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Abstract. Multivariate time series forecasting (MTSF) has broad applications in
real-life situations. However, multivariate time series data in different scenarios
may exhibit different inter-sequence or intra-sequence dependencies. Existing
models often struggle to capture these complex dependencies between time series
and variables simultaneously, thus limiting forecasting accuracy. To address
these issues, this paper proposes PatchMamba, a multivariate time series forecast
model based on Patch Attention and Mamba. PatchMamba includes two novel
Patch Attention mechanisms: CD-Patch Attention under the channel dependence
strategy and Cl-Patch Attention under the channel independence strategy. CD-
Patch effectively captures the inter-variable dependencies. In contrast, Cl-Patch
Attention takes each variable individually to extract local features, avoiding
cross-channel interference. Furthermore, we use bidirectional Mamba (Bi-
Mamba) to capture long temporal dependency information. Experiments show
that PatchMamba achieves higher forecast accuracy on multiple real-world da-
tasets compared to current state-of-the-art (SOTA) models. In addition, this paper
validates the role and robustness of the model components through ablation ex-
periments and parameter sensitivity analysis.

Keywords: Multivariate Time series forecasting, Bi-Mamba, Patch Attention,
PatchMamba.

1 Introduction

Time series data are sequences arranged in chronological order and are usually sampled
at equal intervals of time frequency. A multivariate time series (MTS) consists of mul-
tiple variables recorded simultaneously at the same time nodes. As a key data mining
technique, MTSF is widely used in many fields, including energy consump-
tion[1],traffic flow estimation[2], climate forecasting[3], and economic trend forecast-
ing[4]. Complex correlations between variables and long-term dependencies make
MTSF more challenging. Its development has evolved from traditional statistical and
machine learning models to the current SOTA deep learning models.

Statistical models include ARIMA, SARIMA, and GARCH[5-7]. They rely on strict
mathematical derivation and probability assumptions to mine linear relationships in a
single variable time series and have achieved some success in simple scenarios. To



handle complex situations of multivariate interaction, researchers have developed ma-
chine learning-based models. Models such as Support Vector Machines, neural net-
works, and Random Forests[8-10] can extract nonlinear relationships and dynamic
changes in MTS, improving the ability to make predictions. However, these models are
sensitive in parameter selection and have limited prediction ability.

In recent years, with the development of deep learning techniques in natural lan-
guage processing (NLP) and computer vision (CV), researchers have increasingly ap-
plied these techniques to time series forecasting. Recurrent neural networks (RNNSs)
and their variants[11, 12] have been increasingly used in MTSF to achieve more ad-
vanced prediction performance. However, RNN-based models have two main[13]
drawbacks: (1) error accumulation from dynamic decoding; (2) difficulty in extracting
long-sequence features due to vanishing gradient and memory limits.

To handle these problems, the Transformer[14] model is introduced into MTSF.
With its self-attention mechanism, Transformer can process sequence data in parallel,
effectively capturing capture cross-time dependencies and improving the forecast per-
formance. However, existing models have not fully considered the intra-sequence and
inter-sequence correlations. (1) Intra-sequence correlation. It involves the extraction of
long-term correlations and local features. Because time series data has a lower semantic
information density at any given point in time compared to other sequence data types,
capturing intra-series correlation is particularly challenging. (2) Inter-sequence corre-
lation. It refers to exploring the relationships and dependencies between different vari-
ables. Multivariate time series data in different scenarios may exhibit different depend-
encies. For example, in weather forecasting, there are complex interactions between
variables such as temperature, humidity, and barometric pressure; in power systems,
different power load characteristics may have independent evolutionary laws.

In this paper, we present PatchMamba to overcome the challenges mentioned above.
It divides data into patches to extract richer semantic information and combines channel
independence (CI) and channel dependence (CD) processing strategies. This approach
effectively captures complex intra-sequence and inter-sequence correlations in MTSF
across different scenarios. Our contributions are as follows:

e We propose the PatchMamba model, which effectively combines the Patch Atten-
tion mechanism with the Mamba block. PatchMamba can capture local time series
features through the Patch Attention mechanism and can extract long-term depend-
encies by Mamba.

e We propose a dual strategy attention mechanism, Patch Attention, which consists of
Cl-Patch Attention and CD-Patch Attention. It able to selectively capture local intra-
sequence correlation and multivariate interactions based on the characteristics of
multivariate time series data. And enables the model to be more flexible in different
prediction tasks and significantly improves the prediction performance.

e We conducted extensive experiments on six real-world datasets, and PatchMamba
significantly reduces the MSE and MAE metrics compared to the current SOTA,
demonstrating its effectiveness in MTSF.
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2 Methodology

2.1  Problem Definition

The time series forecasting task is defined, given a historical observation window X =
[x1, %3, X3....x, ]€ERYN where x,, = [vq, V5, V3....vy], to forecast a lengthy window
of future time series Y= [x, 1, X142, ..., X+ ]J€ERTN. In this context, L and T repre-
sent the historical look back window and the forecast length, respectively, while V is
the variable, and N represents the number of variables.

2.2 Model Architecture

The overview architecture of PatchMamba is shown in Fig. 1. First, the input sequence
X passes through the Sequence Relation Aware (SRA) decider to compute variable
correlations and select a modeling strategy. Generate embedding vectors by Patch-Em-
bedding and pass them to Patch Attention to extract local dependencies. Next, a Feed-
forward Neural Network (FFN) boosts the model's expressive power to capture com-
plex features and patterns. Then, Bi-Mamba captures long temporal features, followed
by another FFN that extracts deeper into temporal information. Finally, a flatten linear
layer generates the result Y. The details of modules are given in the following sections.

Ci strategy Cl-Patch Attention Bi-Mamba

Cl-Patch Embeding

y\9

€D-Patch Attention Bi-Mamba

Fig. 1. The architecture of PatchMamba.
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2.3  SRA decider

We employ the SRA decider[15] dynamically select different channel interactions
based on the correlation of the multivariable time series: channel independence and
channel dependence. The core of SRA decider is using the Spearman correlation coef-
ficient to compute the correlation between variables. It provides a more effective strat-
egy selection for multivariate time series modeling.



2.4 Patch Embedding

To address the heterogeneous characteristics of multivariate time series data, Patch-
Mamba adopts a dual-stream adaptive embedding architecture: channel independence
streaming where each univariate is processed individually, and channel dependence
streaming that captures the system dependencies using cross-variate interactions. (1)
Cl-Patch Embedding: In the univariate channel sequencelei: ,» the data is initially di-

vided into P!eRS*™, where s denotes the number of patches and m signifies the
length of each patch. Each univariate channel is concatenated to the embed-
ding E;;eRs*™*a where d is the hidden state dimension. (2) CD-Patch Embedding:
For multivariate time series data X" obtained embedding E.peR™™ % ,where [ is
the sequence length, and n is the number of variables.

In addition, to address the distribution shift between the training set and the test set,
the data normalization method RevIN[16] is employed to enhance the model’s robust-
ness.

2.5 Patch Attention

According to different handle strategies, we have designed Cl-Patch Attention and CD-
Patch Attention, as shown in Fig. 2.
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Fig. 2. The architecture of Patch Attention mechanism.

Cl-Patch Attention. Cl-Patch Attention establishes relationships between time steps
within each patch. For each channelized time series embedding E.eRS*™*¢, the i-th
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Patch block EX;eR™ ¢ is selected. A trainable linear transformation is applied to ob-
tain the query, key, and value in the attention operation, denoted as
QL;, KLy, Vi eR™ 4, We then compute Attention Attk,eR™*¢, which involves interac-
tions within the Patch. The Cl-Patch Attention are calculated as follows:

o),
\/E CcI

After Cl-Patch Attention, each patch has its own input and output of constant length,
which mixes the dynamic features of local regions in the time series and improves the
capture of intra-sequence correlation. The attention results from all patches are com-
bined to produce the output of Cl-Patch Attention Attc;eRS*™*4, which represents lo-
cal details from nearby steps in the time series. That process is as follows:

Attl, = Soﬁmax( @)

Atte; = Concat(Attgy, ..., Attf;) (2)

CD-Patch Attention. The CD-Patch Attention approach involves the partitioning of
the input embedding EcpeR™™ ¢ into a Patch ELpeR™ ™4 which contains m data
points. Subsequently, the EL;, is subjected to a trainable linear transformation to obtain
the key and value in the attention operation, denoted as K¢p, VipeR™*4m, A trainable
query matrix, QipeR*%m to pool the contexts within the Patch. Computing the cross-
attention between QLp, Kip, Vi to capture the interactions between local variables
within the i-th Patch. The CD-Patch Attention expressed as:

Qb (kb))
m CcD

Following CD-Patch Attention, each Patch output length becomes AtthpeR™ ™ dm |t
enables the explicit capture of dependencies between different variables. The connec-
tion of attention results from all Patches produces the output AttcpeRS*™*dm of CD-
Patch Attention, which represents dependencies between variables from local time
steps. That process is as follows:

Attty = Softmax( 3)

Attcp = Concat(Attlp, ..., Attsy) 4)

FFN. The input of FFN is the output of Patch Attention with the following expression:
FFN(Att) = Dropout(ReLU(AttCI/Cle + bl)WZ + bz) (5)
Xout = LayerNorm(FFN(AttC,/CD) +x) (6)

Where W, is the hidden layer weight and b, is the hidden layer bias, W, is the output
layer weight and b, is the output layer bias. The output dimension of the FFN is
X, €REXIXP with B and J corresponding to N or S, depending on the handling



strategy. Specifically, under a channel independence strategy, X,,,6R"*S*P; other-
wise, X, eRS*N*D,

2.6 Bi-Mamba

Given the complex evolution patterns of time series in different directions and the in-
tricate dependencies among sequences, we introduce a Bi-Mamba block to handle. The
architecture of Bi-Mamba as shown in Fig. 3.
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Fig. 3. The architecture of Bi-Mamba

Bi-Mamba's forward input Us=X,,, backward input U, = Flip(X,,.). Each Mamba
processing flow is as follows: firstly, the input Uy, (dir e{f, b}) is passed through
two linear layers, which extend the hidden dimension to U, as shown in Fig. 3. The
result of one branch is passed through a 1-D convolutional layer, a SiLU activation
function, and a standard SSM block to obtain the candidate output U,;, . The result of
the other branch is passed through a SiLU activation function as a gate, which is mul-
tiplied with Ud/l-r to obtain the final output U, 4;-.The forward and backward outputs
are summed by residual concatenation and layer normalization for bi-directional feature
fusion, the formula of this part is demonstrated as follows:

Eoye = LayerNorm(Uy, s + Xout) + LayerNorm(Flip(Uy ) + Xoue)  (7)

The fusion features are input to the FFN, which is computed as follows:
FFN(Eyy) = Dropout(ReLU(E,,;W; + b))W, + b,) (8)
M,y = LayerNorm(FFN(Eyy:) + Xout) 9

The output M, is reconstructed into the target time series via flatten linear layer.
Subsequently, through Revin denormalization produces the final prediction ¥ € RV*H,
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3 Experiments

3.1 Datasets and Baselines

Datasets. To comprehensively validate the efficacy of our proposed model. We employ
several datasets of realistic scenarios, including Weather, ILI, and Electricity trans-
former temperature (ETTh1, ETTh2, ETTm1 and ETTm2). Weather data record 21
meteorological indicators. The ILI dataset contains weekly data on influenza-like ill-
ness patients, comprising seven indicators. ETT data contains 7 features, including oil
temperature and power load features.

Baselines. We conducted a comparative analysis of PatchMamba with seven contem-
porary models, including one Mamba-based model (S-Mamba[17]), four Transformer-
based models (iTransformer[18], PatchTST[19], Crossformer[20] and FED-
former[21]), one linear-based model (DLinear[22]), and one convolutional network-
based model (TimesNet[23]).

3.2  Experimental Settings

PatchMamba is implemented based on Pytorch and trained on a 12 GB Nvidia RTX
3080Ti GPU. In the ILI dataset, all models were set to utilize the same historical look-
back window size L=36, the forecast length designated as Te {24,36,48,60}. For all
other datasets, the historical lookback window size was set to Z=96, and the forecast
length was set to 7¢{96,192,336,720}. Loss function is MSE, and optimization is per-
formed by Adam. MSE and MAE are used as metrics for prediction evaluation. The
training process employs early stopping mechanism and is limited to 60 epochs.

3.3 Results and Analysis

As shown in Table 1 and Table 2, among the 60 forecasting cases of 6 datasets, Patch-
Mamba achieved the best results in 45 cases. Compared with the temporal Mamba
model S-Mamba, PatchMamba achieves error reductions of 8.52% in MSE and 5.32%
in MAE. Furthermore, compared to the prevailing Transformer-based model PatchTST,
PatchMamba demonstrates average error reductions of 5.27% and 2.08% on the MSE
and MAE metrics, respectively. In terms of predictive modeling, our models are differ-
entiated according to the characteristics of the multivariate time series data. For the
Weather and ILI datasets, a channel dependence strategy is adopted, and the CD-Patch
Attention mechanism captures the dynamic interactions between multivariate variables
at a fine-grained level. And combined with Bi-Mamba to enhance the information re-
tention capability. For the ETT series dataset, a channel independence strategy is used,
combining Cl-Patch attention with Bi-Mamba. This effectively captures local fluctua-
tion characteristics and global evolution patterns of each variable time series. This
adaptive strategy can help improve model performance.



Table 1. Comparing PatchMamba with baseline.

The best results are in red and the second best are blue.

Models Pat(:(zmg;n ba S-Mamba ITransfomer PatchTST Crossformer
metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0372 0400 0.386 0405 0.386 0405 0414 0419 0423 0.448

ETTHL 192 0422 0428 0443 0437 0441 0436 0460 0445 0471 0.474
336 0466 0440 0489 0468 0487 0458 0501 0.466 0570 0.546

720 0471 0459 0502 0.489 0503 0491 0500 0483 0.653 0.621

avg 0433 0432 0455 0450 0.454 0448 0469 0455 0529 0.522

96 0294 0346 0296 0348 0.297 0.349 0302 0348 0.745 0584

ETTH? 192 0370 0395 0376 0396 0380 0400 0.388 0400 0877 0.656
336 0380 0411 0424 0431 0428 0432 0426 0433 1043 0.731

720 0415 0437 0426 0444 0427 0.445 0431 0.446 1104 0.763

avg 0365 0.397 0.381L 0405 0383 0407 0.387 0.407 0.942 0.684

96 0318 0361 0.333 0368 0.334 0368 0329 0367 0404 0.426

ETTm1 192 0362 0382 0376 0390 0377 0391 0367 038 0450 0451
336 0390 0408 0408 0413 0426 0420 0399 0410 0532 0515

720 0451 0442 0475 0.448 0491 0459 0454 0439 0.666 0.589

avg 0380 0.398 0.398 0405 0407 0410 0.387 0400 0513 0.495

96 0178 0264 0179 0263 0.180 0264 0175 0259 0.287 0.366

ETTm? 192 0244 0306 0250 0.309 0250 0309 0241 0302 0414 0.492
336 0305 0346 0312 0349 0311 0348 0305 0.343 0597 0.542

720 0401 0401 0411 0.406 0412 0407 0402 0400 1.730 1.042

avg 0282 0329 0.288 0332 0288 0332 0281 0326 0757 0.611

96 0158 0204 0165 0210 0174 0214 0177 0218 0.158 0.230
Weather 192 0207 0250 0214 0252 0221 0254 0225 0259 0206 0.277
336 0259 0.287 0274 0297 0278 0296 0278 0297 0272 0335

720 0342 0345 0.350 0.345 0.358 0.347 0.354 0.348 0.398 0.418

avg 0242 0272 0251 0276 0258 0278 0259 0281 0.259 0.315

24 2264 0922 2866 1123 2472 0994 2149 0.887 4484 1458

It 36 1745 0845 2765 1108 2288 0964 2314 0925 4651 1540
48 1845 0865 2760 1110 2227 0951 2231 0921 4901 1567

60 1982 0925 3189 1240 2267 0966 2.041 0908 5.183 1.609

avg 1959 0.889 2.895 1.145 2310 0970 2184 0910 4.805 1.544
1%'count 45 0 13 2
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Table 2. This table is a continuation of Table 1

Models TimesNet DLinear FEDformer

metric MSE MAE MSE MAE MSE MAE
96 0384 0402 038 0400 0.376 0.419
192 0436 0.429 0.437 0432 0.420 0.448
336 0491 0469 0481 0459 0.459 0.465
720 0521 0500 0519 0516 0506 0.507
avg 0458 0450 0456 0452 0.440 0.460
96 0340 0.374 0.333 0387 0.358 0.397
192 0.402 0.414 0477 0476 0.429 0.439
336 0.452 0.452 0594 0541 0.496 0.487
720 0462 0468 0.831 0.657 0.463 0.474
avg 0414 0427 0559 0515 0437 0.449
96 0338 0375 0345 0372 0.379 0.419
192 0.374 0.387 0.380 0.389 0426 0.441
336 0410 0.411 0.413 0.413 0.445 0.459
720 0478 0.450 0.474 0.453 0543 0.490
avg 0400 0406 0.403 0.407 0.448 0.452
96 0.187 0.267 0.193 0.292 0.203 0.287
192 0.249 0.309 0.284 0.362 0.269 0.328
336 0.321 0.351 0.369 0.427 0325 0.366
720 0.408 0.403 0554 0522 0.421 0.415
avg 0.291 0.333 0.350 0.401 0.305 0.349
96 0.172 0.220 0.196 0.255 0.217 0.296
192 0.219 0.261 0.237 0.296 0.276 0.336
336 0.280 0.306 0.283 0.335 0.339 0.380
720 0365 0.359 0.345 0.381 0.403 0.428
avg 0.259 0.287 0.265 0.317 0.309 0.360
24 2317 0934 4794 1658 2.882 1.179
36 1.972 0920 4455 1558 2.857 1.148
48 2238 1982 4120 1476 2703 1.113
60 2207 0928 4246 1486 2.716 1.116
avg 2184 1191 4404 1545 2790 1.139
1tcount 0 1 2

ETThl

ETTh2

ETTml

ETTm2

Weather

ILI

3.4  Ablation Study

Effect of Each Component. To evaluate the effectiveness of each component in Patch-
Mamba, we constructed three different variants, each targeting a specific element.
(1)w/o Patch Attention: This variant performs ablation studies by eliminating Cl-Patch
Attention under a channel independence strategy and CD-Patch Attention under a chan-
nel dependence strategy. (2)w/o Bi-Mamba: This variant eliminates the Bi-Mamba in
the model and explores the role of the Mamba in the model. (3)w/o Residual: That
removes two residual connection from the model. The results of the ablation experi-
ments are shown in Table 3.



We observe the following key points: (1) PatchMamba achieves average error reduc-
tions of 3.53% in MSE and 1.71% in MAE compared to w/o Patch Attention. This
indicates that our proposed Patch Attention mechanism has a better effect on local fea-
ture information extraction. (2) Removal of Bi-Mamba leads to significant performance
degradation, with an average decrease of 9.36% in MSE and 7.63% in MAE. This high-
lights Bi-Mamba's critical role in capturing long-term information features in time se-
ries data. (3) w/o Residual removal of two residual connections in the model leads to
performance degradation with an average decrease of 9.45% for MSE and 7.83% for
MAE. It is demonstrated that residual connection in the model not only stabilizes the
training process but also improves the performance of the model.

Table 3. Results of ablation study on ETTh2 and Weather dataset, the best results are in bold.

w/o w/o Patch .
Models PatchMamba . . wi/o Residual
Bi-Mamba Attention
metrics MSE MAE MSE MAE MSE MAE MSE MAE

96 0.294 0.346 0.315 0.361 0296 0.346 0.324 0.368
192 0.370 0.395 0.409 0.418 0372 0394 0400 0413

ETTh2
336 0.380 0.411 0.407 0.429 0400 0420 0425 0439
720 0.415 0.437 0.417 0.439 0.424 0.442 0.442 0.456
96 0.158 0.204 0.198 0.253 0.171 0.215 0.196 0.249
192 0.207 0.250 0.243 0.287 0217 0.255 0.235 0.279
Weather

336 0.259 0.287 0.291 0.318 0.273 029 0.290 0.313
720 0.342 0.345 0.362 0.362 0.351  0.347 0.362 0.363

Varying historical look back window Lengths. To verify the effectiveness of Patch-
Mamba in extracting long-term time series information. We conducted experiments
with different historical look-back window lengths on five datasets, with the forecast
length set to T=96. As shown in Fig. 4, PatchMamba demonstrates a decrease in MSE
and maintains stability as the historical lookback window increases. This indicates that
PatchMamba can effectively learn correlation information from time series data with
longer historical lookback windows, enhancing predictive capability.
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Fig. 4. MSE scores of PatchMamba with varying look-back window lengths on five datasets.
The historical look back lengths are selected to be Z= {48,96,192,336,720}.

3.5  Sensitivity Analysis

To verify the sensitivity of PatchMamba to hyperparameters, we conducted experi-
ments on patch length, and Mamba's Conv-1D kernel size parameters. We set patch
length €{4,8,12,24},and the experimental results are shown in Fig. 5(a). From the ex-
perimental results, we observe that different datasets respond differently to patch
length. For example, in the ETTh1 dataset, due to its short-term dependencies of the
transformer state, shorter segment lengths better capture its features.

The 1-D convolution in Mamba is used to capture the temporal correlation of the
input sequence. We conducted experiments with kernel sizes of 2, 3, and 4. As shown
in Fig. 5(b), the results indicate that the model achieves optimal performance with a
kernel size of 2. Overall, our model demonstrates relative robustness to kernel size.

MSE

ETThI ETTh2 ETTml ETTm2

datasets

(a) Effect of patch length

Wl

-

ETTh2 ETTm1

datasets

(b) Effect of Conv-1D kernel size

Fig. 5. Sensitivity experiments result



4 Conclusion

In this paper, we propose PatchMamba, a model comprising Patch Attention and Bi-
Mamba. The model splits sequences into patches and dynamically selects a handling
strategy based on multivariate time series data characteristics. Specifically, Cl-Patch
Attention focuses on the internal evolution of each univariate time series, while CD-
Patch Attention captures inter-sequence dependencies. Bi-Mamba effectively extracts
long-term dependencies. Experimental results demonstrate the superior performance of
our model compared to SOTA models. We conducted comprehensive analytical exper-
iments to investigate the impact of PatchMamba's components and their parameters on
model performance. These findings confirm that PatchMamba enhances prediction ac-
curacy in multivariate time series forecast tasks.
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