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Abstract. At present, the phage genome sequence recognition model based on 

deep learning technology faces two problems, namely, the pollution of human 

genome sequence and noise interference. To address this problem, we propose 

MetaCleaner, a phage genome sequence recognition model. MetaCleaner uses 

the k-mer count as the classification basis for genome sequences, and uses a par-

allel convolution filter and average pooling method to extract the k-mer count 

features of genome sequences. The denoising module implemented by the trans-

former architecture is used to predict the difference between the k-mer count fea-

ture of the noisy sequence and the k-mer count feature of the noise-free sequence, 

and the denoising operation is completed by subtracting the difference between 

the k-mer count feature of the noisy sequence. Finally, the denoised k-mer count 

feature is input into the fully connected layer to obtain the probability of the se-

quence belonging to phage and human. Our experiments on test sets with noise 

show that MetaCleaner is robust to noise, and experiments on real metagenomic 

datasets show that MetaCleaner outperforms recent proposed phage recognition 

models. 

Keywords: Deep learning, Metagenomics, Denoising, phage identification, 
Noise. 

1 Introduction 

Bacteriophages are viruses that infect bacteria and archaea, and are considered to be 

the most abundant and diverse biological entities on Earth. Bacteriophages play a key 

role in constructing the human gut microbiota [1]. In the past few decades, phages were 

discovered by culture-dependent genome sequencing methods, which are time-consum-

ing and expensive. Metagenomic sequencing technology is a new approach to genome 

sequencing that is able to sequence phages directly from gut samples. 

At present, there are three types of phage identification methods: sequence alignment 

based methods, machine learning based methods and deep learning based methods. For 

example, VirSorter [2] builds a viral reference database and compares sequences with 

more than two tested genes to the database to determine viral assemblies (contigs). 
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MetaPhinder [3] constructed a phage whole genome sequence database and used 

BLAST (Basic Local Alignment Search Tool) to align with the database and identify 

phage assemblies (contigs). The methods based on contrast have the problems of long 

execution time and large memory consumption in the process of database construction 

and sequence mapping. 

Machine learning-based methods extract gene features from predefined sequences 

and train a classifier for phage identification, achieving better performance than the 

methods based on sequence alignment. For example, VirFinder [4] calculated k-mer 

frequencies of sequences and trained logistic regression models to identify viral se-

quences. VIBRANT [5] extracts protein features and uses a hybrid machine learning 

model for virus identification. VirSorter2[6] is an extension of VirSorter and random 

forest classifiers trained on gene features to identify viruses. Yet genetic signatures are 

often designed by human engineers with broad domain expertise, which remains a dif-

ficult task to determine. 

In recent years, deep learning has achieved great success in many fields, and some 

deep learning-based methods have been proposed for metagenomic phage DNA iden-

tification, which can automatically extract and learn features for classification. For ex-

ample, DeepVirFinder [7] and CHEER [8] use CNNS to predict viral sequences. Virti-

fier [9] uses attention-based LSTM for short virus sequence recognition. DETIRE [10] 

used graph-based nucleotide sequence em- bedding strategy to enrich the expression of 

DNA sequences by training embedding matrices. Then, the trained Convolutional Neu-

ral Network (CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) network 

were used to ex- tract spatial features and sequence features, respectively, to enrich the 

features of short sequences. MetaPhaPred [11] uses convolutional neural network 

(CNN) to capture sequence feature mapping, uses bidirectional Long Short-Term 

memory network (Bi-LSTM) to capture the long-term dependence between features 

from forward and backward, and uses self-attention mechanism to enhance the repre-

sentation of important features. Although these deep learning models have achieved 

good prediction performance, they all ignore two problems: the interference of human 

DNA sequences and the interference of noise. 

Background contamination is currently unavoidable [12]. Because the hu- man ge-

nome is roughly one thousand times larger than an average bacterial genome ( ~ 93 10

versus ~ 63 10 bp), host DNA can quickly drown out microbial reads in samples con-

taining even a relatively small number of human cells.[13] The presence of human 

DNA sequences can cause interference in phage analysis, and the exclusion of human 

DNA sequences is a necessary step to per- form phage analysis. However, the phage 

recognition models proposed in recent years do not have the ability to distinguish phage 

DNA sequences from hu- man DNA sequences. Our experiments on real metagenomic 

datasets observe that MetaPhaPred, CHEER, DeepVirFinder, Virtifier, and DETIRE 

achieve no more than 52.42% accuracy in identifying human DNA sequences. 

Noise is an important property of metagenomic data, which manifests as insertion, 

deletion and substitution of bases on DNA sequences. [14] The availability of more 

affordable sequencing technologies has been accompanied by noisier reads. Oxford Na-

nopore’s MinION[15] comes with error rates close to 10%, orders of magnitude higher 

than typical noise levels for Illumina, a more expensive technology. Sequence 
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alignment based methods suffer from increasing ambiguity as noise increases These 

noises can affect downstream applications[16]. We demonstrate experimentally that 

noise affects the performance of deep learning models. 

To address the above two issues, we propose a phage recognition model, Meta-

Cleaner. MetaCleaner contains three modules: feature extraction module, denoising 

module, and linear classification module. The feature extraction mod- ule uses multiple 

parallel convolutional filters to extract the feature maps of k-mers with different 

lengths. The average pooling layer is used to extract k-mer counts of DNA sequences. 

The denoising module is implemented by a trans- former encoding block, which is used 

to capture the dependencies between k- mers of different lengths and predict abnormal 

k-mer counts. The k-mer count minus the k-mer count of the abnormal k-mer achieves 

the purpose of denoising. The linear classification module is a fully connected layer 

with two hidden layer units, which is used to produce the probability that the DNA 

sequence belongs to phage and non-phage. 

2 Materials and methods 

2.1 Problem Definition 

Let 𝑠𝑖 = (𝑎1, 𝑎2, … 𝑎𝑚) denote the 𝑖 th DNA sequence in the Metagenomic dataset, 

where 𝑎𝑗 ∈ { 𝐴, 𝑇, 𝐶, 𝐺}  , 0 ≤  𝑗 ≤  𝑚, 𝑚 is the length of the sequence. Let 𝑦𝑖  be the 

label of 𝑠𝑖, where 𝑦𝑖 = 0 denotes that 𝑠𝑖 is a non-phage DNA sequence and 𝑦𝑖 = 0 de-

notes that the 𝑠𝑖 is a phage DNA sequence. MetaCleaner consists of three modules, 

feature extraction module 𝑓𝜃(𝑧|𝑠), classification module 𝐶𝜎 (𝑦|𝑧) and denoising mod-

ule 𝑁∅(𝑑|𝑧), where 𝜃 , 𝜎 and ∅ represent the trainable parameters of feature extraction 

module, classification module and denoising module,respectively.The structural dia-

gram of MetaCleaner is shown in Fig. 1. 

 

2.2 Model structure 

 
Fig. 1.  Model structure. MetaCleaner is divided into three modules: feature extraction mod-

ule, denoising module, and linear classification module. MetaCleaner first converts the DNA 

sequence into an embedding matrix with dna2Vec, and then the feature extraction module 

extracts the k-mer count features of the DNA sequence using a convolutional filter and an 

average pooling layer. The k-mer count features are input to the denoising module, which 

denoises the k-mer counts, and then the denoised k-mer counts are input to the linear clas-

sification module to obtain the probability that the DNA sequence belongs to phage and 

non-phage. 



Sequence Embedding. Most of the deep learning-based methods mainly used the one-

hot encoding technique to represent DNA sequences. The distance be- tween any two 

one-hot vectors is equal and the correlation information between nucleotides is ignored, 

which may affect the prediction accuracy[11]. There- fore, we use the word embedding 

technique commonly utilized in natural language processing to learn the distributed 

representations of k-mers by applying dna2Vec[18]. 

K-mer is a biologically meaningful feature of DNA sequences. A k-mer is a length 

𝑘 subsequence of genomic sequences; for any sequence of length 𝐿, there exist a max-

imum of 𝐿 − 𝐾 + 1 possible k-mers. 𝑠𝑖 can be represented as an ordered set of k-mers.  

  1 2 3

kmer

i ns w ,w ,w ,...,w=   (1) 

 

 1n m k= − +  (2) 

 

 ( )[ 1 : ( )]t iw s k t q kt q= − + +  (3) 

 

where 𝑡 = 1,2,3, . . . , 𝑛 . 𝑠𝑖[( 𝑘(𝑡 − 1) + 𝑞 ) ∶  (𝑘𝑡 + 𝑞) ]  denotes the element in 𝑠𝑖 

whose index position is from 𝑘(𝑡 − 1) + 𝑞 to 𝑘𝑡 + 𝑞. We set 𝑘 = 3,  𝑠𝑖 is preprocessed 

into a string of codons with a stride of some bases [9], and then learn the word embed-

ding vector of the 3-mer using dna2Vec. Dna2Vec first encodes the 3-mer into a "One-

hot" vector using the "One-hot" encoding technique. "One-hot" is one of the most 

widely used encodings in the field of natural language processing, "One-hot" represents 

the vocabulary word 𝑤𝑡  using a vector 𝑣𝑤𝑡
 of size 𝑛𝑣, where 𝑛𝑣 is the size of the vo-

cabulary: 

 1 2, ,...,
t v

T
t t t

w nv z z z =    (4) 

 

For each value t

lz  in 
twv , 0 vl n  , 64vn = . t

lz  is encoded as 1 when l  is equal to 

the index of the word in the vocabulary, and as 0 otherwise, i.e 

 
( )

( )

0, !

1,

tt

l

t

if  index w l
z

if  index w l

=
= 

=

 (5) 

( )tindex w  is the index of the word in the vocabulary. Next, dna2Vec uses a two-layer 

fully connected neural network to learn the word embedding vector 
'

twv  from 
twv . In 

this step, dna2Vec follows the principle of the Skip-gram algorithm, which maximizes 

the prediction of the words in the context window based on the previous words. More 

specifically, let W  and 'W  be the weights of the first and second layers in the two-

layer fully connected neural network, s  be the size of the context window, and 
t hwv
+

 is 

the "One-hot" encoding vector in the context window of 
tw , where s h s−   . Then 

the training process of dna2Vec is driven by the following loss function: 

 ( )
2

1 , 1

1
log

2 t h t

m
T T

w w

h s h s h

Loss v v W W
m


+

−

= −   

 =  
 −

   (6) 

Where   represents the activation function softmax. 
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After dna2Vec is trained, the second layer of the fully connected neural network is 

discarded and the first layer of the fully connected neural network is retained, then the 

conversion to the word embedding vector is calculated as follows: 

 

 '

t t

T

w wv v W=   (7) 

is will be encoded as emb

is : 

 ( )
1 2 2

' ' ', ,...,
m

emb

i w w ws v v v
−

=   (8) 

Feature extraction module. K-mers can be seen as subsequences extracted sequen-

tially from the first base on the genomic sequence by a sliding window of length a step 

of 1, in a process similar to how the filters of convolutional neural networks work. 

When k  is sufficiently large, the majority of k-mers are unique to the species carrying 

them. These species-specific k-mers may serve as signatures, directly implicating the 

appropriate taxonomic classification [17].So the feature extraction module uses convo-

lution filter to extract the features of k-mer on DNA sequence. Assume that the size of 

the convolution filter is u  ,the convolution filter is computed as follows: 

 ( )
: 1

'u u u

t t u

C C C

q wx f W v b
+ −

=  +  (9) 

 

  
: 1 1 2 3 1

' ' ' ', , ,...,
t t u t uw w w w wv v v v v
+ − + −

=   (10) 

 

 1 2 3 1, , ,...,u u u u uC C C C C

m ux x x x x − −
 =     (11) 

 

where 
'

twv  is the encoding vector corresponding to the t th 3-mer in emb

is  and m  is the 

length of 
is . uC

W  and uC
b are the trainable weights and bias values of the convolu-

tional filter.   denotes the convolution operation. f  denotes the activation function 

Relu, and uC

qx  denotes the value of the q th feature pattern, where 1 1q m u  − − .  

The feature extraction module sets convolution filters of size 1, 2 and 13, respec-

tively. The convolution filter size is set according to the biological characteristics of the 

genome.  [27] shows that k-mers with length between 15 and 20 are significantly more 

compact in the sequence space of the human genome than the genomes of other species, 

and it is proposed that 15-mers can be used as probes to detect non-human gene se-

quences in samples. So the feature extraction module sets a convolutional filter of size 

13 to extract the 15-mer feature map. DeepVirFinder [7] and ViraMiner [22] demon-

strated that codon usage preferences of DNA sequences can help distinguish viral se-

quences from non-viral sequences. So the feature extraction module sets convolution 

filters of size 1 to capture the codon usage preference of DNA sequences. [20] indicates 

that tetranucleotide frequencies provide information about the structure of the microbial 

genome and can help identify the genomic regions of phages, so we set a convolution 

filter of size 2.  

 



Let convolutional filters of size 1, 2 and 13 produce feature maps 1C
x , 2C

x  and 

13C
x ,respectively. MeatCleaner uses the average pooling method to downsample these 

feature maps. [22] demonstrated that the average pooling method provides important 

information about k-mer counts, and methods based on k-mer counts are effective in 

separating viral samples from non-viral samples, The average pooling method can pro-

duce a distinguishing feature map when there are multiple specific k-mers in the DNA 

sequence. The average pooling method is calculated as follows: 

 
1

1

1

1
u u

m u
avg C

q

q

x x
m u

− −

=

=
− −

  (12) 

1C
x , 2C

x  and 13C
x  after average pooling layer of feature mapping for 1avg

x , 2avg
x  and 

13avg
x , The output of the final feature extraction module is the concatenation of three 

average pooling feature maps: 

 

 ( )131 2, ,
avgavg avgavgx Concat x x x=  (13) 

avgx  will be input to the denoising module. 

Denoising module.  The genome sequencing process is imperfect and can result in 

reads containing various types of noise, including base substitutions, insertions, and 

deletions (INDELs). Base substitutions, insertions, and deletions can lead to abnormal 

k-mer counts in DNA sequences, which can affect the performance of the model. To 

solve this problem MetaCleaner sets the denoising module. 

In the high-throughput sequencing setting the channel input is a single, noise-free 

sequence and the output are numerous overlapping, short, noisy sequences [28]. Let the 

noise-free sequence corresponding to 
is  be 

ig . The purpose of the denoising module 

is to train a residual map ( )|N d z v   and then we have 

 ( ) ( )| |i if z g f z s v = −  (14) 

where v  is the difference between the k-mer count of 
is  and the k-mer count of 

ig . In 

brief we use the denoising module to learn the difference between the k-mer counts of 

noiseless and noisy DNA sequences. This idea is borrowed from [23]. 

The feature extraction module extracts the k-mer counts of 3-mer, 4-mer and 15-mer. 

The 4-mer can be represented as an ordered set of 3-mer, the 15-mer can be represented 

as an ordered set of 3-mer or 4-mer. So there is a dependency between the k-mer counts 

for 3-mer, 4-mer and 15-mer in the same DNA sequence. Changes in the 3-mer count 

will be reflected in the 4-mer count and 15-mer count.The same goes for 4-mer and 15-

mer. 

Therefore, we adopt the structure of transformer encoding block [31] to implement 

the denoising module. The self-attention mechanism in transformer encoding block is 

often used to extract the dependencies between different features, examples include 

[24], [25] and [26]. The output of the feature extraction module 
avgx  is used as the input 

of the denoising module, and the calculation process of 
avgx  through the self-attention 

mechanism is as follows: 

 , ,avg Q avg K avg VQ x W K x W V x W= = =  (15) 
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T

model

QK
X SDA Q K V

d

 

= =  
 
 

 (16) 

 represents the activation function softmax. SDA  denotes the Scaled Dot-Product At-

tention, and 
QW , 

KW  and 
VW  are the trainable parameters of the attention mecha-

nism, respectively. The scale factor 
1

modeld
 is similar to the standard dot product note. 

When the value of 
modeld  is large, the dot product produces large results, which may 

lead to extreme values after the softmax  function is applied. These values in turn may 

cause the gradient to vanish. To solve this problem, the value of the dot product is 

scaled by
modeld . 

ihead  denotes the i th attention head. X  represents the output of 

SDA . The residual join and layer normalization ( LN ) are then applied to X : 

 ( )avg

LNX LN X x= +  (17) 

LNX  is then fed to the feedforward network containing the full perceptron, which con-

sists of two linear transformations with a ReLU activation function in between. Finally 

we obtain 
id , the difference between the k-mer count of 

is  and the k-mer count of 
ig : 

 ( )1 1 2 2i LNd f X W b W b= + +  (18) 

f denotes the activation function Relu. 
1W , 

2W , 
1b  and 

2b  are the trainable parame-

ters of the feedforward network. Then we obtain the k-mer counts of the noise-free 

sequence as follows: 

 clean avg

ix x d= −  (19) 

Linear classification module. 
cleanx  is input to the fully connected layer containing 

two hidden layer units, and then the softmax  activation function generates the proba-

bility that 
is  belongs to the phage DNA sequence and the non-phage DNA sequence 

 ( )3 3

clean

ip x W b= +  (20) 

3W and 
3b are the trainable parameters of the Linear classification module. 



3 Learning 

 

Fig. 2. Training flow. The reference sequence ig
 and the noise subsequence is

 of ig
 are input 

into the model together, and the k-mer count feature is extracted by the feature extraction module. 

The k-mer count feature of ig
 is input into the linear classification module to obtain the proba-

bility distribution and calculate the cross-entropy error, and then backpropagate to update the 

parameters of the linear classification module and the feature extraction module. The feature 

count of is
 is input to the denoising module, and then the denoising module predicts the differ-

ence between the k-mer count of ig
 and the feature count of is

, and then calculates the mean 

square error of the predicted value and the actual difference, and then backpropagates to update 

the parameters of the denoising module. 

The training flow of MetaCleaner is shown in Fig. 2, where MetaCleaner takes ref-

erence sequence and noise sequence as input during training. The noise sequence is 

generated from the reference sequence by randomizing subsequences and replacing 

r % of the bases within these subsequences to effectively simulate substitution noise. 

Given a training dataset consisting of reference sequence, noise sequence, and classifi-

cation label, denoted as ( ) ( ) ( ) 1 1 1 2 2 2, , , , , ,..., , ,n n ng s y g s y g s y . n  denotes the total 

number of samples contained in the training set. The reference sequence and noise se-

quence are processed through the feature extraction module to obtain the global pooling 

feature vectors g

iz  and s

iz . 

 ( ) ( )| , |g s

i i i iz f z g z f z s = =  (21) 

Then g

iz  and s

iz  are fed into the linear classification module and denoising module 

to obtain the prediction score 
ip  and vector

id , respectively. 

 ( ) ( )| , |g s

i i i ip C y z d N d z = =  (22) 

The learning process is driven by optimizing two objectives: 

 ( )
2

0

1 n
s g

noise i i i

i

L d z z
n =

= − −  (23) 

 ( )
0

1
log

n

c i i

i

L y p
n =

=   (24) 
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where 
noiseL  is the objective for training of the denoising module, and 

cL  is the objec-

tive for training of the Feature extraction module and Linear classification module. The 

two functions are combined as the overall objective in learning: 

 
noise cL L L= +  (25) 

The parameter Settings of MetaCleaner are shown in Table 1. MetaCleaner is imple-

mented in Python 3.1.1 based on tensoflow 2.1.0 with Nvidia RTX 4090 GPU. 

Table 1. Parameters for MetaCleaner 

Parameter Value 

k-mer length  3 

k-mer embedding size 100 

Convolution kernel size 1,2,13 

Convolutional filter number 256,256,256 

Neurons of the attention layer 256 

Neurons of the feedforward layer 512,256 

Batch size 1024 

learning rate 0.001 

r 30% 

4 Results 

4.1 Datasets 

We collected all phage reference genomes released by the National Center for Biotech-

nology Information (NCBI) prior to October 31, 2022. To assess the effectiveness of 

our methods in identifying novel phages, we used genomes published before January 

1, 2018, as the training set, while the remaining genomes served as the test set. Addi-

tionally, we collected the reference genome of  H.sapiens(version: GRCh38.p14). 

To train our model on each complete genome, we allowed the model to learn features 

from the complete genome by uniformly extracting non-overlapping substrings of 

400bp in length. We also extracted an equal number of such substrings from the com-

plete genome of H.sapiens to form the training set. The training set contains 382,755 

phage sequences and 382,755 H.sapiens sequences. The validation set was generated 

using the read simulation tool WgSim[29], with specified error rates to provide a more 

accurate estimation of the model's performance on real sequencing data. 

We utilized WgSim to generate 10 simulated sequencing datasets with increasing 

error rates ranging from 1% to 10%, incremented by 1%. Each dataset comprises 10,000 

phage reads and 10,000 H.sapiens reads, with lengths varying from 100bp to 

400bp.These reads were derived from phage reference genomes released after January 

2018 and reference genomes of H.sapiens that were not used in the training dataset, 

respectively. 

To evaluate the extended capabilities of MetaCleaner, we obtained a real human gut 

metagenomic dataset from the  National Center For Respiratory Medicine (The First 



Affiliated Hospital of Guangzhou Medical University), which included 1,976,820 reads 

from phage, Corynebacterium striatum strain, Stenotrophomonas maltophilia strain, 

Pseudomonas aeruginosa, Enterococcus faecalis, Candida albicans, H.sapiens and in-

fluenza A. Among them, 93,924 reads are from phage. The length of reads ranged from 

100bp to 400bp.The number of reads for each species is shown in Table 2. 

 

Table 2. A real human gut metagenomic dataset 

Class nums 

phage 93924 

Corynebacterium striatum strain 471706 

Stenotrophomonas maltophilia strain 8318 

Pseudomonas aeruginosa 4887 

Enterococcus faecalis 1973 

Human herpesvirus 5 strain Merlin 2607 

Influenza A virus 5 

Candida albicans 97 

H.sapiens 1393303 

4.2 Experiment Setting 

We choose Recall, F1-score, Balance-accuracy and Accuracy as our evaluation metrics 

in our experiments. Recall, F1-score, Balance-accuracy and Accuracy are as follows: 

 
TP

Recall
TP FN

=
+

 (26) 

 
TP

Precision=
TP FP+

 (27) 

 
2 Recall Precision

F1score=
Recall+Precision

 
 (28) 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
 (29) 

 
1

2

TP TN
Balance accuracy=

TP FN TN FP

 
 + 

+ + 
 (30) 

Here, TP  are positive samples correctly labeled as positives; FP  are negative sam-

ples incorrectly labeled as positives; TN  are negative samples correctly labeled as neg-

atives; and FN  are positive samples incorrectly labeled as negatives.Because real met-

agenomic datasets are class imbalanced datasets, the performance of MetaCleaner and 

all baseline methods on real metagenomic datasets is evaluated using Balanced accu-

racy, which has been used in Self-GenomeNet[30]. 

4.3 Main Results 

Performance on simulated datasets with increasing error rates. The genome se-

quencing process is imperfect and can result in reads containing various types of noise, 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

including base substitutions, insertions, and deletions (INDELs). For example, the most 

expensive Illumina sequencing technology produces "short" reads of hundreds of bases 

with an average substitution error rate of less than 1%, while the advent of cheaper 

sequencing technologies comes with noisier reads, For example, the Oxford Nanopore 

MinION [15] has error rate close to 10%. To eliminate the effect of noise, MetaCleaner 

sets the denoising module. To verify the effectiveness of the denoising module, we 

generated 10 simulated datasets with increasing error rates from 1% to 10% with a 

growth step of 1% using the sequencing simulation tool WigSim. Each dataset contains 

10000 phage sequences and 10000 human sequences. The performance of the baseline 

models, including MetaPhaPred, CHEER, DeepVirFinder, Virtifier and DETIRE, are 

compared with MetaCleaner on these 10 datasets, respectively. 

 
Fig. 3. Accuracy of model on the simulated datasets.The abscissa represents the error rate of the 

simulated datasets, and the ordinate represents the accuracy of the model on the simulated da-

tasets. 

 
Fig. 4. F1-score of model on the simulated datasets.The abscissa represents the error rate of the 

simulated datasets, and the ordinate represents the F1-score of the model on the simulated da-

tasets. 

Fig. 3 and Fig. 4 show the accuracy and F1-score of MetaCleaner and other models 

on the simulated dataset, respectively. We can see that as the error rate increases, the 



accuracy of the other models continues to decrease. When the error rate increases to 

10%, the accuracy of CHEER, Virtifier, MetaPhaPred, DeepVirFinder and DETIRE 

decreases by 4.84%, 1.51%, 6.34%, 3.06% and 1.22%, respectively. The F1-scores of 

CHEER, Virtifier, MetaPhaPred, DeepVirFinder and DETIRE decreased by 6.47%, 

1.09%, 6.45%, 2.46% and 1.56%, respectively. This proves that sequencing noise af-

fects the performance of deep learning models. However, the accuracy of MetaCleaner 

does not show a continuous decline. When the error rate increases to 4%, the accuracy 

of MetaCleaner increases by 0.58%. When the error rate goes up to 6%, MetaCleaner's 

accuracy drops by 0.43%. When the error rate increases to 10%, MetaCleaner's accu-

racy increases by 0.78%. It can be seen that the accuracy of MetaCleaner only shows a 

smaller fluctuation when the error rate of the dataset rises.The same situation occurs 

for the F1-score of MetaCleaner. 

 
Fig. 5. Recall of model on the phage DNA sequences.The abscissa represents the error rate of 

the simulated datasets, and the ordinate represents the recall of the model for phage DNA se-

quences. 
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Fig. 6. Recall of model on the human DNA sequences.The abscissa represents the error rate of 

the simulated datasets, and the ordinate represents the recall of the model for human DNA se-

quences 

Fig. 5 and Fig. 6 show the Recall of MetaCleaner and other models on the phage DNA 

sequences and Recall of MetaCleaner and other models on the human DNA sequences, 

respectively. We can see that as the error rate increases, the recall of the other models 

for each class continues to decrease. When the error rate grows to 10%, The recall of 

CHEER, Virtifier, MetaPhaPred, DeepVirFinder and DETIRE for human DNA se-

quences decreased by 1.2%, 1.9%, 3.28%, 2.94% and 0.32%, respectively. The recall 

of phage DNA sequences for CHEER, Virtifier, MetaPhaPred, DeepVirFinder and 

DETIRE decreased by 8.46%, 1.9%, 9.39%, 3.16%and 2.12%, respectively. However, 

when the error rate increases to 10%, the recall of MetaCleaner pairs and human DNA 

sequences keeps increasing by 3.14%. The recall of MetaCleaner on bacteriophage 

DNA sequences decreases by 1.2%. The decrease of MeatCleaner is smaller than that 

of CHEER,Virtifier, MetaPhaPred, DeepVirFinder and DETIRE. 

The above results prove that MetaCleaner is more robust than CHEER, Virtifier, 

MetaPhaPred, DeepVirFinder and DETIRE. Fig. 3, Fig. 4,Fig. 5 and Fig. 6 also show 

that MetaCleaner performs better than other models in all metrics, which also proves 

that MetaCleaner has the ability to distinguish between phage DNA sequences and hu-

man DNA sequences. 

Performance on real metagenomic dataset. We compare the performance of the base-

line models and MetaCleaner on a real metagenomic dataset, and the experimental re-

sults are shown in Fig. 7, which shows that MetaCleaner achieves higher class-balanced 

accuracy than all baseline methods on the real metagenomic dataset. The balance accu-

racy of MetaCleaner is 13.64%, 11%, 14.51%, 14.97% and 21.48% higher than Meta-

PhaPred, CHEER, DeepVirFinder,  Virtifier and DETIRE,respectively. 



 
Fig. 7. Experiment results on a real metagenomic dataset. Recalln represents the recall of model 

on non-phage DNA sequences, Recallp represents the recall of model on phage DNA sequences, 

and the ordinate represents the value of each metric. 

The recall of MetaCleaner to phage DNA sequences was 8.62%,10.86%,1.82% and 

2.32% higher than MetaPhaPred, CHEER, DeepVirFinder, Virtifier, respectively.Alt-

hough DETIRE has the highest recall for phage sequences among all models, its recall 

for non-phage sequences is only 0.0531%, and its balance accuracy is also the lowest. 

The recall of MetaCleaner for non-phage DNA sequences was 

18.66%,11.14%,27.19%,27.61% and 58.25%higher than MetaPhaPred, CHEER, 

DeepVirFinder,  Virtifier and DETIRE, respectively. 

The above experimental results show that MetaCleaner performs better than Meta-

PhaPred, CHEER, DeepVirFinder, Virtifier and DETIRE on real metagenomic da-

tasets. 

 
Fig. 8. Ablation experiment results on simulated datasets.The abscissa represents the error rate 

of the simulated datasets, and the ordinate represents the accuracy of the model on simulated 

datasets. 
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Fig. 9. Ablation experiment results on simulated datasets. The abscissa represents the error rate 

of the simulated datasets, and the ordinate represents the F1-score of the model on simulated 

datasets. 

 
Fig. 10. Ablation experiment results on a real metagenomic dataset. Recalln represents the re-

call of model on non-phage DNA sequences, Recallp represents the recall of model on phage 

DNA sequences, and the ordinate represents the value of each metric. 

 

Ablation experiment results on a real metagenomic dataset. To prove the necessity 

of the denoising module, we removed the denoising module of MetaCleaner and tested 

its performance on simulated and real metagenomic datasets, and the experimental re-

sults are shown in Fig. 8,Fig. 9 and Fig. 10, respectively. 

It can be seen that the accuracy of MetaCleaner without denoising module continues 

to decrease as the error rate increases. When the error rate grows to 10%. MetaCleaner 



without denoising module has 6.81% lower accuracy and 6% lower F1-score. However, 

MetaCleaner only shows a small range of fluctuations in accuracy and F1-score when 

using the denoising module. This proves that the denoising module provides robustness 

to the model. 

Although the performance of MetaCleaner without denoising module exceeds that 

of MetaCleaner with denoising module on simulated datasets, its performance on real 

metagenomic datasets is much worse than that of MetaCleaner with denoising module. 

MetaCleaner with denoising module achieves 20.25% higher balanced accuracy on real 

metagenomic dataset than MetaCleaner without denoising module. This proves that the 

denoising module contributes to the performance of the model. 
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