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Abstract. Few-shot relation classification (FSRC)  is designed to determine the 

relation class between entities within a text using a limited set of annotated data. 

Recently, some studies have focused on optimizing prototype representations by 

incorporating relation information into the prototype network or applying con-

trastive learning to alleviate the prediction confusion problem. However, these 

approaches primarily rely on global instance features and relation information, 

making it difficult to capture fine-grained local semantic information. This can 

result in inaccurate evaluations of anomalous samples and the mixing of similar 

categories. In order to tackle these issues, we introduce a novel hybrid prototype 

contrastive learning (HPCL) model. Dynamically fusing global and local proto-

types through a cross-attention mechanism significantly improves the perfor-

mance of few-shot relation classification. In addition, HPCL combines a dual 

contrastive learning strategy (relation-prototype contrastive learning and query-

prototype contrastive learning) to effectively enhance intra-class feature sharing 

and inter-class feature discriminability by optimizing prototype representation. 

We have conducted comprehensive experiments using the public datasets Few-

Rel 1.0 and FewRel 2.0, and the results show that HPCL not only performs well 

on traditional datasets but also demonstrates a strong generalization ability in 

cross-domain adaptation tasks, which can effectively alleviate the challenges 

brought by data scarcity and insufficient relation description. 

Keywords: Few-shot relation classification, Prototype network, Relation infor-

mation, Cross-attention mechanism, Contrastive learning. 

1 Introduction 

Relation classification (RC) constitutes a significant area within the broader task of 

relation extraction (RE). When the entities involved are already identified, relation ex-

traction becomes synonymous with relation classification [1]. RC involves the process 

of determining the relationship between two entities found within a sentence, typically 

from a specified collection of relations. This task helps to convert unstructured text into 

structured information. It is a key task in Natural Language Processing (NLP), which 

is widely used in NLP applications including knowledge graph construction [2], 
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question-answer systems [3], and information retrieval [4], etc. RC usually requires 

many manually labeled data for training and prediction. Nevertheless, the process of 

labeling data by hand is labor-intensive and consumes a significant amount of time, 

often leading to mistakes influenced by subjective factors. Early studies have made 

progress in the relation classification task through distant supervision [5], which auto-

matically labels data by combining knowledge graphs. However, the noise introduced 

by remote supervision methods [6] and the long-tailed distribution of knowledge graph 

data [7] limit their applications. 

To address the challenges posed by distant supervision in relation classification 

(RC), researchers have leveraged the successful strategies employed in few-shot learn-

ing within the domain of computer vision (CV) and introduced the few-shot relation 

classification (FSRC) task [8]. The objective of FSRC research is to tackle the issue of 

limited labeled data in practical settings and to efficiently acquire knowledge of the 

target relation using a minimal set of labeled examples, thereby significantly decreasing 

the labeling expenses. The generalization ability of the model is mainly improved by 

methods such as meta-learning [9] or metric learning to enhance the prediction perfor-

mance in the face of new or unseen relations, thus reducing the dependence on large-

scale labeled data. Among them, the prototype network [10] generates class prototypes 

by calculating the average of samples in each category and classifies them based on the 

distance between each class sample and the class prototypes, which has become a 

widely used basic method. Current research based on prototype networks is mainly 

conducted in two directions: to enhance the prototype representation by introducing 

external information (such as relation names and descriptions). Specifically, this type 

of approach incorporates relation-specific semantic information into the prototype rep-

resentation, thereby enhancing the discriminative ability of the model. For example, 

Yang et al. [11] propose relation and entity description information to enhance the pro-

totype network. Liu et al. [12] propose a prototype correction module to explicitly cor-

rect the original prototype using relation information to assess the preservation and up-

date of prototype and relation features, thereby enhancing the capture of relational se-

mantics. Another research direction aims to mitigate the problem of predictive confu-

sion between similar classes using contrastive learning strategies. Such approaches lev-

erage relational information to enhance intra-class similarity while amplifying inter-

class differences, thereby improving the discriminative capability of the model. For 

example, Wu et al. [13] propose multilevel contrastive learning approach aimed at en-

hancing the common features among instances within specific classes, while simulta-

neously emphasizing the distinctions between analogous relational classes via the use 

of instances and prototypes. Although the above approaches have made significant pro-

gress, some limitations remain. First, external information-based approaches are usu-

ally practical only under the condition of specific relational descriptions, and their en-

hancement is limited when relational descriptions are insufficient or of low quality. In 

addition, although contrastive learning-based methods can mitigate class confusion by 

positioning instances of the same class nearer to one another and instances from differ-

ent classes further apart, they often assume that instances within a class have consistent 

representations, ignoring the fact that different instances may have different semantic 

biases, leading to a persistent risk of misclassification in hard-to-distinguish relation 
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classes. To mitigate these problems, we introduce an efficient few-shot relation classi-

fication model known as HPCL, which dynamically fuses global prototypes (extracted 

from support samples and relation information) and local prototypes (capturing key 

contexts) through a cross-attention mechanism so that even if the relation description 

information is incomplete or of low quality, the model can still rely on the complemen-

tary information of global and local features to construct robust relation representations, 

thus reduce the over-reliance on relation descriptions. Meanwhile, in order to solve the 

problem of confusing similar relation classes, a dual contrastive learning strategy is 

proposed, whereby the model can effectively adjust the distribution of instances within 

a class to better match the real data distribution through the relation-prototype contras-

tive learning and the query-prototype contrastive learning, avoiding the limitation of 

over-reliance on a single prototype in the traditional approach, to enhance the discrim-

inative capability of relation classes. This paper makes several contributions: 

• We present a novel hybrid prototype contrastive learning (HPCL) model that seam-

lessly integrates global and local prototypes via a cross-attention mechanism. By 

leveraging the strengths of both global and local features, HPCL greatly enhances 

the discriminative power of relation classification. In contrast to conventional ap-

proaches, HPCL effectively identifies the intricate features of relations, leading to 

marked performance gains in few-shot relation classification tasks. 

• We adopt a dual contrastive learning strategy of relation-prototype and query-proto-

type contrastive learning. The former enhances the prototype representation through 

the comparison between relation descriptions and prototypes, and the latter further 

improves the ability of the model to discriminate between different relation classes 

through the comparison between query samples and prototypes. 

• The results from our experiments using the FewRel 1.0 and FewRel 2.0 datasets 

demonstrate that HPCL performs well in all types of few-shot settings, further vali-

dating its potential in practical applications. 

2 Related work 

2.1 Few-Shot Relation Classification 

Few-shot relation classification (FSRC) requires models to quickly learn textual fea-

tures to identify relations between entities in the presence of scarce data. The core chal-

lenge of this task lies in the ability of models to generalize effectively when facing new 

relation classes. Currently, FSRC research is divided into two main classes: (1) Meta-

learning methods based on optimization, achieve fast adaptation to new tasks by opti-

mizing model parameters. For example, MAML [9] learns a generalized initialization 

parameter so that the model can adapt quickly and achieve better performance with only 

a tiny amount of gradient update when encountering a new task. (2) Methods based on 

metric learning, which do not require complex network structures, simplify the model 

architecture by designing appropriate embedding spaces and metrics. Among them, the 

prototype network [10], which generates class prototypes by calculating the feature 



means of the support samples of each class and classifies the query samples according 

to their distance from the class prototypes, has become a widely used basic method. 

Methods currently utilized that rely on prototype networks typically incorporate ex-

ternal information, such as relation data, to optimize the prototype representation of 

FSRC, thus enhancing the discriminative ability and generalization performance of the 

model. Some of these methods directly incorporate relation information to improve the 

representation of the prototype [11, 14, 15]. For example, Liu et al. [15] directly added 

relation information (such as relation name and description) to the prototype network 

to enhance the prototype. This method does not introduce additional parameters and 

reduces the risk of overfitting. However, it may not perform as well as more sophisti-

cated fusion methods when the quality of the relational information is low, or the sam-

ple size is large. In addition to directly enhancing prototype representations, alternative 

approaches bolster intra-class similarity and amplify inter-class distinctions via con-

trastive learning [16, 17, 18]. For example, Dong et al. [18] enhance the discriminative 

properties of prototypes by introducing multilevel contrastive learning. The method still 

falls short in terms of computational complexity and Prompt dependency. The above 

studies show that high-quality prototype representations are crucial for the FSRC task. 

However, existing methods mainly rely on global features of the text, while our ap-

proach further introduces local features to capture fine-grained relationship representa-

tions. 

2.2 Contrastive Learning 

Contrastive learning (CL) focuses on developing discriminative feature representations 

by bringing positive sample pairs closer together while distancing negative sample 

pairs. Recently, there has been notable advancement in the FSRC domain [16, 17, 18, 

19]. Among these advancements, Peng et al. [19] introduced a framework for pre-train-

ing an entity mask utilizing contrastive learning, which improves the model's compre-

hension of context and relationship type information. Additionally, Han et al. [16] put 

forward a relation-prototype contrastive learning approach that leverages relational data 

to differentiate between various prototypes. Borchert et al. [17] improved the alignment 

between instances and their corresponding relation descriptions using instance-relation 

description contrastive learning, thereby enhancing the discriminative capacity of clas-

sification. 

Although these methods have achieved significant results in FSRC tasks, they 

mainly focus on a single perspective (such as instances, relation prototypes, or relation 

descriptions) and fail to fully exploit the potential of synergistic optimization among 

different representations. Specifically, although instance-level contrastive learning can 

enhance local semantic representation, it fails to fully utilize the high-order semantic 

constraints of relational categories. Prototype-level contrastive learning can model in-

ter-class differences, but due to the limited support set samples, the prototype represen-

tation may be inaccurate, resulting in final classification errors. To avoid these prob-

lems, we introduce a dual contrastive learning method to simultaneously optimize the 

discriminative ability of the model from two perspectives: relation representations and 

query samples. We utilize relation prototypes as constraints in the feature space to guide 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

the optimization direction of relation representation and query samples. This strategy 

not only enhances the ability of the model to discriminate between different relation 

classes but also effectively improves the overall performance of few-shot relation clas-

sification. Meanwhile, by utilizing prototypes rather than individual instances as an-

chors, our dual contrastive learning method effectively mitigates the detrimental effects 

of intra-class sample differences. Even if there are significant differences within the 

same class, using prototypes ensures more stable optimization and better generalization. 

2.3 Cross-Attention Mechanism 

The cross-attention mechanism, a dynamic feature fusion method, shows significant 

advantages in the FSRC task. The attention mechanism [20] dynamically increases the 

receptive domains in the network architecture. Unlike the self-attention mechanism, 

which only focuses on information in the same embedding space, the cross-attention 

achieves richer feature interactions by asymmetrically combining two independent em-

bedding spaces. Specifically, self-attention calculates attention scores based on query 

(Q), key (K), and value (V) within a shared labeling space. On the other hand, cross-

attention leverages K and V projected from distinct labeling spaces as contextual cues 

to refine Q, thereby improving the discriminative capability of feature representations.  

In FSRC tasks, existing methods are usually based on a single prototype representa-

tion level using only global or local features. However, global features can capture the 

overall semantics of a relation class but tend to ignore fine-grained local information 

(such as specific interaction patterns between entities). In contrast, local features can 

reflect detailed information but lack dynamic adaptability to complex contexts. To ad-

dress this problem, we introduce a cross-attention mechanism that dynamically fuses 

global prototypes (consisting of the global feature means of the support samples plus 

the global features of the relations) and local prototypes (consisting of the local feature 

means of the support samples plus the local features of the relations) to generate hybrid 

prototype representations with multi-granular discriminative power. This mechanism 

enables the model to flexibly modify the level of focus on various types of information 

within the feature space, thus modeling the relation semantics more comprehensively. 

This strategy not only enhances the ability of the model to discriminate between com-

plex relation classes but also makes more effective use of limited few-shot data for 

feature learning, thus improving the generalization performance of the FSRC task. 

3 Problem Formulation 

We employ a conventional N-way-K-shot few-shot relation classification task setup, in 

which the dataset is segmented into training 𝒟𝑡𝑟𝑎𝑖𝑛, validation 𝒟𝑣𝑎𝑙 , and test sets 𝒟𝑡𝑒𝑠𝑡 , 

and the relation classes in these sets do not overlap. Throughout the training phase, we 

utilize a meta-learning strategy [21] that facilitates the model in acquiring generaliza-

tion skills from the base relation classes, allowing it to adapt swiftly when faced with 

novel relation classes. Each N-way-K-shot task includes a support set 𝑆 =

{𝑠𝑗
𝑖 ; 𝑖 = 1, ⋯ , 𝑁, 𝑗 = 1, ⋯ , 𝐾} and a query set 𝑄 = {𝑞𝑖; 𝑖 = 1, ⋯ , 𝑀}. The support set 𝑆 



comprises 𝑁 different relations, with each relation represented by 𝐾 labeled examples, 

while the query set 𝑄 consists of 𝑀 unlabeled instances, aimed at predicting the respec-

tive relation label. Every instance (𝑥, 𝑒, 𝑦)  is made up of a context sentence 𝑥 =
{𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, where 𝑛 is the sentence length, an entity pair 𝑒 = (𝑒ℎ, 𝑒𝑡) where 𝑒ℎ and 

𝑒𝑡 representing the head and tail entities, respectively, and a relationship label 𝑦. 

4 Proposed Method 

In this section, we present the specifics of the HPCL methodology. The overall structure 

is illustrated in Fig. 1. The goal of HPCL is to enhance the effectiveness of few-shot 

relation classification by refining the prototype fusion technique and optimizing the 

contrastive learning approach. The input consists of N-way-K-shot tasks, drawn from 

the FewRel dataset. The HPCL framework primarily includes two components: (1) A 

cross-attention mechanism is employed to dynamically integrate global prototypes with 

local ones, ultimately creating more distinctive relation prototypes. This technique not 

only boosts the expressive capability of the prototypes but also improves the ability to 

detect subtle differentiations between relation classes. (2) The implementation of rela-

tion-prototype contrastive learning and query-prototype contrastive learning serves to 

optimize the relation representation, enhancing the model's discrimination power, 

thereby enabling it to differentiate similar classes more effectively and improve its gen-

eralization performance. 

 

Fig. 1. The overall framework of HPCL. Relation information is represented by squares, circles 

represent support sets, gray circles represent query sets, and pentagrams represent prototypes. 

The same color (blue, green, orange) indicates the same relation class. 

4.1 Hybrid Prototype 

We utilize BERT [23] as an encoder to derive contextual embeddings for the support 𝑆 

and the query set 𝑄. For every relation, we combine the name with the description and 

feed the resulting sequence into the BERT encoder, which produces the relation em-

bedding {𝑅𝑖 ∈ ℝ𝑑; 𝑖 = 1, ⋯ , 𝑁}, with 𝑁 representing the total count of relation classes.  

For instances in the support 𝑆 and query sets 𝑄, the global features are obtained by  



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

referring to the method of Baldini Soares et al. [22], where the hidden states corre-

sponding to the start tokens of two entity mentions are extracted and spliced in order to 

form the global representation of the instance [ℎ𝑒𝑛𝑡𝑖𝑡𝑦1; ℎ𝑒𝑛𝑡𝑖𝑡𝑦2], ℎ𝑒𝑛𝑡𝑖𝑡𝑦1, ℎ𝑒𝑛𝑡𝑖𝑡𝑦2 ∈

ℝ𝑑, where 𝑑 is the dimensionality size of the contextual representations generated by 

the sentence encoder. The global features of the relation description are extracted from 

the embedded representation of the corresponding [CLS] tokens. For each relation, we 

refer to the method of Snell et al. [10] by averaging the global feature of its support 

samples {𝑠𝑘
𝑖 ∈ ℝ2𝑑; 𝑖 = 1, ⋯ , 𝑁, 𝑘 = 1, ⋯ , 𝐾}, where 𝐾 is the number of support sam-

ples, and combining it with the global feature of the relation description 

{𝑟𝑔𝑙𝑜
𝑖 ∈ ℝ2𝑑; 𝑖 = 1, ⋯ , 𝑁} to construct the final global prototype representation. 

 𝑝
𝑔𝑙𝑜
𝑖 =

1

𝐾
∑ 𝑠𝑘

𝑖𝐾
𝑘=1 + 𝑟𝑔𝑙𝑜

𝑖 ∈ ℝ2𝑑 (1) 

Global prototypes can capture the overall characteristics of the relation but often 

ignore fine-grained differences between different instances. Using only global proto-

types may reduce ability to distinguish between subtle relation classes. To tackle this 

issue, we propose the use of local prototypes, which focus on the local information of 

instances and enhance the ability of the model to perceive fine-grained features. By 

incorporating local prototypes, the model's discriminative capability is enhanced, lead-

ing to increased accuracy in managing relationships that are similar yet distinct. 

For relation 𝑖, we extract the local features of its 𝑘-th support sample to capture its 

fine-grained semantic information: 

 ŝ𝑘
𝑖 = ∑ 𝛼𝑚

𝑠𝐿
𝑚 [𝑆𝑘

𝑖 ]
𝑚

∈ ℝ𝑑 (2) 

 𝛼𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑠𝑢𝑚 (𝑆𝑘
𝑖 (𝑆𝑘

𝑖 )
𝑇

)) ∈ ℝ𝐿 (3) 

Where 𝐿 represents the number of tokens for instance, [∙]𝑚 is the 𝑚-th row of the 

feature matrix, and the weight 𝛼𝑚
𝑠  is obtained by calculating the similarity between the 

local features. The weights are then summed to form the final local features. 

Similarly, we compute the local features of the relation description through the self-

attention mechanism: 

 𝑟loc
𝑖 = ∑ 𝛼𝑚

𝑟𝐿
𝑚 [𝑅𝑖]𝑚 ∈ ℝ𝑑 (4) 

 𝛼𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑠𝑢𝑚(𝑅𝑖(𝑅𝑖)𝑇)) ∈ ℝ𝐿 (5) 

Ultimately, we create a local prototype representation by averaging the local char-

acteristics of the support set and combining them with the local features of the relation 

description: 

 𝑝
𝑙𝑜𝑐
𝑖 =

1

𝐾
∑ ŝ𝑘

𝑖𝐾
𝑘=1 + 𝑟𝑙𝑜𝑐

𝑖 ∈ ℝ𝑑  (6) 

As illustrated in Fig. 2, we utilize a cross-attention mechanism to dynamically com-

bine global and local prototypes, allowing us to capture the interaction between these 

two types of features, ultimately resulting in a more distinctive hybrid prototype 



representation. To maintain dimensional consistency, a linear transformation is applied 

to the local prototype: 

 𝑝
𝑙𝑜𝑐
𝑖 = 𝑊𝑝

𝑙𝑜𝑐
𝑖 + 𝑏 ∈ ℝ2𝑑 (7) 

where 𝑊 ∈ ℝ2𝑑×𝑑 is a weight matrix and 𝑏 ∈ ℝ2𝑑 represent the bias vector. 

 

Fig. 2. The fundamental architecture of the cross-attention mechanism. The inputs are trans-

formed linearly to produce queries (Q), keys (K), and values (V). The attention score is com-

puted using the dot product of the query and key, which is then normalized through the Soft-

max function to create attention weights. These weights are utilized for a weighted summation 

of the values (V) to yield the final output of attention. The integration of global and local fea-

tures (𝑝𝑔𝑙𝑜 and 𝑝𝑙𝑜𝑐) and the application of the Softmax function are labeled in the figure. 

Then, we compute the hybrid prototype through the cross-attention mechanism: 

 𝑝𝑖 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑝
𝑔𝑙𝑜
𝑖 , 𝑝

𝑙𝑜𝑐
𝑖 , 𝑝

𝑙𝑜𝑐
𝑖 ) ∈ ℝ2𝑑 (8) 

 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (9) 

Where 𝑄 represents the query, 𝐾 denotes the key, 𝑉 signifies the value, and 𝑑𝑘 re-

fers the dimension of the key, which serves as a scaling factor to prevent excessively 

large values. 

4.2 Contrastive Learning 

In the task of few-shot relation classification task, the model needs to accurately sum-

marize the features of different relation classes using a limited set of labeled data. To 

address this, we implement a dual contrastive learning approach aimed at enhancing 

the model's representational capacity. This technique ensures that instances belonging 

to the same relation class are positioned closer together in the representation space, 

whereas instances from different relation classes are dispersed further apart. 

Specifically, we designed Relation-Prototype Contrastive Learning (RPCL) to use  
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relation descriptions as anchors. The objective is to minimize the distance between 

them and prototypes of the same relation class while maximizing the distance from 

prototypes of other classes, thereby enhancing the discriminative capability. 

The representation of the relation description is obtained by fusing its global features 

with local features through a cross-attention mechanism: 

 𝑟𝑖 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑟𝑔𝑙𝑜
𝑖 , 𝑟𝑙𝑜𝑐

𝑖 , 𝑟𝑙𝑜𝑐
𝑖 ) ∈ ℝ2𝑑 (10) 

The relation-prototype contrast loss is calculated as follows: 

 ℒ𝑅𝑃𝐶𝐿 = − ∑ 𝑙𝑜𝑔 (
𝑒𝑥𝑝(𝑠(𝑟𝑖,𝑝ℎ𝑦𝑏

𝑖 )/𝜏)

𝑒𝑥𝑝(𝑠(𝑟𝑖,𝑝ℎ𝑦𝑏
𝑖 )/𝜏)+∑ 𝑒𝑥𝑝(𝑠(𝑟𝑖,𝑝ℎ𝑦𝑏

𝑗
)/𝜏)𝑗≠𝑖

)𝑁
𝑖=1  (11) 

Where 𝑠(, ) is the distance metric function, we use the dot product as a similarity 

measure between two features, and 𝜏 is the temperature coefficient. 

We designed Query-Prototype Contrastive Learning (QPCL) with query samples as 

anchors, where positive samples were selected as the closest relation prototypes, and 

negative samples as prototypes from other classes. This enables the model to more ac-

curately classify query samples into the correct relational classes. 

The query-prototype contrast loss is calculated as follows: 

 ℒ𝑄𝑃𝐶𝐿 = − ∑ 𝑙𝑜𝑔 (
𝑒𝑥𝑝(𝑠(𝑞𝑖,𝑝ℎ𝑦𝑏

𝑖 )/𝜏)

𝑒𝑥𝑝(𝑠(𝑞𝑖,𝑝ℎ𝑦𝑏
𝑖 )/𝜏)+∑ 𝑒𝑥𝑝(𝑠(𝑞𝑖,𝑝ℎ𝑦𝑏

𝑗
)/𝜏)𝑗≠𝑖

)𝑁
𝑖=1  (12) 

Where 𝑞𝑖 represents the feature representation of the query sample. 

4.3 Relation Classification 

Upon acquiring N final relation prototypes, we determine the similarity of the query 

samples with each prototype and utilize the class linked to the relation prototype that 

exhibits the greatest similarity as the ultimate prediction. The classification loss is 

measured using the cross-entropy (CE) loss function. 

 ℒ𝐶𝐸 = −𝑙𝑜𝑔(𝑧𝑦) (13) 

The class label is represented by 𝑦, while 𝑧𝑦 denotes the predicted probability for 

class 𝑦. The overall loss of our model is defined as: 

 ℒ = ℒ𝐶𝐸 + λℒ𝑅𝑃𝐶𝐿 + λℒ𝑄𝑃𝐶𝐿 (14) 

where λ is the hyperparameter. 

5 Experiments 

This section assesses the efficacy of the suggested HPCL approach using publicly ac-

cessible datasets. Additionally, we perform a set of experiments to investigate how each 



element of the HPCL method influences the few-shot relation classification task across 

various settings and thoroughly analyze its contributions to performance. 

5.1 Dataset 

We utilize two benchmark datasets, FewRel 1.0 [8] and FewRel 2.0 [25], for evaluation 

purposes. The FewRel 1.0 dataset includes 100 different relation classes, each having 

700 instances sourced from Wikipedia domains. These instances are categorized into 

64 relations for training, 16 for validation, and 20 for testing. In contrast, FewRel 2.0 

introduces a domain adaptation task that builds upon FewRel 1.0. The training set re-

mains the same as that of FewRel 1.0, while the validation set employs the SemEval-

2010 task 8 dataset. The testing set is drawn from the biomedical domain (PubMed). 

Both training and testing for FewRel 1.0 occur within the Wikipedia domain; however, 

FewRel 2.0 involves training and testing from varied domains, aiming to assess the 

model's cross-domain adaptability. Additionally, FewRel 1.0 provides names and de-

scriptions of relations, whereas FewRel 2.0 offers only the names, adding an extra layer 

of complexity to the task. 

5.2 Evaluation 

A method aligned with the formal evaluations is employed in our approach. Specifi-

cally, we randomly select 30,000 episodes from the training dataset, assess 1,000 epi-

sodes from the validation dataset, and utilize 10,000 episodes from the test dataset. The 

metric for evaluation is the mean classification accuracy of the query set. We establish 

four scenarios: 5-way-1-shot, 5-way-5-shot, 10-way-1-shot, and 10-way-5-shot. We 

implement the AdamW optimizer, beginning with a learning rate of 2e-5 and a batch 

size of 4. All experiments were conducted using NVIDIA GeForce RTX 3090 GPUs. 

Given that the FewRel test set labels are not available to the public, we ensure alignment 

with previous studies [21, 17] by submitting the model's predictions to the official Few-

Rel leaderboard to acquire the accuracy of the test set. 

5.3 Baselines 

In order to fully evaluate the performance of HPCL, we compare it with a variety of 

baseline methods, which are divided into three groups: standard BERT encoder base-

lines, BERT baselines with external information, and baselines based on the pre-trained 

relation classification model. 

─ Standard BERT Encoder Baselines 

MAML [9]: A general meta-learning optimization algorithm. GNN [24]: A model 

combining graph neural networks and meta-learning. Proto-BERT [25]: A prototype 

network based on BERT for classification by computing instance representations. 

BERT-PAIR [25]: Splicing query samples and support samples into input sequences 

and predicting similarity by sequence classification model. 
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─ BERT baselines with external information 

REGRAB [26]: A Bayesian meta-learning method using global relation graphs. 

CTEG [14]: An attention mechanism and confusion-aware training strategy using entity 

guidance. HCRP [16]: A method for referencing hybrid relation prototypes. SemGL 

[13]: A method that combines relation graph learning and multilevel contrastive learn-

ing through cue enhancement. MultiRep [17]: Combining multiple sentence represen-

tations with contrastive learning to enhance the aggregation of instances in different 

representation spaces. RelPromptCL [18]: Enhances the discriminative properties of 

relation representations and prototypes by introducing prompt modules and multilevel 

contrastive learning. 

─ Baselines based on the pre-trained relation classification model 

MTB [22]: A pre-training relation model based on BERT by randomly masking en-

tity mentions. CP [19]: A contrastive learning based on the pre-training framework for 

entity masks. MapRE [27]: A pre-training model for semantic mapping target relations 

by combining relation information. 

All baseline methods use BERT-base as a sentence encoder to ensure a fair compar-

ison. By comparing with these baseline methods, we are able to comprehensively eval-

uate the performance of HPCL in the few-shot relation classification task. 

5.4 Main results 

Table 1 illustrates the performance of HPCL on the FewRel 1.0 dataset for both the 

validation and test sets. The results from the experiments indicate that HPCL delivers 

remarkable outcomes in multiple few-shot relation classification tasks. 

Table 1. Accuracy (%) of FSRC on FewRel 1.0 validation/test set. 

Model 5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot 

val test val test val test val test 

MAML 82.93 89.70 86.21 83.55 73.20 83.17 86.06 88.51 

GNN - 75.66 - 89.06 - 70.08 - 76.93 

Proto-BERT 82.92 80.68 91.32 89.60 73.24 71.48 83.68 82.89 

BERT-PAIR 85.66 88.32 89.48 93.22 76.84 80.63 81.76 87.02 

REGRAB 87.95 90.30 92.54 94.25 80.26 84.09 86.72 89.93 

CTEG 84.72  88.11 92.52 95.25 76.01 81.29 84.89 91.33 

HCRP 90.90  93.76 93.22 95.66 84.11 89.95 87.79 92.10 

SemGL 91.96 95.11 94.70 96.88 84.98 91.61 89.02 94.73 

MultiRep 92.73  94.18 93.79 96.29 86.12 91.07 88.80 91.98 

RelPromptCL 92.12 94.71 94.42 97.38 85.77 91.18 89.28 94.48 

HPCL 92.53 94.95 94.56 96.88 86.37 91.83 89.14 94.29 

CP - 95.10 - 97.10 - 91.20 - 94.70 

MTB - 91.10 - 95.40 - 84.30 - 91.80 

MapRE - 95.73 - 97.84 - 93.18 - 95.64 

HCRP(CP) 94.10 96.42 96.05 97.96 89.13 93.97 93.10 96.46 

HPCL(CP) 96.33 96.85 97.49 98.26 93.25 94.96 95.41 96.57 



Compared with the standard baseline methods, HPCL has an average accuracy im-

provement of at least 11.38%. In the 1-shot setting, the test accuracy of HPCL is 14.27% 

higher than Proto-BERT; in the 5-shot setting, the accuracy of HPCL is improved by 

7.28% compared to Proto-BERT. This result shows that HPCL can effectively model 

relation prototypes and improve reasoning capabilities in low-resource scenarios by in-

troducing relation information and improving feature representation capabilities. 

Compared with other enhancement methods, HPCL relatively outperforms the ex-

isting methods. For example, compared with HCRP, HPCL introduces a cross-attention 

mechanism to fuse global and local prototypes, while HCRP only fuses through splic-

ing. Through this mechanism, HPCL can dynamically aggregate different levels of se-

mantic information, resulting in an average accuracy improvement of at least 1.67%, 

which verifies the enhancement effect of more fine-grained semantic interactions on 

relation representation. In addition, HPCL combines a dual contrastive learning strat-

egy, which further enhances the relation discrimination ability of the model compared 

to MultiRep, which compares local representations (sentence representations) and ig-

nores the contrast constraints between global relation prototypes, resulting in limited 

ability to distinguish between different relation classes in few-shot samples. In contrast, 

RPCL and QPCL in HPCL optimize the representation from the relation level and in-

stance level, respectively, which enables the model not only to enhance the discrimina-

tion of relation classes in the prototype space but also to strengthen the matching of 

query samples with the support set of relation prototypes through contrastive learning, 

thus improving the generalization ability. The accuracy improvement ranges from 

0.59% - 2.4% under different task settings. This shows that under few-shot conditions, 

the ability of prototypes to discriminate between different relation classes can be en-

hanced by contrastive learning. 

Although CP and MapRE rely on large-scale corpora for specialized pre-training, 

thereby introducing additional prior knowledge, HPCL still achieves highly competi-

tive results without specialized pre-training. Meanwhile, we fine-tuned HPCL on the 

optimal checkpoints of CP pre-training to obtain HPCL(CP). The experimental results 

show that HPCL(CP) improves its accuracy by 1.16% - 3.76% compared to CP, further 

validating its generalization ability under different relation classification tasks. 

Table 2. Accuracy (%) of different methods on the FewRel 2.0 test set. 

Model 5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot 

Proto-BERT 40.12 51.50 26.45 36.93 

BERT-PAIR 67.41 78.57 54.89 66.85 

HCRP 76.34 83.03 63.77 72.94 

MTB 74.70 87.90 62.50 81.10 

CP 79.70 84.90 68.10 79.80 

RelPromptCL 81.24 91.54 69.04 84.66 

HPCL 81.63 91.77 69.75 83.92 

Table 2. demonstrates the effectiveness of HPCL on the cross-domain adaptation 

tasks in FewRel 2.0. HPCL significantly outperforms the existing methods in all set-

tings, especially in the 10-way-1-shot configuration, which outperforms the current op-

timal RelPromptCL method by 0.71%. It shows that HPCL has a more substantial 
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cross-domain transfer capability. However, RelPromptCL still has an advantage in the 

10-way-5-shot setup, indicating that prompt-based learning methods may exhibit better 

adaptability for relation modeling when the support set contains more samples. Nota-

bly, HPCL still achieves an average accuracy improvement of 0.15% over 

RelPromptCL, validating the effectiveness of its cross-attention fusion mechanism and 

contrastive learning strategy in cross-domain scenarios. 

The above analysis results prove the stability and effectiveness of our model. More-

over, the performance increase is mainly due to two aspects: (1) Dynamic fusion of 

global and local prototypes through the cross-attention mechanism, which enables the 

model to capture global semantic information and local fine-grained features, thus im-

proving the relation representation ability. (2) Contrastive learning of relation proto-

types and contrastive learning of query prototypes makes it easier for the model to dis-

tinguish between different relation classes in the reasoning process, thus alleviating the 

prediction confusion problem. 

5.5 Ablation Experiments 

Table 3. Ablation experiments under 5-way-1-shot 5-way-5-shot 10 way-1-shot and 10 way-5-

shot settings of the FewRel 1.0 validation set. 

Model 5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot 

HPCL 92.53 94.56 86.37 89.14 

w/o local prototype 90.28 92.17 84.81 87.54 

w/o global prototype 88.84 90.93 82.75 86.06 

w/o cross attention 91.96 93.84 85.31 88.25 

w/o RPCL 92.00 93.92 85.83 88.47 

w/o QPCL 92.15 94.14 85.92 88.79 

To verify the effectiveness of HPCL, we conducted ablation experiments on the FewRel 

1.0 dataset by removing individual parts from the model. Where 'w/o local prototype' 

removes the local prototype from HPCL, 'w/o global prototype' removes the global pro-

totype, 'w/o cross attention' replaces the cross-attention mechanism with the direct con-

catenation of global and local prototypes, 'w/o RPCL' disables the relation-prototype 

contrastive learning module, and 'w/o QPCL' disables the query-prototype contrastive 

learning module. Table 3. shows the accuracy results for the validation set. 

Table 3 illustrates that the removal of any critical element from HPCL results in a 

reduction in accuracy, indicating that each component plays a role in capturing various 

aspects of the data. The combination of these components allows the model to acquire 

more comprehensive and distinctive representations, essential for few-shot relation 

classification. 

It is worth noting that (1) the removal of the global prototype module leads to a 

maximum drop of 3.69% in 5-way-1-shot accuracy, which constructs a global distribu-

tion representation of the category by aggregating high-level semantic features from 

the samples of the support set, and in few-shot scenarios, the absence of global seman-

tics weakens the ability of the model to generalize to complex semantic structures, lead-

ing to a significant increase in sensitivity to local noise. (2) The removal of the local 

prototype also leads to significant performance degradation, revealing the importance 



of fine-grained feature identification. The module extracts key fragments from the sup-

port set samples through the attention mechanism to construct a prototype representa-

tion based on local semantic units. Experiments show that the local prototypes can ef-

fectively distinguish relation classes that are globally semantically similar but locally 

have discriminative differences, emphasizing their essential role in capturing fine-

grained relation distinctions. (3) Replacing cross-attention with concatenation leads to 

a 1.06% accuracy decline in the 10-way-1-shot setting, validating the effectiveness of 

cross-level interaction. Cross-attention enables dynamic feature fusion by calculating 

the correlation weights between global and local prototypes. Compared with linear 

splicing, this nonlinear interaction is more conducive to capturing the complementarity 

of multi-level features, especially when dealing with long textual relation reasoning, 

which can effectively alleviate the problem of semantic information dilution. (4) In 

addition, removing either Relation-Prototype Contrastive Learning (RPCL) or Query-

Prototype Contrastive Learning (QPCL) induces slight performance degradation. 

RPCL enforces contrastive loss constraints between relation descriptions and proto-

types to force the model to focus on inter-class discriminative features. QPCL enhances 

model robustness by constructing contrastive spaces between query samples and pro-

totypes. Experimental results indicate that these mechanisms provide systematic value 

for optimizing the topological structure of prototype representation spaces. 

Overall, these results emphasize that each module in HPCL contributes to the overall 

effectiveness of the model, with global and local prototypes playing the most critical 

roles, while the contrastive learning mechanism and cross-attention further enhance the 

ability of the model to distinguish relations.  

6 Conclusion 

This paper introduces a novel Hybrid Prototype Contrastive Learning (HPCL) model, 

which dynamically fuses global and local prototypes using a cross-attention mecha-

nism, thereby significantly improving the representation ability in few-shot relation 

classification (FSRC) tasks. Additionally, we design relation-prototype contrastive 

learning (RPCL) and query-prototype contrastive learning (QPCL) strategies to opti-

mize shared intra-class features and strengthen inter-class discriminative power, respec-

tively. Experimental results demonstrate that HPCL exhibits marked superiority in gen-

eralization capability and robustness compared to existing baseline methods. Our ap-

proach effectively mitigates challenges arising from data scarcity and insufficient rela-

tion descriptions and provides a flexible and efficient solution to address semantic bias 

in relation classification. Future work will extend this methodology to continuous few-

shot relation classification tasks to further validate its applicability and scalability. 
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