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Abstract. Medical image analysis presents unique challenges due to limited la-

beled data, privacy concerns, and heterogeneous data distributions across institu-

tions. Federated learning (FL) offers a promising solution by enabling collabora-

tive model training without sharing raw data. However, existing FL approaches 

often struggle with label scarcity in medical domains. In this paper, we propose 

MedFedSSL, a novel semi-supervised federated learning framework specifically 

designed for medical image analysis. Our approach integrates a dual-consistency 

regularization mechanism with an adaptive knowledge distillation strategy to ef-

fectively leverage both labeled and unlabeled data across distributed clients. We 

introduce a theoretically sound optimization objective that addresses the chal-

lenges of data heterogeneity and label imbalance in medical imaging. Extensive 

experiments on multiple medical imaging datasets demonstrate that MedFedSSL 

significantly outperforms state-of-the-art federated learning and semi-supervised 

learning methods, achieving superior performance with limited labeled data 

while preserving privacy. Our theoretical analysis provides convergence guaran-

tees and bounds on the generalization error of the proposed approach. 

Keywords: Federated Learning, Semi-Supervised Learning, Medical Image 

Analysis, Deep Learning 

 Introduction 

Medical image analysis has witnessed remarkable progress with the advent of deep 

learning techniques. However, developing robust and generalizable models for clinical 

applications faces several critical challenges. First, acquiring large-scale labeled medi-

cal data is expensive and time-consuming, requiring expert annotations from medical 

professionals. Second, medical data is inherently private and sensitive, making central-

ized data collection problematic due to regulatory constraints such as HIPAA and 

GDPR. Third, medical data often exhibits significant heterogeneity across different in-

stitutions, devices, and patient populations, leading to distribution shifts that affect 

model performance. 

Federated Learning (FL) has emerged as a promising paradigm to address privacy 

concerns by enabling collaborative model training without sharing raw data [15,12]. In 



FL, multiple clients (e.g., hospitals or medical institutions) train models locally and 

only share model updates with a central server, which aggregates these updates to im-

prove a global model. Since its introduction by McMahan et al. [15], numerous works 

have addressed various challenges in FL, including communication efficiency [8,18], 

statistical heterogeneity [12,26], and system heterogeneity [17,25]. In the medical do-

main, FL has gained significant attention due to its privacy-preserving nature [19,21], 

with successful applications in brain tumor segmentation [21] and medical image clas-

sification [13]. However, while FL preserves data privacy, it does not directly address 

the challenge of limited labeled data. 

Semi-Supervised Learning (SSL) techniques aim to leverage unlabeled data along-

side limited labeled data to improve model performance [24,22]. Traditional SSL ap-

proaches include self-training [31], co-training [4], and graph-based methods [33], 

while recent deep learning-based methods have shown remarkable success with con-

sistency regularization [20,9], pseudo-labeling [10,22], and hybrid approaches [2,3]. In 

medical imaging, SSL has been applied to various tasks including segmentation [1,32], 

classification [5,23], and anomaly detection [6]. However, most existing SSL methods 

are designed for centralized settings and do not account for the distributed nature and 

heterogeneity of medical data. 

Recent works have begun exploring the integration of SSL with FL [7,28], with ap-

proaches like FedMatch [7] extending consistency regularization to federated settings, 

FedSem [28] leveraging unlabeled data through pseudo-labeling, and ensemble distil-

lation [14] for semi-supervised FL. In the medical domain, limited work has been done 

on semi-supervised FL, with some efforts focusing on COVID-19 detection [29] and 

medical image segmentation [11]. However, these approaches often struggle with the 

unique challenges posed by medical imaging data, such as extreme class imbalance, 

high-dimensional feature spaces, and complex anatomical structures. Additionally, they 

typically rely on strong assumptions about data distributions across clients, which may 

not hold in real-world medical scenarios. 

In this paper, we propose MedFedSSL, a novel semi-supervised federated learning 

framework specifically designed for medical image analysis. Our approach differs from 

existing methods by introducing a dual-consistency regularization mechanism and an 

adaptive knowledge distillation strategy specifically tailored for medical imaging in 

federated settings. Our approach makes the following key contributions: 

─ We introduce a dual-consistency regularization mechanism that enforces con-

sistency between predictions from different augmentations of the same image and 

between predictions from the client and global models, effectively leveraging unla-

beled data in a federated setting. 

─ We develop an adaptive knowledge distillation strategy that accounts for the relia-

bility of pseudo-labels generated for unlabeled data, dynamically adjusting the con-

tribution of each unlabeled sample based on prediction confidence and consistency. 

─ We conduct extensive experiments on multiple medical imaging datasets, demon-

strating that MedFedSSL significantly outperforms state-of-the-art federated learn-

ing and semi-supervised learning methods, achieving superior performance with 

limited labeled data while preserving privacy. 
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 Methodology 

2.1 Problem Formulation 

We consider a federated learning setting with 𝐾  clients, where each client 𝑘 ∈
{1,2, … , 𝐾}  has a local dataset 𝒟𝑘 = 𝒟𝑘

𝑙 ∪ 𝒟𝑘
𝑢  consisting of labeled data 𝒟𝑘

𝑙 =

{(𝑥𝑖
𝑘, 𝑦𝑖

𝑘)}𝑖=1

𝑛𝑘
𝑙

 and unlabeled data 𝒟𝑘
𝑢 = {𝑥𝑗

𝑘}𝑗=1

𝑛𝑘
𝑢

. Here, 𝑥𝑖
𝑘 ∈ 𝒳  represents an input 

medical image, 𝑦𝑖
𝑘 ∈ 𝒴 represents the corresponding label (e.g., disease classification 

or segmentation mask), 𝑛𝑘
𝑙  is the number of labeled samples, and 𝑛𝑘

𝑢 is the number of 

unlabeled samples at client 𝑘. 

The goal is to learn a global model 𝑓𝜃: 𝒳 → 𝒴 parameterized by 𝜃 that performs 

well on test data from all clients, while keeping the raw data local to each client. The 

challenge is to effectively leverage both labeled and unlabeled data across all clients to 

improve model performance, especially when labeled data is scarce. 

2.2 MedFedSSL Framework 

Our proposed MedFedSSL framework addresses these challenges through a novel com-

bination of dual-consistency regularization, adaptive knowledge distillation, and a the-

oretically sound optimization objective. The overall framework is illustrated in Fig. 1 

and detailed in Algorithm 1. 

 

Fig. 1. Overview of the proposed MedFedSSL framework. 

Dual-Consistency Regularization. To effectively leverage unlabeled data, we propose 

a dual-consistency regularization mechanism that enforces consistency between predic-

tions from different augmentations of the same image and between predictions from the 

client and global models. 



Let 𝒜 denote a stochastic augmentation function that applies a composition of trans-

formations (e.g., rotation, scaling, and intensity adjustments) to an input image. For 

each unlabeled sample 𝑥𝑗
𝑘 ∈ 𝐷𝑘

𝑢, we generate two augmented views 𝑥
~

𝑗,1
𝑘 = 𝒜(𝑥𝑗

𝑘) and  

𝑥
~

𝑗,2
𝑘 = 𝒜(𝑥𝑗

𝑘). 

The first consistency term enforces that the model's predictions for these two aug-

mented views should be similar: 

ℒaug(𝜃𝑘, 𝑥𝑗
𝑘) = 𝑑 (𝑓𝜃𝑘

(𝑥
~

𝑗,1
𝑘 ), 𝑓𝜃𝑘

(𝑥
~

𝑗,2
𝑘 )) (1) 

where 𝜃𝑘  represents the parameters of the local model at client 𝑘 , and  
𝑑(⋅,⋅) is a distance function measuring the dissimilarity between two predictions. For 

classification tasks, we use the Kullback-Leibler (KL) divergence, while for segmenta-

tion tasks, we use a combination of Dice loss and cross-entropy loss. 

The second consistency term enforces that the predictions of the local model should 

be consistent with those of the global model: 

ℒmodel(𝜃𝑘, 𝜃𝑔, 𝑥𝑗
𝑘) = 𝑑 (𝑓𝜃𝑘

(𝑥𝑗
𝑘), 𝑓𝜃𝑔

(𝑥𝑗
𝑘)) (2) 

where 𝜃𝑔 represents the parameters of the global model. This term helps mitigate the 

impact of local optima and encourages knowledge transfer between clients. 

Adaptive Knowledge Distillation. To further improve the utilization of unlabeled 

data, we propose an adaptive knowledge distillation strategy that accounts for the reli-

ability of pseudo-labels generated for unlabeled data. 

For each unlabeled sample 𝑥𝑗
𝑘 ∈ 𝐷𝑘

𝑢, we generate a pseudo-label 𝑦
^

𝑗
𝑘 using the global 

model: 

𝑦̂𝑗
𝑘 = {

𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑓𝜃𝑔
(𝑥𝑗

𝑘)
𝑐

𝑖𝑓  𝑚𝑎𝑥𝑐𝑓𝜃𝑔
(𝑥𝑗

𝑘)
𝑐

> 𝜏

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3) 

where 𝑓𝜃𝑔
(𝑥𝑗

𝑘)
𝑐
 represents the probability assigned to class 𝑐 for input 𝑥𝑗

𝑘  by the 

global model, and 𝜏 is a confidence threshold. 

We then define an adaptive weight 𝑤𝑗
𝑘 for each pseudo-labeled sample based on the 

prediction confidence and consistency: 

𝑤𝑗
𝑘 = 𝑚𝑎𝑥

𝑐
𝑓𝜃𝑔

(𝑥𝑗
𝑘)𝑐 ⋅ exp (−𝛽 ⋅ ℒaug(𝜃𝑔, 𝑥𝑗

𝑘)) (4) 

where 𝛽 is a hyperparameter controlling the importance of consistency. This weight 

reflects the reliability of the pseudo-label, with higher weights assigned to samples with 

high confidence and high consistency. 

The knowledge distillation loss is then defined as: 

𝐿𝑘𝑑(𝜃𝑘 , 𝜃𝑔, 𝑥𝑗
𝑘) = 𝑤𝑗

𝑘 ⋅ ℓ(𝑓𝜃𝑘
(𝑥𝑗

𝑘), 𝑦
^

𝑗
𝑘 (4) 
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where  ℓ(⋅,⋅) is the task-specific loss function (e.g., cross-entropy for classification 

or Dice loss for segmentation). 

Local Optimization Objective. The overall local optimization objective for client 𝑘 is 
a weighted combination of the supervised loss on labeled data and the unsupervised 

losses on unlabeled data: 

𝐿𝑘(𝜃𝑘 , 𝜃𝑔) =
1

𝑛𝑘
𝑙 ∑ ℓ

𝑛𝑘
𝑙

𝑖=1

(𝑓𝜃𝑘
(𝑥𝑖

𝑘), 𝑦𝑖
𝑘) + 𝜆1

1

𝑛𝑘
𝑢 ∑ 𝐿𝑎𝑢𝑔

𝑛𝑘
𝑢

𝑗=1

(𝜃𝑘 , 𝑥𝑗
𝑘)

+𝜆2

1

𝑛𝑘
𝑢 ∑ 𝐿𝑚𝑜𝑑𝑒𝑙

𝑛𝑘
𝑢

𝑗=1

(𝜃𝑘, 𝜃𝑔, 𝑥𝑗
𝑘) + 𝜆3

1

𝑛𝑘
𝑢 ∑ 𝐿𝑘𝑑

𝑛𝑘
𝑢

𝑗=1

(𝜃𝑘, 𝜃𝑔, 𝑥𝑗
𝑘)

(6) 

where 𝜆1, 𝜆2, and 𝜆3 are hyperparameters controlling the importance of each unsuper-

vised loss term. 

To address the challenge of data heterogeneity, we introduce a proximal term that 

penalizes large deviations from the global model: 

ℒ𝑘
𝑝𝑟𝑜𝑥

(𝜃𝑘, 𝜃𝑔) = ℒ𝑘(𝜃𝑘, 𝜃𝑔) +
𝜇

2
∥ 𝜃𝑘 − 𝜃𝑔 ∥2 (7) 

where 𝜇 is a hyperparameter controlling the strength of the proximal term. 

Weighted Model Aggregation. To address the challenge of label imbalance and vary-

ing data quality across clients, we propose a weighted model aggregation strategy at the 

server: 

𝜃𝑔 = ∑ 𝛼𝑘𝜃𝑘

𝐾

𝑘=1

(8) 

where 𝛼𝑘 is the aggregation weight for client 𝑘. Instead of using a fixed weighting 

scheme based on the number of samples (as in FedAvg), we define 𝛼𝑘 based on the 

validation performance of the local model: 

𝛼𝑘 =
exp(𝛾 ⋅ Perf𝑘)

∑ exp(𝛾 ⋅ Perf𝑘′)𝐾
𝑘′=1

(9) 

where Perf𝑘 is a performance metric (e.g., accuracy or Dice coefficient) evaluated 

on a small validation set at client 𝑘, and 𝛾 is a hyperparameter controlling the concen-

tration of weights. This weighting scheme assigns higher weights to clients with better-

performing models, which helps mitigate the impact of low-quality data or extreme 

class imbalance at certain clients. 

 

 

 

 

 



Algorithm 1 MedFedSSLAlgorithm 

Require: Rounds 𝑇, local epochs 𝐸, learning rate 𝜂, hyperparameters 𝜆1, 𝜆2, 𝜆3, 𝜇, 𝛾, 𝜏, 𝛽 

Ensure: Global model 𝜃𝑔 

1: Initialize: 𝜃𝑔
0 

2: for 𝑡 = 1 to 𝑇 − 1 do 

3:        Server distributes 𝜃𝑔
𝑡 go all clients 

4: for each client 𝑘 ∈ {1,2, … , 𝐾} in parallel do 

5: Set  𝜃𝑘
𝑡 ← 𝜃𝑔

𝑡 

6: for 𝑒 = 1 to 𝐸 do 

7: Sample batches ℬ𝑘
𝑙  from labeled data, ℬ𝑘

𝑢 from unlabeled data 

8: Compute supervised loss: ℒsup =
1

|ℬ𝑘
𝑙 |

∑ ℓ(𝑓𝜃𝑘
𝑡 (𝑥), 𝑦)

(𝑥,𝑦)
 

9: Compute consistency losses: 

10: 
                    ℒaug =

1

|ℬ𝑘
𝑢|

∑ 𝑑(𝑓𝜃𝑘
𝑡 (𝒜(𝑥)), 𝑓𝜃𝑘

𝑡 (𝒜(𝑥)))

𝑥

 

11: 
                  ℒmodel =

1

|ℬ𝑘
𝑢|

∑ 𝑑(𝑓𝜃𝑘
𝑡 (𝑥), 𝑓𝜃𝑔

𝑡 (𝑥))

𝑥

 

12: Generate pseudo-labels for unlabeled data 

13: for each 𝑥 ∈ ℬ𝑘
𝑢 do 

14: If   𝑚𝑎𝑥𝑐𝑓𝜃𝑔
(𝑥𝑗

𝑘)
𝑐

> 𝜏 then 

15:                           𝑦
^

= arg 𝑚𝑎𝑥
𝑐

𝑓𝜃𝑔
𝑡 (𝑥)𝑐 , 𝑤

= 𝑚𝑎𝑥
𝑐

𝑓𝜃𝑔
𝑡 (𝑥)𝑐 ⋅ exp (−𝛽 ⋅ 𝑑(𝑓𝜃𝑔

𝑡 (𝒜(𝑥)), 𝑓𝜃𝑔
𝑡 (𝒜(𝑥))) 

16: else 

17:                               𝑤 = 0 

18: end if 

19: end for 

20: Compute knowledge distillation loss:ℒkd =
1

|ℬ𝑘
𝑢|

∑ 𝑤 ⋅ ℓ(𝑓𝜃𝑘
𝑡 (𝑥), 𝑦

^
)

𝑥
 

21: Compute proximal term 𝐿𝑝𝑟𝑜𝑥 =
𝜇

2
∥ 𝜃𝑘

𝑡 − 𝜃𝑔
𝑡 ∥2 

22: Total loss:ℒtotal = ℒsup + 𝜆1ℒaug + 𝜆2ℒmodel + 𝜆3ℒkd + ℒprox 

23: Update:𝜃𝑘
𝑡 ← 𝜃𝑘

𝑡 − 𝜂∇ℒtotal 

24: end for 

25: Evaluate on validation set to get Perf𝑘 

26: Send 𝜃𝑘
𝑡+1 = 𝜃𝑘

𝑡  and Perf𝑘 to server 

27: end for 

28: Server computes weights:𝛼𝑘 =
exp (𝛾⋅Perf𝑘)

∑ exp (𝛾⋅Perf𝑘′)
𝑘′

 

29: Server aggregates: 𝜃𝑔
𝑡+1 = ∑ 𝛼𝑘𝜃𝑘

𝑡+1𝐾

𝑘=1
 

30: end for 

31: return 𝜃𝑔
𝑇  
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 Experiments 

In this section, we evaluate the performance of our proposed MedFedSSL framework 

on multiple medical imaging datasets and compare it with state-of-the-art federated 

learning and semi-supervised learning methods. 

3.1 Experimental Setup 

Datasets. We evaluate our approach on three medical imaging datasets with different 

characteristics: 

 

─ MedMNIST[30]: A collection of 10 pre-processed medical image datasets, includ-

ing chest X-rays, dermatoscope images, OCT images, and more. We use the Path-

MNIST, DermaMNIST, and OrganCMNIST subsets for multi-class classification 

tasks. 

─ ChestX-ray14[27]: A large dataset of chest X-ray images with 14 disease labels. 

We focus on the multi-label classification of 5 common diseases: Atelectasis, Car-

diomegaly, Effusion, Infiltration, and Pneumonia. 

─ BraTS[16]: A brain tumor segmentation dataset containing multi-modal MRI scans 

(T1, T1ce, T2, and FLAIR) with pixel-level annotations of different tumor regions 

(whole tumor, tumor core, and enhancing tumor). 

For each dataset, we simulate a federated learning environment with 𝐾 = 10 clients. 

To create a realistic non-IID setting, we distribute the data among clients using a Di-

richlet distribution with concentration parameter 𝛼 = 0.5, resulting in heterogeneous 

class distributions across clients. For each client, we randomly select a small portion 

(10%, 20%, or 30%) of the data as labeled and treat the rest as unlabeled. 

Baselines. We compare our MedFedSSL framework with the following baselines: 

─ FedAvg [15]: The standard federated averaging algorithm using only labeled data. 

─ FedProx [12]: A federated learning algorithm that adds a proximal term to address 

client heterogeneity, using only labeled data. 

─ FedMatch [7]: A semi-supervised federated learning approach that extends con-

sistency regularization to federated settings. 

─ FedSem [28]: A semi-supervised federated learning framework that leverages unla-

beled data through pseudo-labeling. 

─ Local SSL + FedAvg: A simple baseline where each client independently applies a 

semi-supervised learning method (FixMatch [22]) on its local data, followed by fed-

erated averaging. 

─ Centralized SSL: A centralized semi-supervised learning approach (FixMatch [22]) 

with access to all data, serving as an upper bound for performance. 



Implementation Details. For classification tasks (MedMNIST and ChestX-ray14), we 

use a ResNet-18 architecture pre-trained on ImageNet. For segmentation tasks (BraTS), 

we use a 3D U-Net architecture. All models are implemented in PyTorch and trained 

using the Adam optimizer with a learning rate of 10−4. 

For our MedFedSSL framework, we set the hyperparameters as follows: 𝜆1 =  1.0, 

𝜆2 =  0.5, 𝜆3 =  1.0, 𝜇 =  0.01, 𝛾 =  5.0,  𝜏 =  0.95, and 𝛽 =  0.5. We run the feder-

ated learning process for 𝑇 = 100 communication rounds, with 𝐸 = 5 local epochs per 

round. 

For data augmentation, we use random cropping, horizontal flipping, and color jit-

tering for 2D images, and random cropping and intensity shifting for 3D volumes. All 

experiments are repeated three times with different random seeds, and we report the 

mean and standard deviation of the results. 

3.2 Results and Analysis 

Classification Performance. Table 1 shows the classification performance of different 

methods on the MedMNIST and ChestX-ray14 datasets with 10% labeled data. For 

MedMNIST, we report the accuracy, and for ChestX-ray14, we report the AUC-ROC 

(Area Under the Receiver Operating Characteristic Curve). 

Table 1. Classification performance on MedMNIST and ChestX-ray14 datasets with 10% la-

beled data. The best results among federated methods are highlighted in bold. 

Method 
MedMNIST (Accuracy %) Chest-Xray14 

PathMNIST DermaMNIST OrganCMNIS (AUC-ROC %) 

FedAvg 76.2 ± 1.8 68.5 ± 2.1 72.3 ± 1.5 71.4 ± 1.9 

FedProx 78.1 ± 1.5 70.2 ± 1.8 74.5 ± 1.3 73.2 ± 1.7 

FedMatch 82.3 ± 1.2 74.8 ± 1.5 78.9 ± 1.1 76.5 ± 1.4 

FedSem 83.1 ± 1.0 75.6 ± 1.3 79.5 ± 0.9 77.2 ± 1.2 

Local SSL + FedAvg 81.5 ± 1.3 73.9 ± 1.6 77.8 ± 1.2 75.8 ± 1.5 

MedFedSSL (Ours) 85.7 ± 0.8 78.2 ± 1.1 82.4 ± 0.7 79.6 ± 1.0 

Centralized SSL 88.3± 0.5 81.5 ± 0.7 85.1± 0.4 82.9± 0.6 

 

Our MedFedSSL framework consistently outperforms all baseline methods across 

all datasets. Compared to FedAvg, which uses only labeled data, MedFedSSL achieves 

significant improvements of 9.5%, 9.7%, and 10.1% on PathMNIST, DermaMNIST, 

and OrganCMNIST, respectively, and 8.2% on ChestX-ray14. This demonstrates the 

effectiveness of our approach in leveraging unlabeled data to improve model perfor-

mance. 

Compared to other semi-supervised federated learning methods (FedMatch and 

FedSem), MedFedSSL still achieves notable improvements of 2.6-3.4% on Med-

MNIST and 2.4-3.1% on ChestX-ray14. This highlights the benefits of our dual-con-

sistency regularization and adaptive knowledge distillation strategies, which are specif-

ically designed for medical image analysis. 
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Interestingly, the performance gap between MedFedSSL and Centralized SSL is rel-

atively small (2.6-3.3% on MedMNIST and 3.3% on ChestX-ray14), indicating that our 

approach can effectively leverage distributed data without requiring centralized access. 

Fig.2 shows the performance of different methods on PathMNIST with varying per-

centages of labeled data (10%, 20%, and 30%). As expected, all methods benefit from 

more labeled data, but MedFedSSL consistently outperforms the baselines across all 

settings. The performance gap is more pronounced when the labeled data is scarce 

(10%), highlighting the effectiveness of our approach in low-label regimes, which is 

particularly relevant for medical applications. 

 

Fig. 2. Classification accuracy on PathMNIST with varying percentages of labeled data. 

Segmentation Performance. Table 2 shows the segmentation performance of different 

methods on the BraTS dataset with 10% labeled data. We report the Dice coefficient 

for three tumor regions: whole tumor (WT), tumor core (TC), and enhancing tumor 

(ET). 

Similar to the classification results, MedFedSSL outperforms all baseline methods 

across all tumor regions. Compared to FedAvg, MedFedSSL achieves improvements 

of 10.0%, 10.1%, and 10.2% for whole tumor, tumor core, and enhancing tumor, re-

spectively. Compared to FedMatch and FedSem, the improvements are 3.2-4.1%, 3.5-

4.3%, and 3.3-4.1%, respectively. 

The segmentation task is more challenging than classification, as it requires pixel-

level predictions. The consistent improvements across different tumor regions demon-

strate the effectiveness of our approach in handling complex medical image analysis 

tasks. 

 

 



Table 2. Segmentation performance (Dice coefficient %) on the BraTS dataset with 10% labeled 

data. The best results among federated methods are high-lighted in bold. 

 

 

 

 

 

 

 

Table 3. Ablation study on PathMNIST with 10% labeled data. 

 

 

 

 

 

 

 

 

Ablation Study. To understand the contribution of each component in our MedFedSSL 

framework, we conduct an ablation study on the PathMNIST dataset with 10% labeled 

data. Table 3 shows the results of removing different components from our full model. 

Removing the augmentation consistency term leads to a 2.5% drop in accuracy, 

while removing the model consistency term results in a 2.9% drop. This indicates that 

both consistency terms are important for leveraging unlabeled data effectively. The 

adaptive knowledge distillation strategy also contributes significantly, with a 2.2% drop 

when removed. The proximal term and weighted aggregation have smaller but still no-

ticeable impacts (1.6% and 1.4%, respectively), highlighting their role in addressing 

data heterogeneity and label imbalance. 

Communication Efficiency and Impact of Client Heterogeneity. Fig.3 (a) shows the 

test accuracy on PathMNIST as a function of the number of communication rounds for 

different methods. MedFedSSL converges faster than the baselines, achieving higher 

accuracy with fewer communication rounds. This is particularly important in federated 

learning, where communication can be a bottleneck. 

To evaluate the robustness of our approach to client heterogeneity, we vary the Di-

richlet concentration parameter 𝛼 from 0.1 (highly non-IID) to 1.0 (more IID) on the 

PathMNIST dataset. As shown in Fig.3 (b), all methods perform better when the data 

distribution is more IID (𝛼 = 1.0 ). However, MedFedSSL is more robust to client 

Method Whole Tumor Tumor Core Enhancing Tumor 
         

FedAvg 72.3 ± 2.1 65.8 ± 2.5 61.2 ± 2.8 
FedProx 74.5 ± 1.9 67.9 ± 2.2 63.5 ± 2.5 
FedMatch 78.2 ± 1.5 71.6 ± 1.8 67.3 ± 2.1 
FedSem 79.1 ± 1.3 72.4 ± 1.6 68.1 ± 1.9 
Local SSL + FedAvg 77.5 ± 1.6 70.8 ± 1.9 66.5 ± 2.2 

MedFedSSL (Ours) 82.3 ± 1.0 75.9 ± 1.3 71.4 ± 1.6 

Centralized SSL 85.7 ± 0.7 79.2 ± 0.9 74.8 ± 1.1 

Method Accuracy (%) 
  

MedFedSSL (Full) 85.7 ± 0.8 
- w/o Augmentation Consistency 83.2 ± 1.0 
- w/o Model Consistency 82.8 ± 1.1 
- w/o Adaptive Knowledge Distillation 83.5 ± 0.9 
- w/o Proximal Term 84.1 ± 0.9 

- w/o Weighted Aggregation 84.3 ± 0.8 
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heterogeneity, maintaining higher accuracy even in highly non-IID settings (𝛼 = 0.1). 

This demonstrates the effectiveness of our approach in addressing the challenges of 

data heterogeneity in federated learning. 

 

Fig. 3. Performance analysis on PathMNIST dataset: (a,The left one) communication efficiency 

and(b, The right one)impact of client heterogeneity with Dirichlet parameter α from0.1 to 1.0. 

 Conclusion 

In this paper, we proposed MedFedSSL, a novel semi-supervised federated learning 

framework specifically designed for medical image analysis. Our approach integrates 

a dual-consistency regularization mechanism with an adaptive knowledge distillation 

strategy to effectively leverage both labeled and unlabeled data across distributed cli-

ents. We introduced a theoretically sound optimization objective that addresses the 

challenges of data heterogeneity and label imbalance in medical imaging, with provable 

convergence guarantees and bounds on the generalization error. 

Extensive experiments on multiple medical imaging datasets demonstrated that 

MedFedSSL significantly outperforms state-of-the-art federated learning and semi-su-

pervised learning methods, achieving superior performance with limited labeled data 

while preserving privacy. Our approach is particularly effective in low-label regimes 

and is robust to client heterogeneity, making it well-suited for real-world medical ap-

plications. 

There are several promising directions for future work. First, extending our approach 

to handle multi-modal medical data (e.g., combining imaging with clinical records) 

could further improve performance. Second, incorporating privacy-preserving tech-

niques such as differential privacy or secure aggregation could enhance the privacy 

guarantees of our framework. Third, exploring personalized federated learning ap-

proaches that adapt the global model to the specific characteristics of each client could 

improve performance for individual institutions. Finally, deploying and evaluating our 

framework in real-world clinical settings would provide valuable insights into its prac-

tical utility and potential impact on healthcare. 
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