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Abstract. Multivariate time series forecasting (MTSF) has broad applications in 

real-life situations. However, multivariate time series data in different scenarios 

may exhibit different inter-sequence or intra-sequence dependencies. Existing 

models often struggle to capture these complex dependencies between time series 

and variables simultaneously, thus limiting forecasting accuracy. To address 

these issues, this paper proposes PatchMamba, a multivariate time series forecast 

model based on Patch Attention and Mamba. PatchMamba includes two novel 

Patch Attention mechanisms: CD-Patch Attention under the channel dependence 

strategy and CI-Patch Attention under the channel independence strategy. CD-

Patch effectively captures the inter-variable dependencies. In contrast, CI-Patch 

Attention takes each variable individually to extract local features, avoiding 

cross-channel interference. Furthermore, we use bidirectional Mamba (Bi-

Mamba) to capture long temporal dependency information. Experiments show 

that PatchMamba achieves higher forecast accuracy on multiple real-world da-

tasets compared to current state-of-the-art (SOTA) models. In addition, this paper 

validates the role and robustness of the model components through ablation ex-

periments and parameter sensitivity analysis. 

Keywords: Multivariate Time series forecasting, Bi-Mamba, Patch Attention, 

PatchMamba. 

1 Introduction  

Time series data are sequences arranged in chronological order and are usually sampled 

at equal intervals of time frequency. A multivariate time series (MTS) consists of mul-

tiple variables recorded simultaneously at the same time nodes. As a key data mining 

technique, MTSF is widely used in many fields, including energy consump-

tion[1],traffic flow estimation[2], climate forecasting[3], and economic trend forecast-

ing[4]. Complex correlations between variables and long-term dependencies make 

MTSF more challenging. Its development has evolved from traditional statistical and 

machine learning models to the current SOTA deep learning models. 

Statistical models include ARIMA, SARIMA, and GARCH[5-7]. They rely on strict 

mathematical derivation and probability assumptions to mine linear relationships in a 

single variable time series and have achieved some success in simple scenarios. To 



handle complex situations of multivariate interaction, researchers have developed ma-

chine learning-based models. Models such as Support Vector Machines, neural net-

works, and Random Forests[8-10] can extract nonlinear relationships and dynamic 

changes in MTS, improving the ability to make predictions. However, these models are 

sensitive in parameter selection and have limited prediction ability. 

In recent years, with the development of deep learning techniques in natural lan-

guage processing (NLP) and computer vision (CV), researchers have increasingly ap-

plied these techniques to time series forecasting. Recurrent neural networks (RNNs) 

and their variants[11, 12] have been increasingly used in MTSF to achieve more ad-

vanced prediction performance. However, RNN-based models have two main[13] 

drawbacks: (1) error accumulation from dynamic decoding; (2) difficulty in extracting 

long-sequence features due to vanishing gradient and memory limits. 

To handle these problems, the Transformer[14] model is introduced into MTSF. 

With its self-attention mechanism, Transformer can process sequence data in parallel, 

effectively capturing capture cross-time dependencies and improving the forecast per-

formance. However, existing models have not fully considered the intra-sequence and 

inter-sequence correlations. (1) Intra-sequence correlation. It involves the extraction of 

long-term correlations and local features. Because time series data has a lower semantic 

information density at any given point in time compared to other sequence data types, 

capturing intra-series correlation is particularly challenging. (2) Inter-sequence corre-

lation. It refers to exploring the relationships and dependencies between different vari-

ables. Multivariate time series data in different scenarios may exhibit different depend-

encies. For example, in weather forecasting, there are complex interactions between 

variables such as temperature, humidity, and barometric pressure; in power systems, 

different power load characteristics may have independent evolutionary laws. 

In this paper, we present PatchMamba to overcome the challenges mentioned above. 

It divides data into patches to extract richer semantic information and combines channel 

independence (CI) and channel dependence (CD) processing strategies. This approach 

effectively captures complex intra-sequence and inter-sequence correlations in MTSF 

across different scenarios. Our contributions are as follows: 

• We propose the PatchMamba model, which effectively combines the Patch Atten-

tion mechanism with the Mamba block. PatchMamba can capture local time series 

features through the Patch Attention mechanism and can extract long-term depend-

encies by Mamba.  

• We propose a dual strategy attention mechanism, Patch Attention, which consists of 

CI-Patch Attention and CD-Patch Attention. It able to selectively capture local intra-

sequence correlation and multivariate interactions based on the characteristics of 

multivariate time series data. And enables the model to be more flexible in different 

prediction tasks and significantly improves the prediction performance. 

• We conducted extensive experiments on six real-world datasets, and PatchMamba 

significantly reduces the MSE and MAE metrics compared to the current SOTA, 

demonstrating its effectiveness in MTSF. 
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2 Methodology 

2.1 Problem Definition 

The time series forecasting task is defined, given a historical observation window 𝑋 =
[𝑥1, 𝑥2, 𝑥3. . . . 𝑥𝐿]𝜖𝑅𝐿×𝑁, where 𝑥𝑛 = [𝑣1, 𝑣2, 𝑣3. . . . 𝑣𝑁], to forecast a lengthy window 

of future time series Y= [𝑥𝐿+1, 𝑥𝐿+2, . . . , 𝑥𝐿+𝑇]𝜖𝑅𝑇×𝑁. In this context, 𝐿 and 𝑇 repre-

sent the historical look back window and the forecast length, respectively, while V is 

the variable, and 𝑁 represents the number of variables. 

2.2 Model Architecture 

The overview architecture of PatchMamba is shown in Fig. 1. First, the input sequence 

𝑋 passes through the Sequence Relation Aware (SRA) decider to compute variable 

correlations and select a modeling strategy. Generate embedding vectors by Patch-Em-

bedding and pass them to Patch Attention to extract local dependencies. Next, a Feed-

forward Neural Network (FFN) boosts the model's expressive power to capture com-

plex features and patterns. Then, Bi-Mamba captures long temporal features, followed 

by another FFN that extracts deeper into temporal information. Finally, a flatten linear 

layer generates the result Y. The details of modules are given in the following sections. 

 

Fig. 1. The architecture of PatchMamba. 

2.3 SRA decider 

We employ the SRA decider[15] dynamically select different channel interactions 

based on the correlation of the multivariable time series: channel independence and 

channel dependence. The core of SRA decider is using the Spearman correlation coef-

ficient to compute the correlation between variables. It provides a more effective strat-

egy selection for multivariate time series modeling. 



2.4 Patch Embedding  

To address the heterogeneous characteristics of multivariate time series data, Patch-

Mamba adopts a dual-stream adaptive embedding architecture: channel independence 

streaming where each univariate is processed individually, and channel dependence 

streaming that captures the system dependencies using cross-variate interactions. (1) 

CI-Patch Embedding: In the univariate channel sequences𝑋
1：𝐿
𝑖 , the data is initially di-

vided into 𝑃𝑖𝜖𝑅𝑠×𝑚 , where s denotes the number of patches and 𝑚 signifies the 

length of each patch. Each univariate channel is concatenated to the embed-

ding 𝐸𝐶𝐼𝜖𝑅𝑠×𝑚×𝑑, where 𝑑 is the hidden state dimension.  (2) CD-Patch Embedding: 

For multivariate time series data 𝑋𝑙×𝑛 obtained embedding 𝐸𝐶𝐷𝜖𝑅𝑙×𝑛×𝑑 ,where 𝑙 is 

the sequence length, and 𝑛 is the number of variables. 

 In addition, to address the distribution shift between the training set and the test set, 

the data normalization method RevIN[16] is employed to enhance the model’s robust-

ness. 

2.5 Patch Attention 

According to different handle strategies, we have designed CI-Patch Attention and CD-

Patch Attention, as shown in Fig. 2. 

 

(a) CI-Patch Attention 

 

(b) CD-Patch Attention 

Fig. 2. The architecture of Patch Attention mechanism.  

CI-Patch Attention. CI-Patch Attention establishes relationships between time steps 

within each patch. For each channelized time series embedding 𝐸𝐶𝐼𝜖𝑅𝑠×𝑚×𝑑, the i-th 
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Patch block 𝐸𝐶𝐼
𝑖 𝜖𝑅𝑚×𝑑 is selected. A trainable linear transformation is applied to ob-

tain the query, key, and value in the attention operation, denoted as 

𝑄𝐶𝐼
𝑖 , 𝐾𝐶𝐼

𝑖 , 𝑉𝐶𝐼
𝑖 𝜖𝑅𝑚×𝑑𝑖 . We then compute Attention 𝐴𝑡𝑡𝐶𝐼

𝑖 𝜖𝑅𝑚×𝑑, which involves interac-

tions within the Patch. The CI-Patch Attention are calculated as follows: 

𝐴𝑡𝑡𝐶𝐼
𝑖 = Softmax(

𝑄𝐶𝐼
𝑖 (𝐾𝐶𝐼

𝑖 )
𝑇

√𝑑𝑖

) 𝑉𝐶𝐼
𝑖 (1) 

After CI-Patch Attention, each patch has its own input and output of constant length, 

which mixes the dynamic features of local regions in the time series and improves the 

capture of intra-sequence correlation. The attention results from all patches are com-

bined to produce the output of CI-Patch Attention AttCI𝜖𝑅s×m×𝑑, which represents lo-

cal details from nearby steps in the time series. That process is as follows: 

Att𝐶𝐼 = Concat(Att𝐶𝐼
1 , … ,Att𝐶𝐼

𝑠 ) (2) 

CD-Patch Attention. The CD-Patch Attention approach involves the partitioning of 

the input embedding ECD𝜖𝑅l×n×d into a Patch ECD
𝑖 𝜖𝑅m×n×d, which contains 𝑚 data 

points. Subsequently, the ECD
𝑖  is subjected to a trainable linear transformation to obtain 

the key and value in the attention operation, denoted as 𝐾CD
𝑖 , VCD

𝑖 𝜖𝑅m×𝑑𝑚 . A trainable 

query matrix, 𝑄𝐶𝐷
𝑖 𝜖𝑅1×𝑑𝑚 to pool the contexts within the Patch. Computing the cross-

attention between 𝑄𝐶𝐷
𝑖 , 𝐾CD

𝑖 , VCD
𝑖  to capture the interactions between local variables 

within the i-th Patch. The CD-Patch Attention expressed as:  

𝐴𝑡𝑡𝐶𝐷
𝑖 = Softmax(

𝑄𝐶𝐷
𝑖 (𝐾𝐶𝐷

𝑖 )
𝑇

√𝑑𝑚

) 𝑉𝐶𝐷
𝑖 (3) 

Following CD-Patch Attention, each Patch output length becomes AttCD
𝑖 𝜖𝑅1×n×𝑑𝑚 . It 

enables the explicit capture of dependencies between different variables. The connec-

tion of attention results from all Patches produces the output AttCD𝜖𝑅s×m×𝑑𝑚  of CD-

Patch Attention, which represents dependencies between variables from local time 

steps. That process is as follows: 

𝐴𝑡𝑡𝐶𝐷 = Concat(𝐴𝑡𝑡𝐶𝐷
1 , … , 𝐴𝑡𝑡𝐶𝐷

𝑠 ) (4) 

FFN. The input of FFN is the output of Patch Attention with the following expression: 

FFN(𝐴𝑡𝑡) = Dropout(ReLU(Att𝐶𝐼/𝐶𝐷𝑊1 + 𝑏1)𝑊2 + 𝑏2) (5) 

𝑋𝑜𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(FFN(Att𝐶𝐼/𝐶𝐷) + 𝑥) (6) 

Where 𝑊1 is the hidden layer weight and 𝑏1 is the hidden layer bias, 𝑊2 is the output 

layer weight and 𝑏2  is the output layer bias. The output dimension of the FFN is 

𝑋𝑜𝑢𝑡𝜖𝑅𝐵×𝐽×𝐷 , with 𝐵  and 𝐽  corresponding to N or 𝑆 , depending on the handling 



strategy. Specifically, under a channel independence strategy, 𝑋𝑜𝑢𝑡𝜖𝑅𝑁×𝑆×𝐷 ; other-

wise, 𝑋𝑜𝑢𝑡𝜖𝑅𝑆×𝑁×𝐷. 

2.6 Bi-Mamba 

Given the complex evolution patterns of time series in different directions and the in-

tricate dependencies among sequences, we introduce a Bi-Mamba block to handle. The 

architecture of Bi-Mamba as shown in Fig. 3. 

 

Fig. 3. The architecture of Bi-Mamba 

Bi-Mamba's forward input 𝑈𝑓=𝑋𝑜𝑢𝑡, backward input 𝑈𝑏 = 𝐹𝑙𝑖𝑝(𝑋𝑜𝑢𝑡). Each Mamba 

processing flow is as follows: firstly, the input 𝑈𝑑𝑖𝑟(𝑑𝑖𝑟 𝜖{𝑓，𝑏}) is passed through 

two linear layers, which extend the hidden dimension to 𝑈, as shown in Fig. 3. The 

result of one branch is passed through a 1-D convolutional layer, a SiLU activation 

function, and a standard SSM block to obtain the candidate output 𝑈𝑑𝑖𝑟
′  . The result of 

the other branch is passed through a SiLU activation function as a gate, which is mul-

tiplied with 𝑈𝑑𝑖𝑟
′  to obtain the final output 𝑈𝑦,𝑑𝑖𝑟 .The forward and backward outputs 

are summed by residual concatenation and layer normalization for bi-directional feature 

fusion, the formula of this part is demonstrated as follows: 

 𝐸𝑜𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑈𝑦,𝑓 + 𝑋𝑜𝑢𝑡) + 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝑙𝑖𝑝(𝑈𝑦,𝑏) + 𝑋𝑜𝑢𝑡) (7) 

The fusion features are input to the FFN, which is computed as follows: 

FFN(𝐸𝑜𝑢𝑡) = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ReLU(𝐸𝑜𝑢𝑡𝑊1 + 𝑏1)𝑊2 + 𝑏2) (8) 

𝑀𝑜𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(FFN(𝐸𝑜𝑢𝑡) + 𝑋𝑜𝑢𝑡) (9) 

The output Mout is reconstructed into the target time series via flatten linear layer. 

Subsequently, through RevIn denormalization produces the final prediction 𝑌̂ ∈ 𝑅𝑁×𝐻. 
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3 Experiments 

3.1 Datasets and Baselines 

Datasets. To comprehensively validate the efficacy of our proposed model. We employ 

several datasets of realistic scenarios, including Weather, ILI, and Electricity trans-

former temperature (ETTh1, ETTh2, ETTm1 and ETTm2). Weather data record 21 

meteorological indicators. The ILI dataset contains weekly data on influenza-like ill-

ness patients, comprising seven indicators. ETT data contains 7 features, including oil 

temperature and power load features.  

Baselines. We conducted a comparative analysis of PatchMamba with seven contem-

porary models, including one Mamba-based model (S-Mamba[17]), four Transformer-

based models (iTransformer[18], PatchTST[19], Crossformer[20] and FED-

former[21]), one linear-based model (DLinear[22]), and one convolutional network-

based model (TimesNet[23]). 

3.2 Experimental Settings 

PatchMamba is implemented based on Pytorch and trained on a 12 GB Nvidia RTX 

3080Ti GPU. In the ILI dataset, all models were set to utilize the same historical look-

back window size L=36, the forecast length designated as 𝑇𝜖 {24,36,48,60}. For all 

other datasets, the historical lookback window size was set to 𝐿=96, and the forecast 

length was set to 𝑇𝜖 {96,192,336,720}. Loss function is MSE, and optimization is per-

formed by Adam. MSE and MAE are used as metrics for prediction evaluation. The 

training process employs early stopping mechanism and is limited to 60 epochs.  

3.3 Results and Analysis 

As shown in Table 1 and Table 2, among the 60 forecasting cases of 6 datasets, Patch-

Mamba achieved the best results in 45 cases. Compared with the temporal Mamba 

model S-Mamba, PatchMamba achieves error reductions of 8.52% in MSE and 5.32% 

in MAE. Furthermore, compared to the prevailing Transformer-based model PatchTST, 

PatchMamba demonstrates average error reductions of 5.27% and 2.08% on the MSE 

and MAE metrics, respectively. In terms of predictive modeling, our models are differ-

entiated according to the characteristics of the multivariate time series data. For the 

Weather and ILI datasets, a channel dependence strategy is adopted, and the CD-Patch 

Attention mechanism captures the dynamic interactions between multivariate variables 

at a fine-grained level. And combined with Bi-Mamba to enhance the information re-

tention capability. For the ETT series dataset, a channel independence strategy is used, 

combining CI-Patch attention with Bi-Mamba. This effectively captures local fluctua-

tion characteristics and global evolution patterns of each variable time series. This 

adaptive strategy can help improve model performance. 



Table 1. Comparing PatchMamba with baseline.  

The best results are in red and the second best are blue. 

Models 
PatchMamba 

(ours) 
S-Mamba ITransfomer PatchTST Crossformer 

metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ETTh1 

96 0.372  0.400  0.386  0.405  0.386  0.405  0.414  0.419  0.423  0.448  

192 0.422  0.428  0.443  0.437  0.441  0.436  0.460  0.445  0.471  0.474  

336 0.466  0.440  0.489  0.468  0.487  0.458  0.501  0.466  0.570  0.546  

720 0.471  0.459  0.502  0.489  0.503  0.491  0.500  0.488  0.653  0.621  

 avg 0.433  0.432  0.455  0.450  0.454  0.448  0.469  0.455  0.529  0.522  

ETTh2 

96 0.294  0.346  0.296  0.348  0.297  0.349  0.302  0.348  0.745  0.584  

192 0.370  0.395  0.376  0.396  0.380  0.400  0.388  0.400  0.877  0.656  

336 0.380  0.411  0.424  0.431  0.428  0.432  0.426  0.433  1.043  0.731  

720 0.415  0.437  0.426  0.444  0.427  0.445  0.431  0.446  1.104  0.763  

 avg 0.365  0.397  0.381  0.405  0.383  0.407  0.387  0.407  0.942  0.684  

ETTm1 

96 0.318  0.361  0.333  0.368  0.334  0.368  0.329  0.367  0.404  0.426  

192 0.362  0.382  0.376  0.390  0.377  0.391  0.367  0.385  0.450  0.451  

336 0.390  0.408  0.408  0.413  0.426  0.420  0.399  0.410  0.532  0.515  

720 0.451  0.442  0.475  0.448  0.491  0.459  0.454  0.439  0.666  0.589  

 avg 0.380  0.398  0.398  0.405  0.407  0.410  0.387  0.400  0.513  0.495  

ETTm2 

96 0.178  0.264  0.179  0.263  0.180  0.264  0.175  0.259  0.287  0.366  

192 0.244  0.306  0.250  0.309  0.250  0.309  0.241  0.302  0.414  0.492  

336 0.305  0.346  0.312  0.349  0.311  0.348  0.305  0.343  0.597  0.542  

720 0.401  0.401  0.411  0.406  0.412  0.407  0.402  0.400  1.730  1.042  

 avg 0.282  0.329  0.288  0.332  0.288  0.332  0.281  0.326  0.757  0.611  

Weather 

96 0.158  0.204  0.165  0.210  0.174  0.214  0.177  0.218  0.158  0.230  

192 0.207  0.250  0.214  0.252  0.221  0.254  0.225  0.259  0.206  0.277  

336 0.259  0.287  0.274  0.297  0.278  0.296  0.278  0.297  0.272  0.335  

720 0.342  0.345  0.350  0.345  0.358  0.347  0.354  0.348  0.398  0.418  

 avg 0.242  0.272  0.251  0.276  0.258  0.278  0.259  0.281  0.259  0.315  

ILI 

24 2.264  0.922  2.866  1.123  2.472  0.994  2.149  0.887  4.484  1.458  

36 1.745  0.845  2.765  1.108  2.288  0.964  2.314  0.925  4.651  1.540  

48 1.845  0.865  2.760  1.110  2.227  0.951  2.231  0.921  4.901  1.567  

60 1.982  0.925  3.189  1.240  2.267  0.966  2.041  0.908  5.183  1.609  

 avg 1.959  0.889  2.895  1.145  2.310  0.970  2.184  0.910  4.805  1.544  

1stcount 45 1 0 13 2 
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Table 2. This table is a continuation of Table 1 

Models TimesNet DLinear FEDformer 

metric MSE MAE MSE MAE MSE MAE 

ETTh1 

96 0.384  0.402  0.386  0.400  0.376  0.419  

192 0.436  0.429  0.437  0.432  0.420 0.448  

336 0.491  0.469  0.481  0.459  0.459  0.465  

720 0.521  0.500  0.519  0.516  0.506  0.507  

 avg 0.458  0.450  0.456  0.452  0.440  0.460  

ETTh2 

96 0.340  0.374  0.333  0.387  0.358  0.397  

192 0.402  0.414  0.477  0.476  0.429  0.439  

336 0.452  0.452  0.594  0.541  0.496  0.487  

720 0.462  0.468  0.831  0.657  0.463  0.474  

 avg 0.414  0.427  0.559  0.515  0.437  0.449  

ETTm1 

96 0.338  0.375  0.345  0.372  0.379  0.419  

192 0.374  0.387  0.380  0.389  0.426  0.441  

336 0.410  0.411  0.413  0.413  0.445  0.459  

720 0.478  0.450  0.474  0.453  0.543  0.490  

 avg 0.400  0.406  0.403  0.407  0.448  0.452  

ETTm2 

96 0.187  0.267  0.193  0.292  0.203  0.287  

192 0.249  0.309  0.284  0.362  0.269  0.328  

336 0.321  0.351  0.369  0.427  0.325  0.366  

720 0.408  0.403  0.554  0.522  0.421  0.415  

 avg 0.291  0.333  0.350  0.401  0.305  0.349  

Weather 

96 0.172  0.220  0.196  0.255  0.217  0.296  

192 0.219  0.261  0.237  0.296  0.276  0.336  

336 0.280  0.306  0.283  0.335  0.339  0.380  

720 0.365  0.359  0.345  0.381  0.403  0.428  

 avg 0.259  0.287  0.265  0.317  0.309  0.360  

ILI 

24 2.317  0.934  4.794  1.658  2.882  1.179  

36 1.972  0.920  4.455  1.558  2.857  1.148  

48 2.238  1.982  4.120  1.476  2.703  1.113  

60 2.207  0.928  4.246  1.486  2.716  1.116  

 avg 2.184  1.191  4.404  1.545  2.790  1.139  

1stcount 0 1 2 

3.4 Ablation Study 

Effect of Each Component. To evaluate the effectiveness of each component in Patch-

Mamba, we constructed three different variants, each targeting a specific element. 

(1)w/o Patch Attention: This variant performs ablation studies by eliminating CI-Patch 

Attention under a channel independence strategy and CD-Patch Attention under a chan-

nel dependence strategy. (2)w/o Bi-Mamba: This variant eliminates the Bi-Mamba in 

the model and explores the role of the Mamba in the model. (3)w/o Residual: That 

removes two residual connection from the model. The results of the ablation experi-

ments are shown in Table 3. 



We observe the following key points: (1) PatchMamba achieves average error reduc-

tions of 3.53% in MSE and 1.71% in MAE compared to w/o Patch Attention. This 

indicates that our proposed Patch Attention mechanism has a better effect on local fea-

ture information extraction. (2) Removal of Bi-Mamba leads to significant performance 

degradation, with an average decrease of 9.36% in MSE and 7.63% in MAE. This high-

lights Bi-Mamba's critical role in capturing long-term information features in time se-

ries data. (3) w/o Residual removal of two residual connections in the model leads to 

performance degradation with an average decrease of 9.45% for MSE and 7.83% for 

MAE. It is demonstrated that residual connection in the model not only stabilizes the 

training process but also improves the performance of the model.  

Table 3. Results of ablation study on ETTh2 and Weather dataset, the best results are in bold. 

Models PatchMamba 
w/o  

Bi-Mamba 

w/o Patch  

Attention 
w/o Residual 

metrics MSE MAE MSE MAE MSE MAE MSE MAE 

ETTh2 

96 0.294 0.346 0.315 0.361 0.296 0.346 0.324 0.368 

192 0.370 0.395 0.409 0.418 0.372 0.394 0.400 0.413 

336 0.380 0.411 0.407 0.429 0.400 0.420 0.425 0.439 

720 0.415 0.437 0.417 0.439 0.424 0.442 0.442 0.456 

Weather 

96 0.158 0.204 0.198 0.253 0.171 0.215 0.196 0.249 

192 0.207 0.250 0.243 0.287 0.217 0.255 0.235 0.279 

336 0.259 0.287 0.291 0.318 0.273 0.296 0.290 0.313 

720 0.342 0.345 0.362 0.362 0.351 0.347 0.362 0.363 

Varying historical look back window Lengths. To verify the effectiveness of Patch-

Mamba in extracting long-term time series information. We conducted experiments 

with different historical look-back window lengths on five datasets, with the forecast 

length set to T=96. As shown in Fig. 4, PatchMamba demonstrates a decrease in MSE 

and maintains stability as the historical lookback window increases. This indicates that 

PatchMamba can effectively learn correlation information from time series data with 

longer historical lookback windows, enhancing predictive capability.  
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Fig. 4. MSE scores of PatchMamba with varying look-back window lengths on five datasets. 

The historical look back lengths are selected to be 𝐿= {48,96,192,336,720}. 

3.5 Sensitivity Analysis 

To verify the sensitivity of PatchMamba to hyperparameters, we conducted experi-

ments on patch length, and Mamba's Conv-1D kernel size parameters. We set patch 

length 𝜖{4,8,12,24},and the experimental results are shown in Fig. 5(a). From the ex-

perimental results, we observe that different datasets respond differently to patch 

length. For example, in the ETTh1 dataset, due to its short-term dependencies of the 

transformer state, shorter segment lengths better capture its features. 

The 1-D convolution in Mamba is used to capture the temporal correlation of the 

input sequence. We conducted experiments with kernel sizes of 2, 3, and 4. As shown 

in Fig. 5(b), the results indicate that the model achieves optimal performance with a 

kernel size of 2. Overall, our model demonstrates relative robustness to kernel size. 

  

(a) Effect of patch length                       (b) Effect of Conv-1D kernel size    

Fig. 5. Sensitivity experiments result 



4 Conclusion 

In this paper, we propose PatchMamba, a model comprising Patch Attention and Bi-

Mamba. The model splits sequences into patches and dynamically selects a handling 

strategy based on multivariate time series data characteristics. Specifically, CI-Patch 

Attention focuses on the internal evolution of each univariate time series, while CD-

Patch Attention captures inter-sequence dependencies. Bi-Mamba effectively extracts 

long-term dependencies. Experimental results demonstrate the superior performance of 

our model compared to SOTA models. We conducted comprehensive analytical exper-

iments to investigate the impact of PatchMamba's components and their parameters on 

model performance. These findings confirm that PatchMamba enhances prediction ac-

curacy in multivariate time series forecast tasks. 
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