

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

BPMFARD: A Bayesian Probabilistic Matrix

Factorization Algorithm with Automatic Rank

Determination in Recommender Systems

Hao Wang1[0009-0008-7185-9118], Junfeng Yan1[0009-0009-6294-2021], Jingyuan

Xiao3, Guangzhi Qu2[0000-0003-4047-9514], and Feng Zhang1()[0000-0002-0506-9440]

1 China University of Geosciences, 388 Lumo Road, Wuhan, Hubei 430074, China
2 Oakland University, 201 Meadow Brook Rd, Rochester, MI 48309-4401, USA
3 University of Wisconsin–Madison, 500 Lincoln Dr, Madison, WI 53706, USA

Abstract. Matrix factorization is a prevalent and effective technique for building

recommender systems. However, traditional matrix factorization methods de-

mand manual setting and tuning of hyperparameters, like regularization coeffi-

cients, learning rates, and the dimension of the feature matrix (rank). To automate

this, we introduce BPMFARD, a Bayesian probabilistic matrix factorization al-

gorithm with automatic rank determination. By setting a prior distribution for

factor matrices and devising an effective parameter elimination strategy,

BPMFARD enables automatic parameter adjustment during training to signifi-

cantly alleviate overfitting, enhancing recommendation accuracy. Experiments

with benchmark datasets show that BPMFARD outperforms the benchmark

methods. Since matrix factorization can be seen as a simple neural network, the

rank determination strategy in matrix factorization may provide a valuable and

interesting research perspective for the embedding size learning in neural collab-

orative filtering.

Keywords: Recommender Systems, Matrix Factorization, Automatic Rank De-

termination, Bayesian Inference, Optimization.

1 Introduction

Recommender systems are essential in today's internet, aiding users in navigating over-

whelming choices across music, books, videos, products, and more. They power major

platforms like Amazon, Netflix, Facebook, Pandora, and YouTube, assisting users

make informed decisions.

A multitude of design methodologies exist for recommender systems, encompassing

content-based filtering [1], collaborative filtering (CF) [2,3]and hybrid methods[4].

Among these, CF is widely recognized for its effectiveness, predicting user preferences

by leveraging the ratings and behaviors of others.

CF generates personalized recommendations by leveraging similarities between us-

ers or items and encompasses several variants, including user-based CF [5], item-based

CF [6] and matrix factorization approaches [7,8].

Matrix factorization reduces data dimensionality by embedding users and items into

lower-dimensional vector spaces. This technique augments CF by uncovering the latent

features of users and items, thereby transcending mere reliance on their direct interac-

tions.

Various matrix factorization techniques have been developed. Early methods include

gradient descent-based algorithms, notably Funk SVD [9] and BiasSVD [10]. Subse-

quent advancements introduced probabilistic frameworks, including Probabilistic Ma-

trix Factorization (PMF) [11] and Bayesian Probabilistic Matrix Factorization (BPMF)

[12]. Additionally, Nonnegative Matrix Factorization (NMF) [13] provides an alterna-

tive by constraining factorized components to nonnegative values.

A key challenge in these methodologies lies in the necessity to pre-determine hy-

perparameters, such as learning rates, regularization coefficients, and crucially, the di-

mensionality of the feature matrix (rank). The selection of rank has a substantial influ-

ence on model performance. Hyperparameter tuning, typically conducted via cross-val-

idation, is both time-consuming and resource-demanding [14].

To address these challenges, we introduce BPMFARD: a Bayesian Probabilistic Ma-

trix Factorization algorithm integrated with Automatic Rank Determination for recom-

mender systems. Its main contributions are summarized as follows:

(1) Unlike existing CF recommender systems that utilize a fixed, pre-set rank for

matrix factorization, BPMFARD automatically determines the optimal rank during

training. By deactivating non-informative dimensions, it adeptly addresses the chal-

lenges posed by the high sparsity and dynamic nature of user-item interactions, sub-

stantially enhancing recommendation accuracy at scale.

(2) Unlike traditional matrix factorization methods that lack the ability to dynami-

cally adjust parameters and are prone to overfitting in large-scale recommender sys-

tems, BPMFARD employs a parameter elimination strategy to discard near-zero col-

umns while also avoiding the need for additional tuning of hyperparameters such as

learning rate or regularization factor, thereby more effectively mitigating overfitting.

2 Related work

Matrix factorization gained popularity in recommender systems after the Netflix Prize

in 2006, proven effective for large, sparse datasets [15,16]. Key algorithms, including

NMF [13], Funk SVD [9], BiasSVD [10], minimized loss functions involving squared

error and regularization terms. However, tuning hyperparameters like regularization

coefficients and learning rates often necessitates manual trial and error, which is time-

consuming.

To address these challenges, Salakhutdinov et al. [12] introduced a fully Bayesian

model based on probabilistic matrix factorization (PMF). The model automatically

manages its capacity by integrating all parameters and hyperparameters, trained using

Markov Chain Monte Carlo (MCMC) for enhanced predictive accuracy. However, it

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

still needs predefined factor matrix dimensions despite eliminating the need for regu-

larization parameters and learning rates.

Anelli et al. [14] studied how factor matrix dimension, learning rate, and iterations

affect experimental results. They discovered that the factor matrix rank has the greatest

impact, especially in the MovieLens dataset. This finding highlights the significance of

rank determination during hyperparameter tuning.

Chan et al. [17] adapted hyperparameters to evolving business dynamics, improving

large-scale recommender system accuracy. Beutel et al. [18] introduced an impact func-

tion that optimizes predictions based on hyperparameters. However, both still required

multiple attempts at parameter tuning.

Tipping et al. [19] proposed Bayesian Principal Component Analysis (Bayesian

PCA), which employs a probabilistic generative latent variable model to automatically

determine the number of principal components, thus addressing the limitation of tradi-

tional PCA requiring manual dimensionality specification. The concepts and frame-

work introduced in their work have laid a significant foundation for subsequent research

on automatic rank determination in the field of matrix factorization.

Tan et al. [20] proposed a Bayesian β-NMF method based on automatic relevance

determination (ARD), introducing shared scale parameters in the prior to automatically

determine the latent dimensionality of NMF. They developed efficient MM algorithms

for parameter inference, achieving good results on multiple datasets. However, due to

the non-negativity constraint on factor matrices, this approach cannot address rank de-

termination in models that allow negative values, such as Funk SVD and BiasSVD.

Zhao et al. [21] used a hierarchical probabilistic model for CP decomposition with

sparse priors on latent factors and hyperpriors on hyperparameters for automatic rank

determination. Their Bayesian inference algorithm scales linearly with data size, ena-

bling parameter-free inference of low-rank latent factors and predictive distributions

for missing data. However, this method is tailored for image processing with multi-

dimensional tensors, not directly applicable to recommender systems using matrix fac-

torization for two-dimensional user-item interaction matrices.

In this study, we integrated techniques from prior research to achieve, for the first

time, efficient recommendations in matrix factorization-based systems without the need

for selecting model training parameters or hyperparameters.

3 Preliminaries

3.1 Notions

Following the notation conventions from [22], we denote matrices with bold uppercase

letters (e.g., 𝐗), vectors with bold lowercase letters (e.g., 𝐱), and scalars with lowercase

letters (e.g., 𝑥). The inverse and transpose of a matrix are represented as 𝐗−1 and 𝐗𝑇 ,

respectively. The rating matrix in the recommender system is denoted as 𝐗 ∈ ℝ𝐼1×𝐼2 ,

where 𝐼1 and 𝐼2 represent the numbers of users and items, respectively. Since the rating

matrix is incomplete, we define 𝛺 as the set of observed ratings and 𝛺̅ as the set of

missing ratings, each containing the corresponding indices. Here, 𝑀 denotes the

number of observed ratings. Additionally, we introduce the indicator matrix 𝐎, where

𝐎𝑖𝑗 = 1 if user 𝑖 has rated item 𝑗, and 𝐎𝑖𝑗 = 0 otherwise.

Matrix factorization in recommender systems decomposes the rating matrix 𝐀 into

low-dimensional user and item feature matrices. Specifically, we represent the user fea-

ture matrix as 𝐔 ∈ ℝ𝐼1×𝑅 and the item feature matrix as 𝐕 ∈ ℝ𝐼2×𝑅. The feature vectors

of user 𝑖 and item 𝑗 are denoted as 𝐔𝑖 ∈ ℝ𝑅×1 and 𝐕𝑗 ∈ ℝ𝑅×1 , respectively. Here, 𝑅

represents the rank of the original matrix 𝐀 and determines the dimensionality of the

feature space. The predicted rating of user 𝑖 for item 𝑗 is given by 𝐗𝑖𝑗 = 〈𝐔𝑖 , 𝐕𝑗〉, where

〈·,·〉 denotes the inner product, defined as 〈𝐮, 𝐯〉 = ∑ 𝑢𝑘𝑣𝑘𝑘 .

Fig. 1. Graphical model of PMF.

3.2 Probilistic Matrix Factorization

Probability Matrix Factorization (PMF) [11] integrates probabilistic graphical models

with matrix factorization to predict user-item ratings. It models the relationships be-

tween users and items as probability distributions and leverages these distributions' pa-

rameters for rating predictions. The distributions can be Gaussian, Poisson, or any other

appropriate type, with their parameters typically learned via maximum likelihood esti-

mation or Bayesian inference.

In PMF, as depicted in Fig. 1, user ratings for items, denoted as 𝐗, are presumed to

adhere to a Gaussian distribution. Similarly, the user feature matrix 𝐔 and the item fea-

ture matrix 𝐕 are also assumed to follow Gaussian distributions. Consequently, their

conditional probability distributions can be readily expressed as:

𝑝(𝐗|𝐔, 𝐕, 𝜎𝐗) = ∏ ∏[𝒩(𝐗𝑖𝑗|𝐔𝑖
𝑇𝐕𝑗, 𝜎𝐗

−1)]
𝐎𝑖𝑗

𝐼2

𝑗=1

𝐼1

𝑖=1

𝑝(𝐔|𝜎𝐔) = ∏ 𝒩(𝐔𝑖|0, 𝜎𝐔
−1𝐈)

𝐼1

𝑖=1

𝑝(𝐕|𝜎𝐕) = ∏ 𝒩(𝐕𝑗|0, 𝜎𝐕
−1𝐈)

𝐼2

𝑗=1

,

(1)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Here, 𝒩(𝑥|𝜇, 𝜎−1) represents a Gaussian distribution, where 𝜇 represents the mean

and 𝜎 represents the precision. 𝜎𝐗, 𝜎𝐔, and 𝜎𝐕 control the precision of the observed rat-

ings, user features, and item features, respectively. Using Bayesian inference, we can

then derive the posterior distributions of each parameter:

𝑝(U,V|X, 𝜎X, 𝜎U, 𝜎V) ∝ 𝑝(X|U,V, 𝜎X)𝑝(U|𝜎U)𝑝(V|𝜎V) (2)

4 Bayesian Probabilistic Matrix Factorization with

Automatic Rank Determination

BPMF models matrix factorization as a probabilistic process, using Bayesian inference

to estimate the distribution of the latent factor matrix. It treats the rating matrix as ob-

served, assuming each user-item rating is generated by a probability distribution over

hidden factors. Parameters are treated as random variables, and Variational Inference

is used to estimate the posterior distribution of the latent factor vectors. Next, Subsec-

tion 4.1 introduces the model, while Subsection 4.2 outlines the procedure for learning

the model parameters.

4.1 Probabilistic Model and Priors

Fig. 2. The graphical model of the method proposed in this paper.

The Bayesian probability matrix model proposed in this paper, as shown in Fig. 2,

assumes that the prior distributions of user and item feature matrices follow Gaussian

distributions. Here, the hyperparameter 𝝈 = [𝜎1, 𝜎2, . . . , 𝜎𝑅] represents the diagonal el-

ements of the covariance matrix in the multivariate Gaussian distribution of 𝐔𝑖 or 𝐕𝑖.

Each 𝜎𝑖 controls the corresponding column of the factor matrices 𝐔 and 𝐕. This design

ensures that by varying 𝜎, one can automatically determine the rank by effectively

deleting a column in all factor matrices. Next, we can easily derive the conditional

probability formulas for the user feature matrix 𝐔 and the item feature matrix 𝐕.

𝑝(𝐔|𝝈) = ∏ 𝒩(𝐔𝑖|0, 𝜦−1)

𝐼1

𝑖=1

𝑝(𝐕|𝝈) = ∏ 𝒩(𝐕𝑗|0, 𝜦−1)

𝐼2

𝑗=1

,

(3)

where 𝜦 represents the precision matrix, and 𝜦 = diag(𝝈).

We further set a Gamma prior for 𝜎 as:

𝑝(𝝈) = ∏ 𝐺𝑎(𝜎𝑟|𝑎0
𝑟 , 𝑏0

𝑟)

𝑅

𝑟=1

, (4)

where Ga(𝑥|𝑎, 𝑏) denotes the Gamma distribution, given by 𝐺𝑎(𝑥|𝑎, 𝑏) =
𝑏𝑎𝑥𝑎−1𝑒−𝑏𝑥

𝛤(𝑎)
,

with 𝛤(·) being the Gamma function.

Additionally, we set a Gamma prior to the noise parameter 𝜏 to fully implement the

Bayesian approach throughout the process. The prior for 𝜏 is defined as:

𝑝(𝜏) = Ga(𝜏|𝑐, 𝑑) =
𝑑𝑐𝜏𝑐−1𝑒−𝑑𝜏

𝛤(𝑐)
. (5)

Therefore, based on Fig. 2, the complete joint distribution is given by:

𝑝(𝐗𝛺 , 𝐔, 𝐕, 𝝈, 𝜏) = 𝑝(𝐗𝛺|𝐔, 𝐕, 𝜏)𝑝(𝐔|𝝈)𝑝(𝐕|𝝈)𝑝(𝝈)𝑝(𝜏). (6)

4.2 Model Learning via Bayesian Inference

Our next objective is to infer the posterior distributions of the variables 𝐔, 𝐕, 𝜎, and 𝜏

given the observed data. We denote the set of parameters as 𝜗 = {𝐔, 𝐕, 𝜎, 𝜏}. The pos-

terior distribution of parameter 𝜗 is given as follows:

𝑝(𝜗|𝐗𝛺) =
𝑝(𝜗, 𝐗𝛺)

∫ 𝑝(𝜗, 𝐗𝛺)𝑑𝜗
. (7)

Once the posterior distributions of the variables are determined, the missing values

𝐗𝑖𝑗 in 𝐗𝛺̅ can be estimated using the inner product of 𝐔𝑖 and 𝐕𝑗.

Due to the complexity of the posterior distributions, precisely evaluating this predic-

tive distribution is challenging, necessitating the use of approximate inference methods.

We employ variational methods [23] to infer model parameters.

Our objective is to find a distribution 𝑞(𝜗) that closely approximates the true poste-

rior distribution 𝑝(𝜗, 𝐗𝛺) by minimizing the Kullback-Leibler (KL) divergence, given

by:

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

min
𝜗

 𝐾𝐿(𝑞(𝜗)||𝑝(𝜗|𝐗Ω))= ∫ 𝑞(𝜗)𝑙𝑛
𝑞(𝜗)

𝑝(𝜗|𝐗𝛺)
𝑑𝜗

 = 𝑙𝑛 𝑝(𝐗𝛺) − ∫ 𝑞(𝜗)𝑙𝑛
𝑝(𝐗𝛺 , 𝜗)

𝑞(𝜗)
𝑑𝜗,

(8)

where 𝑝(𝐗𝛺) denotes the model evidence, while 𝑙𝑏 = ∫ 𝑞(𝜗)𝑙𝑛
𝑝(𝐗𝛺,𝜗)

𝑞(𝜗)
𝑑𝜗 represents

the lower bound. Since the model evidence is constant, minimizing Equation (8) is

equivalent to maximizing 𝑙𝑏.

To facilitate the computations, we introduce the mean-field variational family [23].

It assumes independence among latent variables, implying that within the distribution

𝑞(𝜗) we seek, the variables mutually independent. Despite its seemingly restrictive na-

ture, this assumption is broadly applicable. For scenarios where hidden variables ex-

hibit genuine correlations, we can enhance our model by clustering correlated variables

and representing each cluster as a product of joint distributions.

𝑞(𝜗) = 𝑞𝝈(𝝈)𝑞𝜏(𝜏)𝑞𝐔(𝐔)𝑞𝐕(𝐕). (9)

Upon establishing these foundational assumptions, we proceed with the Coordinate

Ascent Variational Inference (CAVI) technique. The update rules for the variables are

formulated as:

𝑞𝑗
∗(𝜗𝑗) ∝ 𝑒

𝔼𝜗−𝜗𝑗
[𝑙𝑛 𝑝(𝜗,𝐗Ω)]

, (10)

Here, 𝐸𝜗−𝜗𝑗
[·] calculates the expectation of the distribution with respect to all variables

except 𝜗𝑗.

update feature matrices. Leveraging Equation (10), we formulate the posterior distri-

bution of the factor matrix 𝐔 as:

𝑞𝐔(𝐔) = ∏ 𝒩(𝐔𝑖|𝐔̃𝑖, 𝜮𝑖
𝐔)

𝐼1

𝑖=1

. (11)

The variance and mean of its posterior distribution can be updated using the follow-

ing formulas:

𝛴̃𝑖
𝑈 = (𝔼𝑞(𝜏)𝔼𝑞[𝐕𝑠(𝐎𝑖=1)

𝑇 𝐕𝑠(𝐎𝑖=1)] + 𝔼𝑞[𝜦])
−1

,

𝐔̃𝑖 = Σ̃𝑖
𝐔𝔼𝑞[𝜏]𝔼𝑞[𝐕𝑠(𝐎𝑖=1)

𝑇]𝑣𝑒𝑐(𝐗𝑠(𝐎𝑖=1)).
(12)

Concurrently, the posterior distribution of the factor matrix 𝐕 is formulated as:

𝑞𝐕(𝐕) = ∏ 𝒩(𝐕𝑗|𝐕̃𝑗, 𝜮𝑗
𝐕)

𝐼2

𝑗=1

, (13)

and its parameters are updated as:

 𝛴̃𝑗
𝑉 = (𝔼𝑞(𝜏)𝔼𝑞 [𝐔𝑠(𝐎𝑗=1)

𝑇 𝐕𝑠(𝐎𝑗=1)] + 𝔼𝑞[𝜦])
−1

,

𝐕̃𝑖 = Σ̃𝑖
𝐔𝔼𝑞[𝜏]𝔼𝑞 [𝐔𝑠(𝐎𝑗=1)

𝑇] 𝑣𝑒𝑐 (𝐗𝑠(𝐎𝑗=1)) .
(14)

where 𝑠(𝐎𝑖∗ = 1) denotes the subset of column indices in 𝐎 for which the elements in

the 1. (·)𝑠(𝐎𝑖=1) denotes the matrix formed by the columns corresponding to this subset.

Similarly, (·)𝑠(𝐎𝑖=1) signifies the matrix composed of the rows where the 𝑗-th column's

elements are 1.

Calculating 𝔼𝑞[𝐔𝑠(𝐎𝑗=1)
𝑇 𝐔𝑠(𝐎𝑗=1)] presents a significant challenge. However, as

stated in Theorem 3.1 of [21], its expectation can be reformulated as follows.

𝔼𝑞 [𝐔𝑠(𝐎𝑗=1)
𝑇 𝐔𝑠(𝐎𝑗=1)] = ∑ 𝔼[𝐮𝑖𝐮𝑖

𝑇]

𝐮𝑖∈𝐔
𝑠(𝟎𝑗=1)

 = ∑ (𝔼[𝐮𝑖]𝔼[𝐮𝑖
𝑇] + 𝑉𝑎𝑟(𝐮𝑖))

𝐮𝑖∈𝐔
𝑠(𝟎𝑗=1)

.
(15)

In summary, the previously challenging computation of complex terms, such as

𝔼𝑞[𝐔𝑠(𝐎𝑗=1)
𝑇 𝐔𝑠(𝐎𝑗=1)] and 𝔼𝑞[𝐔𝑠(𝐎𝑖=1)

𝑇 𝐔𝑠(𝐎𝑖=1)], is now feasible. The posterior distri-

bution of the factor matrices can be efficiently updated using Equations (12) and (14).

update hyperparameters 𝝈. Similarly, through Equation (10), we can obtain the pos-

terior distribution for 𝜎 as follows:

𝑞𝜎(𝜎) = ∏ 𝐺𝑎(𝜎𝑟|𝑎̃𝑟 , 𝑏̃𝑟)

𝑅

𝑟=1

, (16)

where 𝑎̃𝑟 and 𝑏̃𝑟 represent the parameters for the posterior distribution of 𝜎𝑟, which are

updated as:

𝑎̃𝑟 = 𝑎0
𝑟 +

1

2
(𝐼1 + 𝐼2)

𝑏̃𝑟 = 𝑏0
𝑟 +

1

2
(𝔼𝑞[𝐮·𝑟

𝑇 𝐮·𝑟] + 𝔼𝑞[𝐯·𝑟
𝑇 𝐯·𝑟]).

(17)

Since the expected value of a Gamma distribution is given by 𝑎/𝑏, we have 𝔼(𝝈) =

[𝑎̃1/𝑏1, . . . , 𝑎̃𝑅/𝑏̃𝑅].

update hyperparameters 𝝉. The posterior distribution of the hyperparameter 𝜏 can

also be derived using Equation (10):

𝑞𝜏(𝜏) = 𝐺𝑎(𝜏|𝑐̃, 𝑑̃). (18)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

The parameters of the posterior distribution are updated using the following two

equations:

𝑐̃ = 𝑐0 +
1

2
∑ ∑ 𝐎𝑖,𝑗

𝐼2

𝑗

𝐼1

𝑖

𝑑̃ = 𝑑0 +
1

2
𝔼𝑞[∥∥𝐎 ⊛ (𝐗 − 𝐔𝐕𝑇)∥∥𝐹

2
].

(19)

update lower bound. The objective is to minimize the value in Equation (8), thereby

maximizing the lower bound. Model convergence signifies that the lower bound 𝑙𝑏 re-

mains relatively stable across successive iterations, computed using the formula below:

𝑙𝑏 = ∫ 𝑞(𝜗)𝑙𝑛
𝑝(X𝛺 , 𝜗)

𝑞(𝜗)
𝑑𝜗

= 𝔼𝑞(𝜗)[𝑙𝑛(𝑝(X𝛺 , 𝜗)) − 𝑙𝑛(𝑞(𝜗))]

=
1

2
(∑ 𝑙

𝑖

𝑛|𝛴̃𝑖
U| + ∑ 𝑙

𝑗

𝑛|𝛴̃𝑗
V|)

+𝑙𝑛 𝛤(𝑐̃) + 𝑐̃ (1 − 𝑙𝑛 𝑑̃ −
𝑑0

𝑑̃
)

+ ∑ 𝑙

𝑟

𝑛 𝛤(𝑎̃𝑟) + ∑ (𝑎̃𝑟)

𝑟

(1 −
𝑏0

𝑟

𝑏̃𝑟
− 𝑙𝑛 (𝑏̃𝑟))

−
𝑐̃

2𝑑̃
𝔼𝑞 [∥∥O ⊛ (X − UV𝑇)∥∥

𝐹

2
]

−
1

2
𝑇𝑟 (𝛬̃ (Ũ

𝑇
Ũ + Ṽ

𝑇
Ṽ + ∑ 𝛴̃𝑖

U

𝑖

+ ∑ 𝛴̃𝑗
V

𝑗

)) + 𝐶.

(20)

Up to this point, we have derived the update rules for all relevant parameters within

the model training process.

Algorithm 1 outlines the complete procedural flow of BPMFARD. By setting prior

distributions for both model parameters and hyperparameters, these priors functions as

regularization factors, eliminating the need for manual adjustment. BPMFARD em-

ploys variational Bayesian inference for model learning, which avoids the manual tun-

ing of learning rates required in traditional matrix factorization. Consequently, there is

no need for explicit specification of regularization factors and learning rates.

Equation (17) shows that as 𝐮·𝑟 and 𝐯·𝑟 decrease, 𝑏̃𝑟 declines, increasing 𝝈𝑟 . Equa-

tion (12) reveals 𝜦 inversely correlates with Σ̃𝑖
U, decreasing 𝐔̃𝑖 's magnitude. This inter-

play causes columns in 𝐔 and 𝐕 to attenuate, exacerbating 𝝈 's growth towards zero.

During training, this achieves an ARD effect, pruning unnecessary columns and deter-

mining the effective rank automatically.

BPMFARD uses this mechanism to dynamically adapt its complexity to the data,

pruning redundant parameters, mitigating overfitting, and enhancing efficiency. This

ensures a balanced trade-off between model complexity and generalization.

Algorithm 1 Bayesian Probabilistic Matrix Factorization with Automatic Rank Determina-

tion (BPMFARD)

Input: rating matrix X

Initialization: U, V, 𝜏, 𝝈, 𝑎0, 𝑏0, 𝑐0, 𝑑0, eps

1: while 𝑙𝑏𝑡 − 𝑙𝑏𝑡−1 >= eps do

2: update feature matrix U using Equation (12)

3: update feature matrix V using Equation (14)

4: update hyperparameters 𝜎 using Equation (17)

5: update hyperparameters 𝜏 using Equation (19)

6: compute lower bound 𝑙𝑏 using Equation (20)

7: Parameter Elimination Strategy: Remove any common latent dimension in U and V if

the sum of its squared entries is below the pruning threshold:

pruneTol = (𝐼1 + 𝐼2) ⋅ 𝜖(∥ 𝑍all ∥𝐹),

where 𝜖 (·) denotes machine epsilon evaluated at the Frobenius norm scale.

8: end while

9: To predict the missing elements in the rating matrix X using the feature matrices U and V.

4.3 Computational Complexity

The computational cost of updating factor matrices as shown in Equations (12) and (14)

is 𝑂(𝑅2𝑀 + 𝑅3(𝐼1 + 𝐼2)). Due to the pruning of latent components with zero infor-

mation contribution during training, the rank 𝑅 decreases rapidly in the early iterations.

The cost of updating the hyperparameter 𝝈 in Equation (17) is 𝑂(𝑅2(𝐼1 + 𝐼2)), and the

cost for updating the noise precision 𝝉 in Equation (19) is 𝑂(𝑅2𝑀). Therefore, the

overall complexity of BPMFARD is 𝑂(𝑅2𝑀 + 𝑅3), which scales linearly with data

size and polynomially with model complexity.

5 Experiment

This section presents the experimental evaluation of the proposed method. Section 5.1

describes the datasets and benchmark methods used for comparison. Section 5.2 details

the quantitative metrics for assessing recommender system performance. Section 5.3

reports the empirical results, highlighting the proposed method's superiority in recom-

mendation performance and its capability to automatically determine the feature matrix

rank.

5.1 Datasets

MovieLens 100K: The data was collected through the MovieLens website over a

seven-month period, from September 19th, 1997, to April 22nd, 1998. This data has

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

been cleaned by removing users who provided fewer than 20 ratings or lacked complete

demographic information. This final dataset consists of 100,000 ratings (on a scale of

1 to 5) from 943 distinct users on 1,682 movies, with a density of 6.3\%.

MovieLens 1M: The dataset contains a total of 1,000,209 anonymous ratings for

approximately 3,900 movies. These ratings were contributed by 6,040 MovieLens users

who joined MovieLens in the year 2,000. The MovieLens 1M dataset has a density of

4.19\%, and the ratings provided by users range from 1 to 5.

ml-latest-small: Similar to MovieLens 100K and MovieLens 1M, this dataset in-

cludes 100,836 ratings from 610 users on 9,742 movies, with ratings ranging from 1 to

5 and has a density of 0.17%. All selected users have rated at least 20 movies.

5.2 Evaluation metrics

We evaluate recommender system algorithms using two commonly adopted metrics:

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

RMSE: RMSE calculates the square root of the average squared differences between

predicted values and actual observations, formulated as:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖𝑗− < 𝐮𝑖 , 𝐯𝑗 >)2

𝑥𝑖𝑗∈Ω

. (21)

MAE: MAE calculates the average of the absolute deviations between predicted val-

ues and actual observations, formulated as:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖𝑗− < 𝐮𝑖 , 𝐯𝑗 >|

𝑥𝑖𝑗∈Ω

, (22)

Here, 𝑥𝑖𝑗 denotes the observed value in the rating matrix, and the predicted value is

calculated as the inner product of 𝐮𝑖 and 𝐯𝑗.

5.3 Experiment Results

This section evaluates the algorithm's performance based on recommendation accuracy

and its ability to automatically determine rank for parameter self-tuning. Benchmarks

include Funk SVD [9], BiasSVD [10], NMF [13], PMF [11], IRNN [24], WNNR [25],

MSS [26], ISVTA [27].

Accuracy of Rating Prediction. We evaluate the MSE and RMSE under various hy-

perparameter settings. The learning rate and regularization factor are selected from the

range {0.1, 0.05, 0.01, 0.005, 0.001} using grid search to determine the optimal com-

bination. For low-rank matrix factorization algorithms, we adopt the default parameters

provided in the original papers or official implementations whenever possible to ensure

the accuracy of the results. The dataset is split into training and testing sets in an 80:20

ratio.

In BPMFARD, the hyperparameters 𝑎0, 𝑏0, 𝑐0, 𝑑0 are all set to 1 × 10−6 to impose

a non-informative prior. We initialize 𝐸[𝛴] as the identity matrix and 𝐸[𝜏] as 1. The

latent factor matrices are randomly initialized with initial ranks of 30, 40, 50, and 60

for subsequent experiments.

Comparative results are presented in Table 1. This table shows that BPMFARD con-

sistently outperforms comparison algorithms across all datasets, as evidenced by lower

RMSE and MAE values. This consistent performance across datasets suggests

BPMFARD effectively addresses recommendation data sparsity, offering more pro-

nounced benefits than other algorithms.

Fig. 3 shows Funk SVD and BiasSVD overfit during training, causing accuracy to

drop. In contrast, BPMFARD remains stable, avoiding overfitting due to innovative

priors for model parameters that act as regularization. Our method also includes a ra-

tional parameter elimination strategy, pruning irrelevant columns from the feature ma-

trix during training, enhancing robustness compared to conventional matrix factoriza-

tion.

Table 1. Comparison of RMSE and MAE Results of Different Recommendation Models on the

MovieLens Dataset.

Model
MovieLens 100K MovieLens 1M ml-latest-small

RMSE MAE RMSE MAE RMSE MAE

NMF [13] 2.9007 2.6628 2.7248 2.4557 3.0105 2.7812

PMF [11] 0.9413 0.7417 0.8577 0.6761 1.0047 0.7400

Funk SVD [9] 0.9214 0.7216 0.8466 0.6658 0.9389 0.7210

BiasSVD [10] 0.9180 0.7172 0.8433 0.6617 0.9122 0.6817

IRNN [24] 0.9375 0.7178 0.9255 0.7325 0.9234 0.6849

DNNR[25] 0.9539 0.7404 0.9738 0.7496 0.9481 0.7138

MSS [26] 0.9417 0.7427 0.8727 0.6845 0.9299 0.7170

ISVTA [27] 1.0138 0.7867 0.9377 0.6727 1.0019 0.7605

BPMFARD 0.9142 0.7147 0.8414 0.6589 0.8903 0.6811

(a) MovieLens 100K (b) MovieLens 1M

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

(c) ml-latest-small

Fig. 3. RMSE varies with the number of iterations across different datasets.

The Process of Rank Determination.

This section highlights BPMFARD's advantage in determining optimal feature matrix

rank, distinguishing it from manual setting methods. BPMFARD learns rank from data,

dynamically adjusting to find the suitable final rank starting with a large initial rank.

Table 2 demonstrates BPMFARD's adaptability across datasets. Fig. 4 visualizes rank

evolution, showing the algorithm's automatic refinement based on data.

(a) MovieLens 100K (b) MovieLens 1M (c) dml-latest-small

Fig. 4. Rank changes during model training across different datasets.

Across the three datasets, BPMFARD consistently converges to optimal ranks: 10

for MovieLens 100K, 25 for MovieLens 1M, and 10 for ml-latest-small, regardless of

initial rank. Experiments in Section 5.3 show initial rank variations do not significantly

affect RMSE and MAE, reinforcing BPMFARD's robust rank determination and effec-

tiveness in identifying the appropriate rank for the data.

Table 2. For different datasets, BPMFARD determines the final rank under different initial

rank settings.

Init Rank 30 40 50 60

MovieLens 100K 10 10 10 10

MovieLens 1M 25 25 25 25

ml-latest-small 10 10 10 10

6 Conclusion and Future Work

BPMFARD automates feature-vector dimensionality selection in recommender sys-

tems. It automatically finds the optimal rank during training, obviating the need for

extensive rank trials required by traditional methods. It outperforms approaches such

as Funk SVD, BiasSVD, PMF, and NMF in recommendation accuracy and shows

strong resilience against overfitting.

(a) Matrix factorization: a perspective of

neural network.

(b) Neural collaborative filtering

framework.

Fig. 5. Matrix Factorization and Neural Collaborative Filtering Framework.

From a neural network perspective, Neural Collaborative Filtering (NCF) [28] ex-

tends matrix factorization by using neural networks to learn nonlinear user-item inter-

actions. Fig. 5 illustrates this extension. Leveraging embeddings and multilayer percep-

tions, NCF captures more complex interaction patterns than MF. Future work could

integrate BPMFARD's ARD strategy into NCF, enabling automatic identification and

pruning of uninformative neurons within embeddings and intermediate layers. This in-

tegration could create a hybrid model that combines Bayesian uncertainty control with

the expressive power of deep networks.

References

1. Wang, D., Liang, Y., Xu, D., Feng, X., Guan, R.: A content-based recommender system for

computer science publications. Knowledge-Based Systems 157, 1–9 (2018)

2. Kim, S., Kang, H., Choi, S., Kim, D., Yang, M., Park, C.: Large language models meet

collaborative filtering: An efficient all-round llm-based recommender system. In: Proceed-

ings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(SIGKDD). pp. 1395–1406 (2024)

3. Hou, Y., Park, J.D., Shin, W.Y.: Collaborative filtering based on diffusion models: Unveil-

ing the potential of high-order connectivity. In: Proceedings of the 47th International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR). pp.

1360–1369 (2024)

4. Walek, B., Fajmon, P.: A hybrid recommender system for an online store using a fuzzy

expert system. Expert Systems with Applications 212, 118565 (2023)

5. Zhao, Z.D., Shang, M.S.: User-based collaborative-filtering recommendation algorithms on

hadoop. In: 2010 third international conference on knowledge discovery and data mining

(KDD). pp. 478–481 (2010)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

6. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Transac-

tions on Information Systems 22(1), 143–177 (2004)

7. Wang, Y., Gao, M., Ran, X., Ma, J., Zhang, L.Y.: An improved matrix factorization with

local differential privacy based on piecewise mechanism for recommendation systems. Ex-

pert Systems with Applications 216, 119457 (2023)

8. Shaikh, S., Kagita, V.R., Kumar, V., Pujari, A.K.: Data augmentation and refinement for

recommender system: A semi-supervised approach using maximum margin matrix factori-

zation. Expert Systems with Applications 238, 121967 (2024)

9. Funk, S.: Netflix update: Try this at home (2006)

10. Paterek, A.: Improving regularized singular value decomposition for collaborative filtering.

In: Proceedings of KDD cup and workshop (KDD Cup). pp. 5–8 (2007)

11. Salakhutdinov, R., Mnih, A.: Probabilistic Matrix Factorization. In: Proceedings of the 21st

International Conference on Neural Information Processing Systems (NeurIPS). pp. 1257–

1264 (2007)

12. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov

chain Monte Carlo. In: Proceedings of the 25th international conference on Machine learn-

ing (ICML). pp. 880–887 (2008)

13. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Proceedings

of the 14th International Conference on Neural Information Processing Systems(NeurIPS).

pp. 535–541 (2000)

14. Anelli, V.W., Di Noia, T., Di Sciascio, E., Pomo, C., Ragone, A.: On the discriminative

power of hyper-parameters in cross-validation and how to choose them. In: Proceedings of

the 13th ACM conference on recommender systems (RecSys). pp. 447–451 (2019)

15. Bennett, J., Lanning, S., et al.: The netflix prize. In: Proceedings of KDD cup and workshop

(KDD Cup). p. 35 (2007)

16. Bell, R.M., Koren, Y.: Lessons from the Netflix prize challenge. Acm Sigkdd Explorations

Newsletter 9(2), 75–79 (2007)

17. Chan, S., Treleaven, P., Capra, L.: Continuous hyperparameter optimization for large-scale

recommender systems. In: 2013 IEEE international conference on big data (IEEE BigData).

pp. 350–358 (2013)

18. Beutel, A., Chi, E.H., Cheng, Z., Pham, H., Anderson, J.: Beyond globally optimal: Focused

learning for improved recommendations. In: Proceedings of the 26th International Confer-

ence on World Wide Web (WWW). pp. 203–212 (2017)

19. Bishop, C.M.: Bayesian PCA. In: Proceedings of the 11th International Conference on Neu-

ral Information Processing Systems(NeurIPS). p. 382 (1999)

20. Tan, V.Y., Févotte, C.: Automatic relevance determination in nonnegative matrix factoriza-

tion with the/spl beta/-divergence. IEEE transactions on pattern analysis and machine intel-

ligence 35(7), 1592–1605 (2012)

21. Zhao, Q., Zhang, L., Cichocki, A.: Bayesian CP factorization of incomplete tensors with

automatic rank determination. IEEE transactions on pattern analysis and machine intelli-

gence 37(9), 1751–1763 (2015)

22. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review 51(3),

455–500 (2009)

23. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational

methods for graphical models. Machine learning 37, 183–233 (1999)

24. Lu, C., Tang, J., Yan, S., Lin, Z.: Generalized nonconvex nonsmooth low-rank minimiza-

tion. In: Proceedings of the IEEE conference on computer vision and pattern recognition

(CVPR). pp. 4130–4137 (2014)

25. Zhang, H., Gong, C., Qian, J., Zhang, B., Xu, C., Yang, J.: Efficient recovery of low-rank

matrix via double nonconvex nonsmooth rank minimization. IEEE Transactions on Neural

Networks and Learning Systems 30(10), 2916–2925 (2019)

26. Xu, C., Lin, Z., Zha, H.: A unified convex surrogate for the schatten-p norm. In: Proceedings

of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI). pp. 926–932 (2017)

27. Zhang, H., Qian, J., Zhang, B., Yang, J., Gong, C., Wei, Y.: Low-rank matrix recovery via

modified Schatten-p norm minimization with convergence guarantees. IEEE Transactions

on Image Processing 29, 3132–3142 (2019)

28. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In:

Proceedings of the 26th international conference on world wide web (WWW). pp. 173–182

(2017)

