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Abstract. In this paper, our aim is to develop a detector capable of effectively 

identifying previously unseen deepfake images, even with limited training data. 

Existing deepfake detection methods predominantly focus on single modality. 

For instance, frequency-domain approaches leverage Fourier transforms to cap-

ture frequency information, while spatial-domain methods utilize convolutional 

networks to extract visual features. However, relying on a single modality limits 

the ability to capture diverse feature types, resulting in poor generalization. To 

overcome this limitation, we propose a dual-stream network, FSSNet, which in-

tegrates the Scale-aware Bidirectional Cross Attention (SBCA) module and the 

Adaptive Feature Fusion (AFF) module for comprehensive and dynamic multi-

modal feature fusion. Experimental results on deepfake images generated by 

eight unseen GAN models and ten unseen diffusion models demonstrate the su-

perior performance of FSSNet, showcasing its robust generalization capability. 

Keywords: Deep learning, Deepfake detection, Multi-modal fusion. 

1 Introduction 

In recent years, the rapid advancement of deep learning techniques has facilitated the 

emergence of deepfake technology, While these innovations present exciting opportu-

nities for creative expression, they also pose significant challenges, particularly in the 

realm of misinformation and digital security. As deepfake content becomes increas-

ingly sophisticated, An effective and generalizable detector is paramount. 

Wang et al.[1] first revealed universal artifacts in CNN-generated images, demon-

strating that classifiers trained on a single model can generalize to unseen models. Ex-

periments on various GANs (e.g., ProGAN, StyleGAN, BigGAN) showed consistent 

artifacts across datasets and generation methods. This work established a solid founda-

tion for deepfake detection, providing a strong benchmark and theoretical support. 

Building on this, subsequent studies focused on enhancing generalization, primarily 

through single-modal feature extraction in either the frequency or spatial domain. 
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However, single-modal methods have significant limitations. Frequency-domain ap-

proaches, while extracting spectral features via Fourier transforms, yet neglect spatial 

context like structures and textures, reducing their effectiveness on complex visuals. 

Conversely, spatial-domain methods focus on visual features but fail to capture fre-

quency distribution biases. These shortcomings limit their ability to generalize across 

models and datasets, making them inadequate for handling the complexities of diverse 

deepfake generation techniques. 

To overcome the limitations of single-modal methods, we propose FSSNet (Fre-

quency-Spatial Synergy Network). As shown in Fig.1, unlike single-modal methods, 

FSSNet simultaneously focuses on both spatial and frequency domains, using two in-

dependent backbones to extract features from spatial and frequency information. Then, 

carefully designed information interaction and fusion modules are used to achieve com-

plementary enhancement of the features, fully leveraging their complementary infor-

mation for classification. 

 

Fig. 1. Our Multi-Modal Method vs. Existing Single-Modal Methods}. (a) and (b) represent the 

general frameworks of frequency-based and spatial-based detectors, respectively, while our 

method (c) effectively aggregates and fully utilizes information from both domains. 

FSSNet includes two key modules: Scale-Aware Bidirectional Cross-Attention 

(SBCA), which captures multi-granular information for deep cross-modal interaction, 

and Adaptive Feature Fusion (AFF), which dynamically combines spatial and fre-

quency features using channel and spatial attention with a learnable factor. This multi-

modal approach overcomes the limitations of single-modal methods, enabling robust 

performance across GAN-generated and unseen generative models, including diffusion 

models, with strong generalization capabilities. 

The main contributions of our work are as follows: 
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⚫ We propose the Frequency-Spatial Synergy Network (FSSNet), which enables com-

plementary integration of spatial and frequency domain information. The SBCA mod-

ule facilitates cross-modal interaction and enhancement, while the AFF module dynam-

ically fuses the two types of modal features. 

⚫ We are the first to introduce DINOv2[2] as the backbone for deepfake detection, 

leveraging its pre-training on large-scale data to enhance feature extraction and repre-

sentation quality. We fine-tune DINOv2 to better adapt it to the specific requirements 

of our deepfake detection task. 

⚫ To evaluate the effectiveness and generalization capability of our method, we per-

formed experiments on eight previously unseen GAN models and ten previously unseen 

Diffusion Models (DMs). Our method achieved an accuracy (Acc.) of 94.8 and an av-

erage precision (A.P.) of 97.0 on the GAN test set, and an Acc. of 92.6 and an A.P. of 

97.2 on the DM test set, both outperforming the current state-of-the-art. 

2 Related Work 

2.1 Generative Models 

With rapid advancements in generative models for computer vision and image synthe-

sis, their applications in deepfake generation have become increasingly widespread. 

Generative Adversarial Networks (GANs)[3], introduced by Goodfellow et al. in 

2014, mark a significant breakthrough in generative model research. GANs comprise a 

generator and a discriminator trained adversarially, enabling the generator to produce 

images closely resembling real data distributions. Since their inception, a variety of 

GAN variants have emerged, each introducing novel techniques to enhance the stabil-

ity, diversity, and quality of the generated images. 

In recent years, Diffusion Models (DMs) [4] have emerged as a new paradigm in 

generative modeling. By progressively adding noise to data and learning the reverse 

process, DMs generate high-quality samples. Notable examples of DMs include DALL-

E[17], a model that generates highly detailed images from textual descriptions, while 

guided diffusion models, such as GLIDE[18], leverage additional conditioning infor-

mation (e.g., text or images) to guide the generative process, leading to more controlled 

and targeted image outputs. Compared to GANs, DMs offer superior generation stabil-

ity and diversity. 

 

2.2 Spatial-Based Detection 

Spatial-based methods primarily focus on detecting visual artifacts and inconsistencies 

at the pixel level. For example, Wang et al.[1] proposed a detection method that trains 

a ResNet-based classifier to leverage common artifacts found in CNN-generated im-

ages. Ju et al.[20] developed a two-branch model that improves the detection of AI-

generated images by combining global and local features. Tan et al.[5] introduced a 

method that transforms images into gradients to extract generalized artifact features 

from a pretrained CNN model. Similarly, Ojha et al.[6] proposed a universal fake image 

detection method utilizing the feature space of the large pretrained vision-language 



model CLIP[19]. This method uses a nearest-neighbor classification approach, com-

paring the target image with known real images to assess its authenticity. By leveraging 

pretrained model features, this approach significantly simplifies the training process. 

 

2.3 Frequency-Based Detection 

Frequency-based methods analyze image features in the frequency domain to detect 

anomalies that are often imperceptible in the spatial domain. For example, Frank et 

al.[7] conducted the first systematic analysis of the spectral characteristics of GAN-

generated images, revealing significant artifacts in the frequency domain for all such 

images. These frequency artifacts can be effectively leveraged to construct efficient 

deepfake detectors. Durall et al.[8] highlighted the failure of many generative models 

to replicate real image spectral properties, enabling detection. Methods such as Bi-

HPF[9] amplify high-frequency artifacts to enhance cross-domain detection perfor-

mance, while FrePGAN[10] mitigates frequency artifacts via perturbation maps, en-

hancing generalization across models. Tan et al.'s FreqNet[11] further employs convo-

lution on phase and amplitude spectra, effectively capturing high-frequency artifacts 

and boosting cross-domain performance. 

3 Method 

3.1 Problem Setup 

Our study aims to develop a deepfake detection model with robust generalization 

capabilities. Specifically, we train the model D using images generated by a single gen-

erator, ProGAN, and evaluate its performance in detecting deepfake images produced 

by various unseen generators. The detection model Dlearns to classify images as real 

or fake by extracting features from both real images and ProGAN-generated images. 

Formally, let x ∈ RH×W×C  denote an input image, where H, W and C are its height, 

width, and number of channels. The objective is to learn a mapping: 𝒟: x ∈ RH×W×C →
{0,1}, where: 

⚫ 𝒟(x = 0) indicates a real image, 

⚫ 𝒟(x = 1) indicates a ai-generated image. 

To optimize the model, we minimize a loss function ℒ(𝒟) with respect to the model 

parameters θ,where y represents the ground truth label: 

θ∗ = argmin
θ

ℒ(𝒟(x; θ), y). (1) 

Testing is conducted on images generated by multiple unseen models. Define the test 

set as 𝑇𝑡𝑒𝑠𝑡 = {𝐺1, 𝐺2, … , 𝐺𝑛}, where each 𝐺𝑖  represents a distinct generative model. 

Our goal is for the trained model 𝒟 to satisfy the following conditions: 

𝒟(𝑥𝐺𝑖
) ≈ 𝑦𝐺𝑖

, (𝐺𝑖 ∈ {𝐺1, 𝐺2, … , 𝐺𝑛}). (2) 
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3.2 Overall Architecture 

 

Fig. 2. Overall Architecture for Generalizable Deepfake Detection. (a) Overall Network. DI-

NOv2 serves as the backbone to separately extract spatial and frequency domain features. The 

fused feature maps are obtained through the SBCA and AFF modules, followed by a linear layer 

classifier for deepfake detection. (b) Scale-aware Bidirectional Cross Attention. Leveraging 

multi-head attention, each head captures interaction information at different scales, enabling bi-

directional interaction between rgb and frequency features. (c) Adaptive Feature Fusion. This 

module concurrently incorporates spatial and channel attention, employing learnable weights for 

dynamic feature fusion. 

To achieve robust and highly generalized deepfake detection, we propose the Fre-

quency-Spatial Synergy Network (FSSNet), which dynamically and comprehensively 

fuses spatial and frequency domain information. The overall framework is illustrated 

in Fig.2. 

Given an input image 𝐼 ∈ 𝑅𝐻×𝑊×𝐶, two copies are generated. One copy, Ι𝑠 is di-

rectly fed into a backbone designed to extract spatial domain features. The other copy, 

𝐼𝑓 , undergoes a series of transformations in the frequency domain. First, the Fast Fou-

rier Transform(𝐹𝐹𝑇)[12] is applied to obtain the frequency domain representation 𝐹: 

𝐹 = 𝐹𝐹𝑇(𝐼𝑓), (3) 

where   𝐹 ∈ ℂ𝐻×𝑊 represents the frequency domain features of the image. Next, fre-

quency band selection is performed by applying a mask 𝑀 to retain specific frequency 

components: 

𝐹′ = 𝐹⨀𝑀. (4) 

Here, ⨀ denotes element-wise multiplication, and 𝑀 ∈ {0,1}𝐻×𝑊   is a binary mask 

used to select low-frequency, mid-frequency, or high-frequency components. After se-

lecting the frequency bands, the filtered frequency representation 𝐹′  is transformed 

back into the spatial domain via the Inverse Fast Fourier Transform(𝑖𝐹𝐹𝑇): 

𝐼′𝑓 = 𝑖𝐹𝐹𝑇(𝐹′), (5) 



where,  I′f is subsequently fed into a separate backbone to extract frequency domain 

features. These two backbones are trained independently without sharing weights to 

better capture the specific characteristics of each domain. 

Finally, the spatial and frequency features are passed through two carefully designed 

modules: the Scale-aware Bidirectional Cross-Attention (SBCA) module and the Adap-

tive Feature Fusion (AFF) module. These modules facilitate efficient cross-domain fea-

ture interaction and dynamic fusion. The fused features are then classified by a linear 

classifier to generate the detection result. 

 

3.3 Scale-aware Bidirectional Cross Attention 

To facilitate effective interaction between spatial and frequency domain information, 

we propose the Scale-aware Bidirectional Cross-Attention (SBCA) module. This mod-

ule enables bidirectional information flow between the two domains, ensuring a more 

comprehensive capture of their associations and complementary characteristics. 

⚫ Spatial-to-Frequency Attention: Spatial domain features serve as Query (𝑄), 

while frequency domain features act as Key(𝐾) and Value (𝑉). Cross-attention 

is performed as follows: 

𝐴𝑡𝑡𝑛𝑠2𝑓(𝑄𝑠 , 𝐾𝑓 , 𝑉𝑓) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑠𝐾𝑇

𝑓

√𝑑
) 𝑉𝑓 . (6) 

⚫ Frequency-to-Spatial Attention: Conversely, frequency domain features are 

used as Query(𝑄), and spatial domain features as Key(𝐾) and Value (𝑉): 

𝐴𝑡𝑡𝑛𝑓2𝑠(𝑄𝑓 , 𝐾𝑠, 𝑉𝑠) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑓𝐾𝑇

𝑠

√𝑑
) 𝑉𝑠 . (7) 

This bidirectional design enables the model to dynamically integrate spatial and fre-

quency features in both directions. In addition, to capture information at various gran-

ularities, we adopt a multi-head attention mechanism with multi-scale convolutional 

projections for generating (𝑄), (𝐾), and  (𝑉). In each attention head, convolutions with 

different kernel sizes are applied to achieve scale-aware feature extraction. The convo-

lution kernel size for the 𝛽-th head is defined as:𝑘 𝛽 = 2 𝛽 + 1, The multi-scale con-

volutional projection is formulated as: 

𝑄𝛽 = 𝐶𝑜𝑛𝑣(𝑋𝑄; 𝑘𝛽), (8) 

𝐾𝛽 = 𝐶𝑜𝑛𝑣(𝑋𝑄; 𝑘𝛽), (9) 

𝑉𝛽 = 𝐶𝑜𝑛𝑣(𝑋𝑄; 𝑘𝛽), (10) 

where 𝐶𝑜𝑛𝑣(𝑋; 𝑘𝛽) denotes a convolution operation on the input feature map 𝑋 with a 

kernel size of 𝑘𝛽, and 𝛽 ∈ {1,2,3, . . . , 𝐻} represents the index of the attention head. 𝐻 

is the total number of heads. 

The feature maps Frgb and  Ffreq obtained from the backbone are processed through 

the SBCA module, resulting in the enhanced and interacted feature maps F̅rgb  and 

F̅freq. By using different kernel sizes across attention heads, the model can achieve fine-
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grained and coarse-grained interactions between spatial and frequency domain features, 

thereby enhancing feature representations. 

 

3.4 Adaptive Feature Fusion 

In the Adaptive Feature Fusion(AFF) module, we fully exploit both the spatial and 

channel information of the features by jointly utilizing spatial attention and channel 

attention to generate the attention map Fattention. This attention map is then applied to 

both the spatial domain features  F̅rgb  and the frequency domain features F̅freq through 

element-wise multiplication, resulting in the final feature map Ffinal ,which is used as 

the input for the classifier. 

Specifically, a learnable parameter 𝜃 is introduced, dynamically guiding the fusion 

of the two domains. 𝜃 is a adaptive weight during the training process, constrained 

within the range [0,1] by the sigmoid function(𝜎), and initialized to 0.5 after applying 

the sigmoid function. This allows the model to dynamically adjust the relative im-

portance of spatial and frequency domain features during training, enabling an adaptive 

and balanced fusion mechanism. The final feature map Ffinal is computed as: 

 

Ffinal = 𝜎(𝜃) ∙ (Fattention⨀F̅rgb) + (1 − 𝜎(𝜃)) ∙ (Fattention⨀F̅f𝑟𝑒𝑞) (11) 

4 Experiments 

4.1 Training Dataset 

We adopt a setup consistent with prior baselines (e.g., Wang et al.[1], Ojha et al.[6], 

and Tan et al.[11]), training exclusively on a single generative model, specifically using 

ProGAN-generated images to train the detector, but testing its detection capabilities on 

various unseen GAN and diffusion models. The training dataset is derived from the 

ForenSynths dataset[1] (Wang et al.), with each class containing 18,000 real images 

and their corresponding ProGAN-generated images. In alignment with the benchmark-

ing methodology, we adopt a 4-class training configuration, wherein the detection 

model is trained on images spanning four distinct categories: horse, chair, car, and cat. 

 

4.2 Testing Dataset 

To evaluate the generalization ability of our detection model in real-world scenarios, 

our test set includes a variety of GAN and Diffusion generative models. Specifically, 

the GAN test set was sourced from the ForenSynths dataset, while the Diffusion model 

test set was sourced from the Ojha's and DIRE datasets. 

⚫ The 8 GANs test models from ForenSynths[1]: ProGAN, StyleGAN, Style-

GAN2, BigGAN, CycleGAN, StarGAN, GauGAN, and Deepfake. 

⚫ The 10 Diffusion test models from Ojha's[6] and DIRE[13]: PNDM, DALL-E, 

VQ-Diffusion, Guided, LDM, and Glide. For the LDM and Glide models, three 

different generation parameters were used for each. 

 



4.3 Implementation Details 

We employed the pre-trained DINOv2 (ViT-B/14) as the backbone, fine-tuning only 

the last two blocks. Input images were cropped to 252x252 to align with the backbone’s 

requirements. The training process utilized a batch size of 64 and an initial learning rate 

of 4e-06. We adopted the AdamW[15] optimizer and applied cosine annealing for dy-

namic learning rate adjustment. The model was trained for 50 epochs, with an early 

stopping mechanism: training was halted if performance failed to improve over 6 con-

secutive epochs, thereby conserving time and computational resources. Our method 

was implemented in PyTorch[16] and ran on an NVIDIA GeForce RTX 3090 GPU. 

Consistent with established baselines, we evaluated the detection model using accuracy 

(Acc.) and average precision (A.P.) as performance metrics. 

 

4.4 Evaluating Generalization on GANs Dataset 

Table 1. Generalization performance on the unseen GANs (Generative Adversarial Net-

works) dataset. 

Methods 

 
Input 

Pro 

GAN 

Style-

GAN 

Style-

GAN2 

Big-

GAN 

Cy-

cleGAN 

Star-

GAN 

Gau-

GAN 

Deep-

fake 
Mean 

Acc. 

A.P. 

Acc. 

A.P. 

Acc. 

A.P. 

Acc. 

A.P. 

Acc. 

A.P. 

Acc. 

A.P. 

Acc. 

A.P. 

Acc. 

A.P. 

Acc. 

A.P. 

Wang[1] 

(CVPR 2020) 
Rgb 

50.4 

63.8 

50.4 

79.4 

68.2 

94.7 

50.2 

61.3 

50.0 

52.9 

50.0 

48.2 

50.3 

67.6 

50.1 

51.5 

52.5 

64.9 

Durall[8] 

(CVPR 2020) 
Freq 

85.1 

79.5 

59.2 

55.2 

70.4 

63.8 

57.0 

53.9 

66.7 

61.4 

99.8 

99.6 

58.7 

54.8 

53.0 

51.9 

68.7 

65.0 

BiHPF[9] 

(WACV 

2022) 

Freq 
90.7 

86.2 

76.9 

75.1 

76.2 

74.7 

84.9 

81.7 

81.9 

78.9 

94.4 

94.4 

69.5 

78.1 

54.4 

54.6 

78.6 

77.9 

SelfBlend[14] 

(CVPR 2022) 
Rgb 

58.8 

65.2 

50.1 

47.7 

48.6 

47.4 

51.1 

51.9 

59.2 

65.3 

74.5 

89.2 

59.2 

65.5 

93.8 

99.3 

61.9 

66.4 

FreP-

GAN[10] 

(AAAI 2022) 

Freq 
99.0 

99.9 

80.7 

89.6 

84.1 

98.6 

69.2 

71.1 

71.1 

74.4 

99.9 

100.0 

60.3 

71.7 

70.9 

91.9 

79.4 

87.2 

Lgrad[5] 

(CVPR 2023) 
Rgb 

99.0 

100.0 

94.8 

99.9 

96.0 

99.9 

82.9 

90.7 

85.3 

94.0 

99.6 

100.0 

72.4 

79.3 

58.0 

67.9 

86.1 

91.5 

Ojha[6] 

(CVPR 2023) 
Rgb 

99.7 

100.0 

89.0 

98.7 

83.9 

98.4 

90.5 

99.1 

87.9 

99.8 

91.4 

100.0 

89.9 

100.0 

80./ 

90.2 

89.1 

98.3 

FreqNet[11] 

(AAAI 2024) 
Freq 

99.6 

100.0 

90.2 

99.7 

88.0 

99.5 

90.5 

96.0 

95.8 

99.6 

85.7 

99.8 

93.4 

98.6 

88.9 

94.4 

91.5 

98.5 

FSSNet(our) Rgb&Freq 
99.9 

100.0 

93.0 

98.2 

95.3 

98.8 

99.6 

99.9 

97.7 

99.7 

98.3 

99.8 

99.8 

100.0 

74.6 

79.7 

94.8 

97.0 

 

    As shown in Table 1, we evaluate the generalization capability of our model on 8 

datasets generated by various GANs, where the Bold indicates the best results. 
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    We compare our proposed method with eight baseline and state-of-the-art (SOTA) 

methods:Wang's method, Durall's method, BiHPF, FrePGAN, LGrad, SelfBlend, 

Ojha's method, and FreqNet. The experimental results of the baseline and SOTA meth-

ods are taken from their respective papers or prior reproductions. 

The results demonstrate that our proposed method, FSSNet, surpasses SOTA meth-

ods, achieving superior accuracy (Acc.) and average precision (A.P.), achieves an Acc. 

score of 94.8 and an A.P. score of 97.0. Notably, our method, which integrates spatial 

and frequency domain information, demonstrates stronger generalization capability 

compared to SOTA single-modal approaches such as Ojha’s method and FreqNet, sur-

passes Ojha’s and FreqNet by 5.7% and 3.3% in Acc., respectively.  This highlights 

that by effectively fusing spatial and frequency domain features, a detector trained on 

a single dataset can be successfully generalized to detect ai-generated images by unseen 

GANs. 

 

4.5 Evaluating Generalization on DMs Datasets 

Table 2. Generalization performance on the unseen DMs (Diffusion Models) dataset. 

Methods 

PND

M 

DAL

L-E 

VQ-

Diffu-

sion 

LDM 
Guide

d 

Glide 

Mean 

100 200 
200-

cfg 

100-

10 

100-

27 
50-27 

Acc.

A.P. 

Acc.

A.P. 

Acc.A

.P. 

Acc.

A.P. 

Acc.

A.P. 

Acc.

A.P. 

Acc.

A.P. 

Acc.

A.P. 

Acc.

A.P. 

Acc.

A.P. 

Acc.

A.P. 

Wang[1] 

(CVPR 

2020) 

50.8 

90.3 

51.8 

61.3 

50.0 

71.0 

51.9 

63.7 

52.0 

64.5 

51.6 

63.1 

54.9 

66.6 

53.3 

72.9 

53.0 

71.3 

52.4 

70.1 

50.8 

90.3 

Durall[8] 

(CVPR 

2020) 

44.5 

47.3 

55.9 

58.0 

38.6 

38.3 

62.0 

62.9 

61.7 

61.7 

58.4 

58.5 

40.6 

42.3 

54.9 

52.3 

48.9 

46.9 

51.7 

51.8 

44.5 

47.3 

SelfBlend 

[14] 

(CVPR 

2022) 

48.2 

48.2 

52.4 

51.6 

77.2 

82.7 

53.0 

54.0 

52.6 

51.9 

51.9 

52.6 

58.3 

63.4 

58.8 

63.2 

59.4 

64.1 

64.2 

68.3 

57.6 

60.0 

Lgrad[5] 

(CVPR 

2023) 

69.8 

98.5 

88.5 

97.3 

96.3 

100.0 

94.8 

99.2 

94.2 

99.1 

95.9 

99.2 

86.6 

100.0 

89.4 

94.9 

87.4 

93.2 

90.7 

95.1 

89.4 

97.7 

Ojha[6] 

(CVPR 

2023) 

75.3 

92.5 

89.5 

96.8 

83.5 

97.7 

90.5 

97.0 

90.2 

97.1 

77.3 

88.6 

75.7 

85.1 

90.1 

97.0 

90.7 

97.2 

91.1 

97.4 

85.4 

94.6 

FreqNet[11](

AAAI 2024) 

85.2 

99.9 

97.2 

99.7 

100.0 

100.0 

97.8 

99.9 

97.4 

99.9 

97.2 

99.9 

67.2 

75.4 

87.8 

96.0 

84.4 

95.6 

86.6 

95.8 

90.1 

96.2 

FSSNet(our) 
97.9 

99.8 

96.2 

99.1 

97.0 

99.5 

97.2 

99.6 

97.6 

99.6 

89.8 

96.0 

88.9 

95.0 

86.9 

94.3 

88.0 

95.2 

86.7 

93.9 

92.6 

97.2 

 



As shown in Table 2, we evaluate the generalization capability of our model in more 

challenging evaluation scenarios by comparing our method with existing detection ap-

proaches on 10 previously unseen diffusion model datasets.(Input are the same as in 

Table1). The baseline and SOTA methods compared include Wang’s method, Durall’s 

method, SelfBlend, LGrad, Ojha’s method, and FreqNet. Notably, as FrePGAN and 

BiHPF is not open-sourced, we could not obtain its results on diffusion models. Fur-

thermore, since FreqNet has not been evaluated for generalization on diffusion models 

in their paper, we reproduce its results using the official pre-trained model and 

code[11]. The results for the other methods are drawn from their respective papers or 

prior reproductions. 

Surprisingly, similar to the previous results, our FSSNet method demonstrates 

stronger generalization capability on previously unseen diffusion model datasets com-

pared to single-modal SOTA methods such as Ojha’s method and FreqNet. Specifi-

cally, FSSNet outperforms Ojha’s method and FreqNet by 7.2% and 2.5% in Acc., re-

spectively. These results further validate the effectiveness of our approach, showing its 

ability to generalize well to unseen diffusion models. 

5 Ablation study 

To evaluate the impact of different frequency bands on model performance, we con-

ducted ablation experiments by retaining low, mid, and high-frequency components 

separately and assessing detection accuracy (Acc.) and average precision (A.P.). As 

shown in Table 3, the low-frequency components achieved the best results for GANs 

(94.78% Acc., 97.02% A.P.). For diffusion models (DMs), the differences between low 

and mid-frequency components were negligible, leading us to conclude that low-fre-

quency information is more indicative of generative model artifacts and is suitable for 

providing supplementary information for detection. 

Table 3. The table presents the average accuracy(Acc.) and average precision(A.P.) of 

GANs and DMs dataset in different frequency bands. 

Generative Model 

Frequency Bands 

Low Mid High 

Acc./A.P. Acc./A.P. Acc./A.P. 

GANs 94.78/97.02 94.24/96.51 94.42/96.66 

DMs 92.54/97.18 92.58/97.18 92.30/97.05 

Average 93.66/97.10 93.41/96.85 93.36/96.86 

To further evaluate the contributions of multimodal information, the Scale-aware 

Bidirectional Cross Attention (SBCA) module, and the Adaptive Feature Fusion (AFF) 

module, we conducted ablation experiments. As shown in Table 4, using only single-

modal information leads to a significant decline in model performance, highlighting the 

importance of integrating multimodal information. Additionally, when multimodal in-

formation is combined, the removal of either the SBCA or AFF module results in a 

certain degree of performance degradation. This further underscores the critical roles 
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of these modules in dynamically fusing spatial and channel information, demonstrating 

their complementary contributions to enhancing the generalization capability of the de-

tection model. 

Table 4. The table presents the average accuracy(Acc.) and average precision(A.P.) of our 

proposed method under the following conditions: single information domain(only rgb & 

only freq way), without the SBCA module, and without the AFF module. 

Generative Model 
Rgb 

info 

Freq 

info 
SBCA AFF 

Mean Degradation 

Acc./A.P. Acc./A.P. 

GANs 

✓    89.78/91.52 ↓5.00/5.50 

 ✓   89.14/91.05 ↓5.64/5.97 

✓ ✓  ✓ 93.50/95.77 ↓1.28/1.25 

✓ ✓ ✓  92.88/95.20 ↓1.90/1.82 

✓ ✓ ✓ ✓ 94.78/97.02 - 

DMs 

✓    88.35/93.51 ↓4.23/3.67 

 ✓   87.94/92.88 ↓4.64/4.30 

✓ ✓  ✓ 90.98/96.39 ↓1.60/0.79 

✓ ✓ ✓  91.92/97.30 ↓0.66/-0.12 

✓ ✓ ✓ ✓ 92.58/97.18 - 

 

6 Conclusion 

We presents a novel dual-stream network, FSSNet, designed to enhance the gener-

alization capability of deepfake detection. FSSNet integrates several carefully designed 

modules that effectively capture cross-modal interactions and dynamically fuse multi-

modal features, significantly improving detection performance. Experimental results 

demonstrate the potential of multi-modal feature fusion in addressing sophisticated 

deepfake techniques and provide guidance for improving model generalization in more 

complex generative scenarios. 
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