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Abstract. Because graph structures can represent rich information by aggregat-

ing neighborhood information, graph neural networks (GNNs) are heavily used 

in fraud detection tasks. However, a large amount of noise is generated in fraud 

detection problems that affect the detection effectiveness of the model. On the 

one hand, the fraudster actively generates noise through two disguises: feature 

disguise and relationship disguise; on the other hand, a part of the noise is also 

generated in the graph construction due to the fact that the labeling of the adopted 

data is not guaranteed to be correct as well as the connection between normal 

nodes and fraudulent nodes unconsciously. In order to address such problems, we 

propose a framework that focuses on both homogeneous and heterogeneous in-

formation (HH-GNN) in the paper. It improves the noise at graph nodes and con-

nections by considering both homogeneous and heterogeneous information in the 

distance calculation method and the dilated k-NN algorithm to achieve neighbor 

aggregation. Meanwhile, based on the early learning phenomenon, we introduce 

ELR regularization to effectively suppress the influence of noisy labels during 

gradient descent. Our experiments on fraud detection tasks on four real datasets 

using multidimensional metrics of AUC value, and F1-macro show the effective-

ness and superiority of the proposed HH-GNN. 

Keywords: Fraud Detection, Graph Neural Networks, Node Classification. 

1 Introduction 

As the Internet advances rapidly, more and more fraudulent behavior began to appear, 

causing great economic losses. Fraud detection has become an important proposition 

that needs to be studied. Early fraud detection used shallow machine learning methods 

like support vector machines and decision trees [1][2], but the method itself ignores the 

connection information of nodes and neighbors and thus fails to achieve better detection 
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results. With the development of graph neural networks, the node detection problem is 

used in application areas such as social networks [3] or finance [4]. People are begin-

ning to discover the contrasting nature of the interactions between nodes and nodes in 

fraud detection with nodes and edges in graph neural networks, and are applying node 

identification techniques to fraud detection tasks. 

 

Fig. 1. A description of the two noises. (1) Fraudsters create noise by adding special symbols and 

connecting intentional and benign nodes. (2) Because errors in the label set and unintentional 

connections of benign nodes can lead to noise during graph construction. 

Although there are a large number of studies using graph neural networks in fraud de-

tection tasks, such as CARE-GNN [5], PC-GNN [6], they are based on the traditional 

assumption of homogeneity and the fact that fraudulent nodes in fraud detection tend 

to camouflage their relationships by making heterogeneous connections with their be-

nign node neighbors. For instance, in the network of financial transactions, Fraudsters 

frequently leverage legitimate users to carry out transactions [7]. At the same time, 

fraudulent nodes will also change their node characteristics (e.g., fraudulent nodes will 

add special symbols to their comments to complete the camouflage) [5] so as to make 

them similar to ordinary nodes. The above two scenarios are common camouflage prob-

lems in fraud checking as such. The above camouflage behaviors will generate a lot of 

noisy information in specific detection tasks, affecting the effectiveness of the model. 

Additionally, the data itself and the construction of the graph in real fraud detection 

scenarios will also generate a lot of noise. On the one hand, in reality, some benign 

node users will unknowingly link to some fraudulent nodes through actions such as 

clicking and commenting. This will generate noisy edges when the graph is constructed, 

causing it to be misjudged as a fraudulent node. On the other hand, because there is less 

manually annotated sample data that can be used for training [8], some training pro-

cesses may use labels from data sources such as web pages to annotate the data [9]. 

This data will have some incorrect annotations, generating noisy labels that affect the 

training results. Therefore, solving the impact of noise on detection results is a new 

problem needed to be addressed in the fraud detection task. 

Graph-based fraud detection faces two major challenges. (1) How to deal with the 

noise problem caused by fraudulent node camouflage behavior. Fraudulent nodes 

usually mitigate suspicions about themselves by changing their characteristics and con-

necting more often to benign nodes. Most of the methods perform pruning by calculat-

ing the resemblance between the target node and its adjacent neighbors, like CGDF-
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GNN [10], these methods intensify the representation of the node’s characteristics but 

do not take into account the effect of heterogeneous information on the target node. (2) 

How to deal with the noise problem in graph construction and training caused by 

training data. There are few existing datasets that can be used for fraud detection train-

ing, and they contain noisy information caused by user behavior. Existing methods [8] 

solve this problem by introducing feature decoupling and consistency regularization to 

enhance the learning of a limited amount of labeled data and a substantial amount of 

unlabeled samples. In other deep learning fields, non-manually labeled data is intro-

duced, and regularization techniques are used to reduce the affect of noise information 

on training results [11], but this method has not yet been applied to fraud detection 

tasks. 

To address the two challenges, we propose an innovative Homogeneity- and Heter-

ogeneity-Aware Graph Neural Network for fraud detection in the presence of noisy 

labels (HH-GNN). For the disguise problem, we designed a new neighbor aggregation 

method. This method obtains the similarities and differences between the target node 

and the adjacent neighbors and completes the screening and aggregation of neighbor 

nodes to reduce the disguise of fraudulent nodes in terms of relationships and features. 

For the noisy label problem, we introduced an early-regularization meth-od. This ap-

proach guides the model toward these objectives, indirectly avoiding memorization of 

incorrect labels. The key contributions of our method, HH-GNN, can be outlined as 

below: 

·We design a novel neighbor aggregation strategy that considers both homogene-

ous and heterogeneous information of a node and its neighbors to address the camou-

flage in fraud detection. 

·We introduce an early-regularization method that addresses the noisy label prob-

lem in the dataset by preventing early false memories from affecting model training. 

·We undertake extensive experimentation on four state-of-art benchmark datasets 

to prove the efficacy of HH-GNN compared to the most advanced methods. 

2 Related Work 

2.1 Semi-supervised Learning Based on Graph Structures 

The task of semi-supervised node classification is to leverage labeled data to predict 

attributes of unlabeled nodes. Recently, graph neural networks have demonstrated 

amazing abilities in this area. There are two main types of graph neural networks: (1) 

Spectral-based GNNs, which convert graphs into Laplacian matrices to implement con-

volution operations in the spectral domain, for instance GCN [12]. (2) Spatial-based 

GNNs, which disseminate information through aggregation of neighbor nodes using 

spatial relationships, like GraphSAGE [14] and GAT [13]. However, this method is 

based on the assumption of similarity between the target node and its neighbors. The 

disguised behavior of fraudulent nodes in fraud detection tends to connect to benign 

nodes, which violates this assumption. Our method avoids the above problem by ad-

justing the graph structure based on neighbor information in advance. 



 

2.2 Popular Graph-Based Fraud Detection Model 

In recent years, graph neural networks have been used in a wide range of fraud detection 

because of their matching with various relationship nodes and node interaction patterns 

in fraud detection. GraphConsis [24] initially brought graph neural networks into the 

field of fraud detection，witch uses a predefined threshold to selectively sample adja-

cent nodes. After that, CARE-GNN [5] and CGDF-GNN [10] performed pruning by 

comparing the similarity between target nodes and neighboring nodes and adjusted the 

graph structure to obtain better node representation. This method has achieved certain 

results, but it ignores the role of heterogeneous information in node detection. GHRN 

[15] and SEC-GDF [16] obtain and utilize heterogeneous information in the graph by 

integrating high-frequency and mixed filters. The above methods are all trained on 

fixed manually annotated datasets, which cannot adapt to the situation where there are 

fewer datasets for fraud detection tasks and the cost of manual annotation is high. An-

other method [8] designs a barely supervised learning approach using feature disentan-

glement and consistency regularization to improve fraud detection performance with 

limited labeled samples. However, this method is not considered the most effective 

method of training the model on datasets containing noisy labels. Our method achieves 

model training on noisy labeled datasets by introducing early regularization. 

 

2.3 Model predictions for noisy labels 

As the demand for datasets increases, a lot of data with noisy annotations are generated 

to train deep learning classification models. The following are the most widely used 

methods: (1) Loss-correction methods. This method mainly takes into account the noise 

distribution by explicitly correcting the loss function. The noise distribution is repre-

sented by the transfer matrix of the probability of incorrect labeling [17]. (2) Label 

Correction Methods. This method uses the characteristic that "in the early learning 

stage, the model’s prediction of some incorrect labels may be more accurate" to replace 

or correct these incorrect labels with pseudo-labels, such as soft labels, hard labels [18], 

or mixed labels [19] to iteratively correct the labels of noisy samples. (3) Consistency 

Regularization. Regularization itself plays a significant role in the recognition of noisy 

labels. It improves the model's resilience and capacity to generalize by maintaining the 

consistency of the model’s output under different data augmentations [9]. Our method 

combines the characteristics of the above methods, calculates a probability estimate 

similar to the above soft label, and then uses it to avoid memorization. Then, a novel 

regularization term is used to explicitly adjust the gradient of the cross-entropy loss 

function [11]. 

3 Method 

This section present the overall framework of our proposed model, HH-GNN, and pro-

vide a comprehensive explanation of its methodological details. As illustrated in Fig. 

2, our framework is composed of three key components: (1) a neighbor filter, which 
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effectively captures both the similarities and differences among neighboring nodes; (2) 

a neighbor information aggregator that integrates relevant information; and (3) a gradi-

ent descent module, designed to alleviate the adverse effects of noisy labels, thereby 

enhancing model robustness and performance. 

Fig. 2. The overall process of the proposed HH-GNN. It includes a detailed demonstration of the 

framework’s operation including: Similarity Assessment, Neighbor Filtering and Aggregation, 

Fraud Detection. 

3.1 Problem Definition 

We define a multi-relation graph as 𝐺 = {𝒱, ℰ, 𝑋},where 𝒱 = {𝑣1, ⋯ , 𝑣𝑁} represents 

its node set. ℰ denotes the edge set, while 𝐴𝑖𝑗 = 1 indicates an edge between nodes vi 

and vj, where 𝐴 ∈ {0,1}𝑁×𝑁 denotes the adjacency matrix of 𝐺. The node hallmark set 

is represented as 𝑋 = {𝑥1, … , 𝑥𝑁} ∈ 𝑅𝑁×𝑑, where each node vn has at most d-dimen-

sional feature vector. 𝑌 = {𝑦1, … , 𝑦𝑁} represents node labels, where 𝑦𝑛(0/1)  is the 

ground-truth label, with 0 for benign nodes and 1 for fraudsters. 

Refraining our perspective, we view graph-based fraud detection as a semi-super-

vised binary classification task at the node level, distinguishing nodes in the fraud graph 

into labeled and unlabeled groups. The labeled nodes are represented as 𝑌𝑡𝑟𝑎𝑖𝑛, whereas 

the labels for the unlabeled nodes, 𝑌𝑡𝑒𝑠𝑡 , are not visible during training. Therefore, our 

aim is to derive a function for assigning anomaly labels to the unlabeled nodes, utilizing 

all available information that we possess: 

 𝑌test = 𝑓(𝑋, 𝐴, 𝑌train)  (1) 



3.2 Neighbor similarity assessment 

Because fraudsters often have disguised features in fraud detection scenarios, they usu-

ally disguise themselves by disguising node features or choosing to connect to benign 

nodes. This usually produces incorrect node embeddings, which in turn misleads the 

final node classification and leads to recognition errors. The existing method mainly 

considers the homogeneity information of nodes to calculate similarity [5][10], which 

cannot completely solve the problem. Therefore, we use a more comprehensive method 

that considers both homogeneity and heterogeneity to calculate similarity. 

We first calculate the distance of nodes on homogeneity. Inspired by CARE-GNN 

[5], we employ a parameterized similarity metric to assess the distance between nodes. 

It integrates a fully connected network (FCN) with linear regularization and uses the 

𝑙1 −distance between the prediction results of two nodes as the similarity metric. The 

node distance in the homogeneity dimension is defined as bellow: 

 

 𝒟𝑏
(ℓ)

(𝑢, 𝑣) = ∥
∥𝜎 (𝐹𝐶𝑁(ℓ)(h𝑢

(ℓ−1)
))∥

∥ − ∥
∥𝜎 (𝐹𝐶𝑁(ℓ)(h𝑣

(𝐺)
))∥

∥  (2) 

where h𝑣
(𝐺)

 represents the original embedding of node v and σ () represent the non-

linear activation function, for which we adopt tanh in our approach. At the same time, 

we introduce a node distance measure based on the heterogeneity dimension. We meas-

ure the heterogeneous distance of nodes by calculating the difference in hallmark be-

tween nodes and removing the influence of node degrees: 

 𝒟hete 

(ℓ)
(𝑢, 𝑣) = ∥∥

∥h𝑢
(ℓ−1)

−h𝑣
(𝐺)

∥∥
∥

√𝑑𝑟(𝑢)𝑑𝑟(𝑣)
 (3) 

where 𝑑𝑟(𝑢) and 𝑑𝑟(𝑣) represents the degree of node u, v, respectively. And, in order 

to combine homogeneity and heterogeneity information, we combine the two distance 

formulas to obtain the final similarity measurement formula. At the same time, due to 

the opposite contributions of the two to the similarity, we use the two parameters 𝛼1 

and 𝛼2 as learnable attention weights. We get the final similarity formula as follows: 

 𝒟(𝑙)(𝑢, 𝑣) = 𝛼1𝒟ℎ𝑜𝑚𝑜
(𝑙)

(𝑢, 𝑣) − 𝛼2𝒟ℎ𝑒𝑡𝑒
(𝑙)

(𝑢, 𝑣) (4) 

To better evaluate the similarity distance between nodes, we use direct supervision sig-

nals from the labels to train the similarity metric. Under a single relationship, we apply 

the cross-entropy loss to optimize this distance function: 

 ℒdist = − ∑ ∑ [𝑦𝑣 log (𝑝𝑣
(𝑙)

) + (1 − 𝑦𝑣) log (1 − 𝑝𝑣
(𝑙)

)]𝑣∈𝒱
𝐿
𝑙=1 𝑝𝑣

(𝑙)
 (5) 

3.3 Neighbor Aggregation 

After obtaining the similarity-based distance between the target node and its surround-

ing neighbors, we need to re-obtain its neighbor subgraph G through the sampling mod-

ule. Then we re-aggregate the neighbor node features on the subgraph G to obtain a 
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new feature embedding representation to decline the impact of feature camouflage on 

the model results. 

Most Similar Neighbor Filtering. For the target node, we obtain the similarity bet-

ween it and its neighbor nodes through the distance function and filter it through for-

mula 6 to obtain a new subgraph 𝒩𝑟
(𝑙)

(𝑢) (the graph contains the target node and the 

similar neighbor nodes after filtering): 

 𝒩𝑟
(𝑙)

(𝑢) = {𝑣 ∈ 𝒱 ∣ 𝒜𝑟(𝑢, 𝑣) > 0and𝒟(𝑙)(𝑢, 𝑣) < 𝑘} (6) 

where 𝒟(𝑙)(𝑢, 𝑣) is obtained from formula 5, 𝑟 ∈ {1, … , 𝑅}, 𝑙 denotes the number of 

layers, while k is a hyperparameter that defines the filtering threshold. 

Neighbor Filtering Using the Dilated k-NN Algorithm. With the increasement of the 

number of network layers, if we blindly select the most similar neighbor nodes for ag-

gregation, the problem of over-smoothing may easily occur. To dispatch this problem 

and expand the receptive area in traditional graph convolutional networks, we use the 

dilated k-NN algorithm to dynamically search the k neighbor nodes of node u to form a 

neighbor subgraph 𝒩r
(𝑙)

(u)  of the target node before aggregating neighbor infor-

mation. Different from selecting the k neighbor nodes with the highest similarity, this 

method searches for k neighbor nodes that are relatively similar to the target node by 

selecting similar neighbor nodes and then skipping d neighbors, where d represents the 

dilation rate. Therefore, the k neighbors of node u with dilation rate d can be represented 

as: 

 𝒩𝑘−𝑁𝑁
(𝑙)

(𝑢) = {𝑣𝑖 ∣ 𝒜𝑟(𝑢, 𝑣𝑖) > 0and 𝑣𝑖 = 𝑣1+𝑖⋅𝑑 , 𝑖 = 0,1, … , 𝑘 − 1} (7) 

Neighborhood feature aggregation. Once each node's neighbors are filtered, the sub-

sequent step involves aggregating information from its surrounding nodes under vari-

ous relationships. This process can be broken down into two stages: aggregation and 

combination. First, we will obtain the feature embeddings of the neighbor nodes and 

aggregate them into the embedding of the target node: 

 h𝑣,𝑟
(𝑙)

=  ReLU (𝑊𝑟
(𝑙)

(h𝑣,𝑟
(𝑙−1)

⊕ 𝐴𝐺𝐺𝑟
(𝑙)

{h𝑢,𝑟
(𝑙−1)

})) (8) 

where 𝐴𝐺𝐺𝑟
(𝑙)

 is the aggregation function based on averaging at the l-th level under 

relation r, ⊕  represents the connection operation, 𝑊𝑟
(𝑙)

∈ ℝ𝑑𝑙×2𝑑𝑙−1  denotes the 

weight matrix, while 𝑣 ∈ 𝒩𝑟
(𝑙)

(𝑢). Then, we combine the node embedding of the pre-

vious layer and the embedding of each relationship in this layer to get the node's em-

bedding under this layer: 



 h𝑣
(𝑙)

=  ReLU (𝑊(𝑙) (h𝑣
(𝑙−1)

⊕ h𝑣,𝑟=1
(𝑙)

⊕ ⋯ ⊕ h𝑣,𝑟=𝑅
(𝑙)

)) (9) 

where 𝑊𝑟
(𝑙)

∈ ℝ𝑑𝑙×(𝑑𝑙−1+𝑅⋅𝑑𝑙) is the weight matrix. 

3.4 Fraud Detection and Node Noise Improvement 

Fraud Detection. After obtaining the final embedding ℎ𝑣𝑡
 of the target node, we care-

fully designed the objective function of GDF-ELR. We input the embedding ℎ𝑣𝑡
 into 

the final classification function to infer the label associated with the target node 𝑣𝑡: 

 𝑦̂𝑡 = 𝜓(𝑊𝑓
𝑇 ⋅ ℎ𝑣𝑡

+ 𝑏𝑓) (10) 

where 𝑊𝑓 ∈ ℝ3𝑈 denotes the learnable weight matrix, while 𝑏𝑓 ∈ ℝ3𝑈 represents the 

bias vector. 𝜓 represents the activation function 𝑠𝑜𝑓𝑡𝑚𝑎𝑥. 

Node Noise Improvement. Considering that the fraud nodes in the fraud detection task 

generate noisy labels by disguising and calling crowdsourced data will also have noisy 

label problems [9], we establish a suitable loss function to minimize the impact of noisy 

labels on training results. Among them, changing the regularization term of the loss 

function to achieve better training results in datasets with noisy labels is a common 

method in semi-supervised learning. Previous studies have found that when training on 

noisy labels, in the early learning stage, deep neural networks will initially fit the train-

ing data with accurate labels, and then eventually memorize examples with incorrect 

labels [20]. In response to the above phenomenon, we can achieve robustness to noisy 

labels by adding or changing the idea of regularization. ELR [11] attempts to use the 

above early memory phenomenon to improve the prediction accuracy of classification 

models under noisy labels. 

Based on the above methods, we devise a suitable regularization term to strengthen 

the influence of early clean labels and offset the influence of noisy labels. Our method 

introduces the model's prediction probability 𝑝[𝑖] and target probability 𝑡[𝑖], where 𝑡[𝑖] 

is calculated using the temporal ensembling [21] technique in class interpretation learn-

ing. Let 𝑡[𝑖](𝑘) and 𝑝[𝑖](𝑘) represents the target and the model's output, respectively, 

for instance, i at the k-th training iteration. We define: 

 𝐭[𝑖](𝑘): = 𝛽𝐭[𝑖](𝑘 − 1) + (1 − 𝛽)𝐩[𝑖](𝑘) (11) 

where 0 ≤ 𝛽 < 1 denotes the momentum. Because of the early-learning effect, we pre-

sume that during the initial stages of the optimization, the targets will not become overly 

fitted to the noisy labels. To address this, we use a regularization component designed 

to maximize the alignment between predicted outputs and reference targets via their 

inner product. 

 ℒCE =
1

𝑛
∑ ∑ 𝑦𝑐

[𝑖]𝐶
𝑐=1

𝑛
𝑖=1 log 𝑝𝑐

[𝑖]
 (12) 
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 ℒELR = ℒCE +
𝜆

𝑛
∑ log(1 − ⟨𝐩[𝑖], 𝐭[𝑖]⟩)𝑛

𝑖=1  (13) 

During gradient descent, for ℒCE, the noise label 𝑦[𝑖] moves in the opposite direction 

of 𝑥[𝑖] and produces the phenomenon of memorization. In gradient descent with noisy 

labels, since the cross entropy 𝑝[𝑖] − 𝑦[𝑖] in the clean labels will tend to 0, this makes 

the noisy labels dominate in the later training, affecting the robustness of the model. 

The regular term added in ℒELR can solve this problem. In gradient descent, for clean 

labels, it will add a positive parameter 𝑔[𝑖]𝑡𝑜𝑝[𝑖] − 𝑦[𝑖] to amplify its effect on the 

results, and on the contrary, for noisy label, s it will add a negative parameter −𝑔[𝑖] to 

counteract its effect to reduce the memorization phenomenon. 

Then, to consider the impact exerted by the distance function, we introduce the loss 

function ℒdist of the distance function into the final loss function, where 𝛼 functions 

as a parameter to strike a balance between optimizing the distance function and the 

classifier. 

 ℒ = ℒELR + 𝛼ℒdist (14) 

4 Experiments 

This section presents a comprehensive empirical evaluation of the method we propose 

using commonly adopted benchmark datasets. By performing a comprehensive set of 

experiments, we systematically compare its performance with state-of-the-art models. 

These comparisons highlight the effectiveness of our method, demonstrating its supe-

riority in tackling the given fraud detection task. 

 

4.1 Experimental Settings 

Datasets. We conducted extensive experiments on four real-world datasets for fraud 

detection: Amazon [22], focusing on music instrument reviews, and YelpChi [23], con-

taining hotel and restaurant reviews from Yelp. Both datasets include three types of 

node relationships. In addition, we use two updated datasets from the real world, T-

Finance and T-Social [25], which detect abnormal users by capturing information about 

each account in a social network and the relationships of accounts that have transactions 

in them. Both of these datasets have only one connection relationship, while the T-

Social dataset has 100 times more data than the Amazon and Yelp datasets. 

Baseline. We evaluate the efficacy of our approach by comparing its performance 

against several GNN models designed for homophilic graphs, including GCN [12], 

GAT [13], and GraphSAGE [14]. Additionally, we benchmark our method against spe-

cialized graph-based fraud detection models, such as PC-GNN [6], CARE-GNN [5], 

GraphConsis [24], and BWGNN [25], to further assess its performance. 



Evaluation Metrics. Due to the more serious sample imbalance problem in midterm 

detection (especially in the Yelp dataset) and our greater focus on fraudster detection 

results, we, therefore, selected two popular metrics in fraud detection to evaluate the 

overall performance across models: AUC and F1-Macro, where AUC evaluates the or-

der of predicted probability of all instances that indicates the discriminative power of 

the model, while macro-F1 evaluates the model performance across different categories 

by considering the weighted average F1 scores. 

Implementation. All baseline models are implemented using the official source code 

released by their respective authors to ensure fairness and reproducibility. In our pro-

posed HH-GNN approach, we configure the final node embedding dimensionality to 

64. For dataset-specific settings, we assign a batch size of 1024 for the T-Social, T-

finance, and Yelp datasets and 256 for the Amazon dataset. Additionally, we train our 

model for 30 epochs and employ the Adam algorithm for efficient optimization, setting 

the learning rate as 0.01. To ensure consistency, all experiments are conducted in a 

Python 3.11 environment, leveraging appropriate computational resources to achieve 

optimal performance and reliable evaluation. 

Table 1. The performance of fraud detection if evaluated across four datasets derived from 

real-world scenarios, utilizing both the F1-marco score and AUC value as metrics. (The bold 

values denote the best and runner-up performance.) 

Type Methods Datasets 

YelpChi Amazon T-Finance T-Social 

AUC  F1-Marco AUC  F1-Marco AUC  F1-Marco AUC  F1-Marco 

General 

GNNs 

GCN 54.36  51.52 74.07  64.67 64.43  70.74 84.35  59.98 

GAT 56.24  48.79 75.26  64.50 73.00  53.68 87.02  67.56 

GraphSage 56.45  46.10 75.27  64.64 67.12  52.71 70.80  59.77 

Spatial 

GFD 

PC-GNN 79.15  63.25 94.22  89.56 90.16  63.18 68.45  52.17 

CARE-GNN 77.72  60.89 87.28  88.34 90.66  77.36 71.86  56.26 

GraphConsis 75.69  65.58 87.03  78.25 90.22  63.18 68.45  52.17 

BWGNN 84.23  70.88 96.42  90.77 92.66  84.93 93.20  82.07 

Ours HH-GNN 85.48  72.350 98.53  92.97 93.00  85.34 92.97  83.89 
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4.2 Experimental Results 

Overall performance. shows the performance of the model HH-GNN as well as the 

other baseline models on the four datasets. The results illustrate that our method has an 

outstanding performance under each metric, which is better than other methods. From 

the data in the table, we see that our model outperforms other models on all four datasets 

and compares favorably with state-of-the-art fraud detection models across all datasets. 

Among them, the AUC values in all datasets are more than 85, indicating the superior 

performance of our model. 

In addition, our model showed better results compared to both types of baseline 

models. For traditional GNN models such as GAT, GCN, and GraphSage, which mostly 

ignore the noise that will be generated in various aspects of fraud detection, our model 

employs a unique convolutional process of neighbor screening to solve the problem. 

For advanced image-based fraud detection methods (e.g., PC-GNN), there is still a gap 

with our experimental results, which is largely due to the following two reasons: most 

of the above methods only consider homogeneous information among neighbors, while 

we consider heterogeneous information among neighbors; all of the above methods use 

the more traditional regularization for gradient descent, while our method introduces 

the ELR regularization in the gradient descent process, reducing the impact of noise 

and enhance the robustness of the model. 

Effectiveness of Each Component of HH-GNN. In order to compare the effectiveness 

of top-k and k-NN methods in neighbor node screening and the validity of ELR regu-

larity, we conducted ablation experiments. The following variants were tested: HH-

GNN\top-k (top-k method in neighbor screening), HH-GNN\ k-NN (k-NN method in 

neighbor screening), and HH-GNN\ E (ELR regularity is used only without gradient 

descent), and the experimental outcomes are illustrated in Fig. 3. 

For the different neighbor screening methods, the results in Fig. 3 (a) illustrate that 

the k-NN method achieves better results than the topK method. The k-NN method 

adopts an absolute threshold that cannot produce a suitable threshold for all the neigh-

bor screening cases and, therefore, produces relatively poor results. The topK method 

adopts an interval screening method that can eliminate the overfitting phenomenon 

caused by too much similarity information to a certain extent, and achieves better ex-

perimental results. For the effectiveness of the ELR regularity, Fig. 3 (b) demonstrates 

that the regularity achieves a certain improvement compared to the general regularity, 

especially for the recall rate, which is very suitable for the needs of fraud detection that 

puts more emphasis on finding damaging fraudulent nodes that are damaging. Mean-

while, in the training, we found that the convergence speed of the model is significantly 

slower after adding the ELR regularizer, which is due to the fact that the regularizer 

requires a certain number of training rounds to complete the memorization of the early 

learning effect. 



 

Fig. 3. (a) On the comparison of model effects using topK and k-NN methods in the neighbor 

screening stage. (b) Comparison of ablation experiments on whether or not to use ELR regulari-

zation in the gradient descent phase. (c) Sensitivity analysis of the spacing parameter d in the k-

NN neighbor screening method. (d) Sensitivity analysis for the ELR canonical loss weight pa-

rameter $\lambda$ in gradient descent. 

Sensitivity to Hyper-Parameters. We further analyzed how the parameters affect the 

sensitivity of the HH-GNN model. Firstly, we examined the effect of different screen-

ing intervals d in the k-NNN nearest-neighbor screening method on the effectiveness 

of the model by gradually expanding the interval d from 2 to 5 and obtaining the exper-

imental results. Figure 3 (c) shows that the experimental results are best when the in-

terval d is 3, with the best performance in the two indices of F1 score and AUC value, 

while the model performance decreases after d is enlarged. From this, it can be obtained 

that appropriately enlarging the screening interval can avoid the influence of overfitting 

on the experimental results, while the interval is too large when it cannot effectively 

obtain the information of the nearest neighbors, resulting in the decline of the model 

performance. In addition, we also examined the effect of the loss weight λ in regular 

form on the model performance and obtained and compared the results by increasing 

$\lambda$ continuously from 0.15 to 0.35. Figure 3 (d) demonstrates the corresponding 

results, which show that the model reaches its best results when λ is 0.3, while the 

convergence rate of the model tends to decrease as the value of λ increases. 

5 Conclusions 

In this paper, we propose a new framework that effectively realizes the fraud detection 

task. The framework uses a novel aggregation strategy and an early learning regulari-

zation formula that can effectively reduce the effect of noise on model training and 

detection results. A distance calculation formula that simultaneously considers the ho-

mogeneity and heterogeneity of nodes and neighbors is used in the aggregation process, 

while nearest-neighbor filtering and k-NN neighbor filtering are used to achieve aggre-

gation in the aggregation process. An early learning regularization formula is intro-

duced in gradient descent based on the early memory phenomenon to decline the impact 

of memory noise on the results. Experimental findings indicate that HH-GNN achieves 

superior performance compared to the latest models, thus validating the efficacy of our 

proposed aggregation method. However, the model still has problems such as poor early 
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convergence and long convergence time due to the learning memory process, waiting 

for us to find a suitable way to solve it in the next stage. 
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