenarios. 

3.3 Uncertainty Modeling 

In this section, we model cross-modal uncertainty using the Dempster-Shafer 

Theory of Evidence, guided by the principles of Subjective Logic. Consider a 

mini-batch of N  image-text pairs. For each pair (𝐼𝑖 , 𝑇𝑗), we first compute a 

similarity score 𝑆𝑖𝑗. To translate this score into evidence, we apply an evidence 

extractor 𝑓(·): 

 𝑒𝑖𝑗 = 𝑓(𝑆𝑖𝑗) = exp(tanh(𝑆𝑖𝑗/𝑇)), (4) 

where 0 < T < 1 is a scaling parameter. Thus, for a given visual query 𝐼𝑖 , the 

evidence vector 𝑒𝑖 → 𝑇𝑖 can be extracted from the cross-modal similarities using 

Equation (4), i.e., 𝑒𝑖 → 𝑇𝑖 =  [e𝑖1 , e𝑖2, . . . , e𝑖𝑁]  . Similarly, the evidence vector 𝑒𝑇2 → 𝑖 

for a given textual query 𝑇𝑖 can be obtained as: 𝑒𝑇2 → 𝑖 =  [e1𝑖 , e2𝑖 , . . . , e𝑁𝑖]  . 

Subjective Logic assigns a belief mass to each query and an overall uncer- tainty 

mass based on the collected cross-modal evidence (e.g., ei→Ti   andeTi → i  ), which can 

be defined as: 

 𝑏𝑖𝑗 =
𝑒𝑖𝑗

𝐿𝑖
and 𝑢𝑖 =

𝑁

𝐿𝑖
, (5) 

where: 𝐿𝑖 = ∑ (𝑒𝑖𝑗 + 1)
𝑁

𝑗=1
 and 𝑢𝑖 + ∑ 𝑏𝑖𝑗 = 1

𝑁

𝑗=1
. The term 𝐿𝑖  represents the 

strength of the Dirichlet distribution, while the belief mass assignment 𝑏𝑖 =
[𝑏𝑖1, 𝑏𝑖2, . . . , 𝑏𝑖𝑁 ] corresponds to subjective opinions derived from the Dirichlet 

distribution with parameters 𝛼𝑖 = [𝛼𝑖1, 𝛼𝑖2, . . . , 𝛼𝑖𝑁 ], where: 𝛼𝑖𝑗 = 𝑒𝑖𝑗 + 1. 

Intuitively, cross-modal retrieval is analogous to classifying instances (i.e., 

pairs), where the query similarity aligns with the probability assignment. The Di-

richlet distribution, parametrized by the evidence, represents the density of these 

probability assignments. Thus, 𝛼𝑖 models second-order probabilities and uncertain-

ties. The density function is defined as: 

 𝐷(p𝑖|α𝑖) = {
1

𝐵(α𝑖)
∏ 𝑝

𝑖𝑗

𝛼𝑖𝑗−1𝑁
𝑗=1 , for p𝑖 ∈ 𝒮𝑁 ,

0, otherwise,
 (6) 
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where 𝑝𝑖 ∈ ℝ𝑁 are the query probabilities, 𝐵(𝛼𝑖 ) is the N-dimensional multinomial 

beta function, and SN  denotes the N-dimensional unit simplex . 

In this manner, the evidence extracted from cross-modal similarities informs a 

second-order distribution (the Dirichlet), representing both the likelihood of each 

potential match and the associated uncertainty. This approach ensures a more robust 

handling of noisy and uncertain retrieval scenarios. 

3.4 Cross-modal Evidential Learning 

Following the approach of [33], we treat cross-modal retrieval as a K-way clas- 

sification task,where each query is expected to match its corresponding target. Let 

𝑦𝑖 bea K-dimensional one-hot vector indicating the correct match for query i. The 

model produces evidence 𝛼𝑖  =  [𝛼𝑖1, . . . , 𝛼𝑖𝐾 ] that parameterizes a Dirich-let dis-

tribution, modeling both the probability assignments and their associated uncer-

tainty. 

To align the model’s probability estimates 𝔼[𝑝𝑖𝑗] =
𝛼𝑖𝑗

𝐿𝑖
(with 𝐿𝑖 = ∑ 𝛼𝑖𝑘

𝐾
𝑘=1 ) to the 

ground truth 𝑦𝑖, we employ the following mean-squared loss over the Dirichlet 

distribution: 

 ℒ𝑚(𝛼𝑖 , 𝑦𝑖) = ∑ [(𝑦𝑖𝑗 − 𝛼𝑖𝑗)2 +
𝛼𝑖𝑗(𝐿𝑖−𝛼𝑖𝑗)

𝐿𝑖
2(𝐿𝑖+1)

]
𝐾

𝑗=1
 (7) 

Minimizing 𝐿𝑚 encourages the expected probabilities to approximate the ground 

truth while reducing uncertainty. 

However, 𝐿𝑚 alone does not ensure that evidence for negative matches di- min-

ishes. To address this, we introduce a Kullback-Leibler (KL) divergence term that 

penalizes excessive evidence for incorrect targets. We define: 

 𝑖   = 𝑦𝑖 + (1 − 𝑦𝑖 ) ⊙ 𝛼𝑖  , (8) 

and measure the divergence from a uniform Dirichlet distribut D(𝑃𝑖|1):  

 ℒKL(𝛼𝑖 , 𝑦𝑖) = KL(𝐷(𝑝𝑖|𝛼
~

𝑖) ∥ 𝐷(𝑝𝑖|1)). (9) 

This term encourages the model to reduce unwarranted evidence for mismatched 

pairs,enhancing robustness against noisy matches. 

For animage query Ii , the evidential loss is: 

 ℒ𝑒
𝑖2𝑡(𝐼𝑖 , 𝑙𝑖) = ℒ𝑚(𝛼𝑖

𝑖2𝑡 , 𝑙𝑖) + 𝜆2ℒKL(𝛼𝑖
𝑖2𝑡, 𝑙𝑖), (10) 

where 𝜆2 is a balance factor.  Similarly,  we define ℒ𝑒
2𝑖(𝑇𝑖 , 𝑙𝑖) for text-to-image 

retrieval. Combining them yields a bidirectional evidential loss: 

 ℒ𝑒(𝐼𝑖 , 𝑇𝑖 , 𝑙𝑖) = ℒ𝑒
𝑖2𝑡(𝐼𝑖 , 𝑙𝑖) + ℒ𝑒

𝑡2𝑖(𝑇𝑖 , 𝑙𝑖). (11) 

In essence, this evidential learning framework provides a principled way to 

handle uncertain and noisy matches in cross-modal retrieval. By treating re- 

trieval as a classification problem under a Dirichlet prior, we can jointly optimize 



for accuracy and robustness, ensuring that the model not only fits the correct 

matches but also avoids overconfidence in incorrect ones. 

3.5 Dynamic Softmax Hinge Loss 

Conventional hinge-based losses [11] often  consider  all  negative  samples  in  a mini-

batch, which can amplify errors when noisy correspondences are present. This 

overemphasis on all negatives may reduce model robustness and lead to unstable 

training. To mitigate this issue, Qin et al. [33] proposed the Robust Dynamic 

Hinge (RDH) loss, focusing only on the single hardest negative. While this approach 

improves stability under noise, it overlooks other potentially infor- mative nega-

tives, limiting the model’s ability to learn from the broader negative distribution. 

To achieve a more balanced and stable training process, we propose the Dy- namic 

Softmax Hinge (DSH) loss, which adaptively utilizes a controlled subset of hard neg-

atives rather than focusing solely on the single hardest one. By doing so, DSH main-

tains robustness against noise while leveraging a richer set of negative examples. This 

encourages a more comprehensive and effective representation learning process. 

ℒℎ(𝐼, 𝑇) =
1

𝑛
[∑ [𝛾 − 𝑆(𝐼, 𝑇) + 𝜏 ⋅ log (∑ exp𝑁

𝑗=1 (
S(𝐼,𝑇̂𝑗)

𝜏
))]𝑛

𝑗=1 ]
+

（ 

 + ∑ [𝛾 − 𝑆(I, T) + 𝑇 ⋅ log (∑ exp𝑁
𝑗=1 (

S(Î𝑗,T)

𝜏
))]

+

𝑛
𝑗=1  (12) 

where [𝑥]+  = max(𝑥,0 ) ,  n is the dynamically adjusted number of hardest neg-

atives, and γ is the margin. The value of n decreases dynamically during training: 

 𝑛 = 𝑚𝑎𝑥(⌊𝐾 − 𝜂 · Step⌋, 𝜇), (13) 

where K is the mini-batch size, η is the annealing coefficient, Step is the 

current training step, and µ is the lower bound of n. 

3.6 Cross-Modal Alignment 

Triplet Ranking Loss (TRL), introduced by Schroff et al. in 2015, has been widely 

applied in cross-modal alignment tasks, leveraging the hardest negative samples to 

distinguish positive and negative pairs effectively. However, TRL suf- fers from 

performance limitations due to its insufficient focus on the broader distribution 

of negative samples, which can lead to suboptimal convergence and instability. To 

address this, Qin et al.[32] proposed the Triplet Alignment Loss (TAL) in 2024, 

which relaxes the optimization from focusing solely on the hard- est negative to con-

sidering all negative samples with an upper bound constraint. This relaxation reduces 

the risk of optimization being dominated by the hardest negatives, enhancing the 

stability of the training process while maintaining a comprehensive utilization of 

negative samples. By balancing attention to both hard and overall negative samples, 

TAL achieves more stable and robust train- ing, ensuring better performance in 

cross-modal alignment tasks. Therefore, this paper adopts TAL as the loss function 

for cross-modal alignment. 
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For an input pair (𝐼𝑖 , 𝑇𝑖 ) in a mini-batch x, TAL is defined as: 

ℒTAL(𝐼𝑖 , 𝑇𝑖) = [𝑚 − 𝑆𝑖→𝑡
+ (𝐼𝑖) + 𝜏log (∑ exp (

𝑆(𝐼𝑖 , 𝑇𝑗)

𝜏
))]

𝐾

𝑗=1

+

 

+[𝑚 − 𝑆𝑡→𝑖
+ (𝑇𝑖) + 𝜏log(∑ exp(

𝑆(𝐼𝑗,𝑇𝑖)

𝜏
))]

𝐾

𝑗=1

+

 (14) 

where m is a positive margin coefficient, τ is a temperature coefficient to control 

hardness, 𝑆(𝐼𝑖 , 𝑇𝑗) ∈ {𝒮𝑖𝑗
𝑏 , 𝒮𝑖𝑗

𝑡 }, [𝑥]
+  

≡  𝑚𝑎𝑥(𝑥, 0), 𝑒𝑥𝑝(𝑥)  ≡  𝑒𝑥
 
, 𝑎𝑛𝑑 𝐾 is the size of 𝑥. 

From Lemma 1, as T → 0, TAL approaches TRL and focuses more on hard negatives. 

Since multiple positive pairs from the same identity may appear in the mini-batch, is 

the weighted average similarity of positive pairs for image 𝐼𝑖 

 𝑆𝑖→𝑡
+ (𝐼𝑖) = ∑ 𝛼𝑖𝑗𝑆(𝐼𝑖 , 𝑇𝑗)

𝐾

𝑗=1
 (15) 

3.7 Overall Loss Function 

DURA aims to enhance global image-text representations in a joint embedding space 

by integrating multiple objectives. Specifically, it utilizes an evidential loss (Le ) for 

handling noisy correspondences, a Dynamic Softmax Hinge loss (𝐿ℎ ) for control-

ling the difficulty of negative samples, and a Triplet Alignment Loss (𝐿𝑇𝐴𝐿 )  for 

stable and comprehensive cross-modal alignment.  Together,  these losses foster 

fine-grained feature interaction, uncertainty modeling, and robust image-text match-

ing. 

We train DURA in an end-to-end fashion, combining all components into a single 

optimization objective: 

 ℒtotal = ℒ𝑒(𝐼, 𝑇, 𝑙) + ℒℎ(𝐼, 𝑇) + ℒTAL(𝐼, 𝑇) (10) 

4 Experiments 

In this section,we evaluate our DURA framework on three widely used text-to-

image person search datasets—CUHK-PEDES, ICFG-PEDES—under various noise 

conditions to demonstrate its robustness. 

4.1 Datasets and Performance Measurements 

CUHK-PEDES [28], the first text-to-image person retrieval dataset, includes 40,206 

images and 80,412 descriptions for 13,003 identities. Split: training (11,003 identities, 

34,054 images, 68,108 descriptions), validation (1,000 identities, 3,078 images, 6,158 

descriptions), test (1,000 identities, 3,074 images, 6,156 descriptions). Descriptions av-

erage 23 words. 

ICFG-PEDES [9] has 54,522 images for 4,102 identities, each with one 37-word 

description. Training: 3,102 identities, 34,674 image-text pairs. Test: 1,000 identities, 

19,848 pairs. Notable for one-to-one image-text pairing. 



Evaluation Metrics: Rank-k (k=1, 5, 10) measures top-k retrieval accuracy. Mean 

Average Precision (mAP) and mean Inverse Negative Penalty (mINP) [39] assess over-

all performance. Higher values indicate better results. 

4.2 Implementation Details 

DURA uses CLIP-ViT-B/16 as the image encoder and CLIP text Transformer as the 

text encoder, with a multimodal interaction encoder (512 hidden size, 8 attention 

heads). Data augmentations include random horizontal flip, crop, and erasing; a Key 

Feature Selector uses a 0.5 sampling ratio. Images are resized to 384×128, and text 

sequences are truncated to 77 tokens. 

Training spans 60 epochs with the Adam optimizer, a starting learning rate of 8×10⁻⁶, 

cosine decay, and a 2-epoch warm-up. Following RDE, TAL’s margin is 0.1, and tem-

perature τ is 0.015. Experiments run on a single RTX 2080 Ti GPU, ensuring robust 

evaluation of DURA’s noise resistance and cross-modal feature extraction. 

 

Fig. 2: We visualize the evidence distribution of clean and noisy pairs at different train- ing 

stages of our DURA, which is conducted on CHUKPEDES under 20% noise. 

4.3 Comparison with Noise Correspondence 

We compare our DURA model with six state-of-the-art baselines: SSAN [9], IVT [34], 

IRRA [19], DECL [33], RDE [32], and CLIP-C, using CLIP-ViT-B/16 as the baseline. 

Experiments evaluate text-to-image person search on CUHK-PEDES, ICFG-PEDES, 

and RSTPReid datasets, with noisy correspondences (0%, 20%, 50%) introduced by 

shuffling images. For rigor, RDE was rerun on an RTX 2080 Ti 12GB GPU, denoted 

RDE*. 

CUHK-PEDES: Table 1 shows DURA’s superior robustness to noise. At 20% noise, 

DURA achieves 75.04% (Rank-1), 89.74% (Rank-5), 93.66% (Rank-10), 66.81% 

(mAP), and 50.48% (mINP), outperforming all baselines. DURA maintains strong per-

formance across low and high noise, with minimal degradation, highlighting its resili-

ence. 

ICFG-PEDES: DURA’s dominance on the 1K test set. At 50% noise, DURA im-

proves Rank-1 by up to 12% over baselines, excelling in all metrics (Rank-1, Rank-5, 

Rank-10, mAP, mINP) under both low and high noise, demonstrating robust retrieval. 

RSTPReid: DURA’s exceptional performance at high noise, achieving 62.94% 

(Rank-1), 83.55% (Rank-5), 89.45% (Rank-10), 47.92% (mAP), and 25.55% (mINP). 

RDE* ranks second, but DURA consistently leads, showcasing adaptability to noisy 

conditions. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Table 1: Performance comparison on CUHK-PEDES and ICFG-PEDES with varying 

noise rates. “Best” uses the optimal validation checkpoint; “Last” uses the final training 

epoch checkpoint.  Best and second-best results are in bold and underline, respectively. 

Noise Methods 
CUHK-PEDES ICFG-PEDES  

Typ e  R -1  R -5  R-10 m A P  m I N P  R -1  R -5  R-10 m A P  m I N P  

 

 

0% 

SSAN 

I V T  

CFine 

IRRA 

DECL 

RDE
*

 

DUR A  

Best  

Best 

Best 

Best 

Best  

Best 

Best 

61.37 

65.59  

69.57  

73.38 

71.36 

75.76 

76.14 

80.15  

83.11  

85.93 

89.93 

88.11 

90.14 

90.42 

86.73 

89.21 

91.15 

93.71 

92.48  

94.18 

94.25 

-
 

-
 

-
 

66.13 

64.25 

67.56 

67.68 

-
 

-
 

-
 

50.24 

48.26 

51.43 

51.57 

54.23 

56.04 

60.83 

63.46 

63.42 

67.68 

67.88 

72.63 

73.60 

76.55 

80.25 

79.29 

82.47 

82.67 

79.53 

80.22 

82.42 

85.82 

84.89 

87.36 

87.66 

- 

- 

- 

38.06 

37.02 

40.06 

40.37 

- 

- 

- 

7.93 

6.57 

7.87 

8.21 

20% 

SSAN 

 

I V T  

 

IRRA 

 

CLIP- C  

 

DECL 

 

RDE
*

 

 

DUR A  

Best  

Last  

Best  

Last  

Best  

Last  

Best  

Last  

Best  

Last  

Best  

Last  

Best  

Last 

46.52  

45.76  

58.59  

57.67  

69.74  

69.44  

66.41  

66.10  

70.29  

70.08  

74.46  

74.53 

75.04 

74.60 

68.36 

67.98 

78.51 

78.04 

87.09 

87.09 

85.15 

86.01 

87.04 

87.20 

89.10 

89.23 

89.74 

89.44 

77.42 

76.28 

85.61 

85.02 

92.20 

92.04 

90.89 

91.02 

91.93 

92.14 

93.63 

93.55 

93.66 

93.45 

42.49 

40.05 

57.19 

56.17 

62.28 

62.16 

59.36 

59.77 

62.84 

62.86 

66.13 

66.13 

66.81 

66.43 

28.13 

24.12 

45.78 

44.42 

45.84 

45.70 

43.02 

43.57 

46.54 

46.63 

49.66 

49.63 

50.48 

50.23 

40.57 

40.28 

50.21 

48.70 

60.76 

60.58 

55.25 

55.17 

61.95 

61.95 

66.54 

66.51 

66.62 

66.53 

62.58 

62.68 

69.14 

67.42 

78.26 

78.14 

74.76 

74.58 

78.36 

78.36 

81.70 

81.70 

81.96 

81.72 

71.53 

71.53 

76.18 

75.06 

84.01 

84.20 

81.32 

81.46 

83.88 

83.88 

86.70 

86.71 

86.86 

86.72 

20.93 

20.98 

34.72 

34.44 

35.87 

35.92 

31.09 

31.12 

36.08 

36.08 

39.08 

39.09 

39.53 

39.34 

2.22 

2.25 

8.77 

9.25 

6.80 

6.91 

4.94 

4.97 

6.25 

6.25 

7.55 

7.56 

7.72 

7.68 

50% 

SSAN 

 

I V T  

 

IRRA 

 

CLIP- C  

 

DECL 

 

RDE
*

 

 

DUR A  

Best 

Last 

Best 

Last 

Best 

Last 

Best 

Last 

Best 

Last 

Best 

Last 

Best 

Last 

13.43 

11.31  

50.49 

42.02 

62.41  

42.79  

64.02  

63.97  

65.22  

65.09 

71.33 

71.25  

70.89 

 70.84 

31.74 

28.07 

71.82 

65.04 

82.23 

64.31 

83.66 

83.74 

83.72 

83.58 

87.41 

87.39 

87.21 

87.04 

41.89 

37.90 

79.81 

73.72 

88.40 

72.58 

89.38 

89.54 

89.28 

89.26 

91.81 

91.76 

91.78 

91.78 

14.12 

10.57 

48.85 

40.49 

55.52 

36.76 

57.33 

57.35 

57.94 

57.89 

63.50 

63.59 

63.13 

63.59 

6.91 

3.46 

36.60 

27.89 

38.48 

21.11 

40.90 

40.88 

41.39 

41.35 

47.36 

47.50 

46.68 

46.85 

18.83 

17.06 

43.03 

36.57 

52.53 

39.22 

51.60 

51.49 

57.50 

57.49 

63.76 

63.76 

64.08 

63.85 

37.70 

37.18 

61.48 

54.83 

71.99 

60.52 

71.89 

71.99 

75.09 

75.10 

79.53 

79.53 

79.87 

79.63 

47.43 

47.85 

69.56 

62.91 

79.41 

69.26 

79.31 

79.32 

81.24 

81.23 

84.91 

84.91 

84.6 

84.58 

9.83 

6.58 

28.86 

24.30 

29.05 

19.44 

28.76 

28.77 

32.64 

32.63 

37.38 

37.38 

37.57 

37.55 

1.01 

0.39 

6.11 

5.08 

4.43 

1.98 

4.33 

4.37 

5.27 

5.26 

6.80 

6.80 

7.06 

7.02 

 

 



Table 4: Ablation studies on the CUHK-PEDES dataset 

No. Methods R-1 R-5 R - 1 0  m A P  m I N P  

0 Baseline 66.41 85.15 90.89  59.36 43.02 

1 + T A L  70.45 86.74 91.52  62.33 45.77 

2 + T A L + L h  71.05 87.15 91.80  63.26 46.89 

3 + T A L + L e  70.74 87.22 91.85  63.25 46.85 

4 + T A L + K F S  73.44 88.87 92.32  65.24 48.69 

5 + T A L + K F S  + L e  74.58 88.97 92.73  66.09 49.81 

6 + T A L + K F S  + L h  74.08 88.74 92.52  65.96 49.09 

7 + T A L + K F S + L e  + L h  75.04 89.74 93.66 66.81 50.48 

4.4 Ablation Study 

We performed an ablation study on CUHK-PEDES with 20% noise, using CLIP-ViT-

B/16 as the baseline to evaluate DURA’s components. Table 4 shows: (1) TAL alone 

(No.0 vs. No.1) boosts Rank-1 (+4.04%), Rank-5 (+1.59%), Rank-10 (+0.63%), mAP 

(+2.97%), and mINP (+2.75%). (2) Adding KFS atop TAL (No.1 vs. No.4, No.2 vs. 

No.6, No.3 vs. No.5) significantly improves all metrics. (3) Le or Lh with TAL and 

KFS (No.4 vs. No.5, No.4 vs. No.6) partially enhances performance. (4) Full DURA 

(No.7) achieves top results: 75.04% (Rank-1), 89.74% (Rank-5), 93.66% (Rank-10), 

66.81% (mAP), and 50.48% (mINP), confirming robust component synergy. 

5 Conclusion 

In this work, we present the Dynamic Uncertainty and Relational Alignment 

(DURA) framework, aimed at improving text-based person search under noisy con-

ditions. DURA leverages a Key Feature Selector (KFS) and a Dynamic Soft- max 

Hinge Loss (DSH-Loss) to robustly handle noisy training pairs, while its cross-

modal evidentiallearning distinguishes clean from noisy data. Experiments on CUHK-

PEDES, ICFG-PEDES, and RSTPReid confirm that DURA consis- tently outper-

forms existing methods, especially in high-noise scenarios, demon- strating its prac-

tical effectiveness when data quality is limited. 
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