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Abstract. The assessment of both motor and non-motor functions in Parkinson's 

disease (PD) plays a crucial role in disease diagnosis and early intervention. In 

recent years, multi-modal deep learning methods have demonstrated excellent 

performance in identifying disease subtypes. However, previous studies have pri-

marily focused on clinical and transcriptomic data, neglecting the information on 

gene associations. This paper proposes a multi-modal graph Transformer model 

named MMGT-PD, which integrates whole blood RNA sequencing data, gene 

co-expression networks, and Clinical omics data, combining modality-specific 

and consensus information to significantly enhance the accuracy of Parkinson's 

disease diagnosis. The model constructs a gene co-expression network using 

RNA sequencing data and designs an RNA sequencing encoder that combines 

Graph Attention Network (GAT) and Kolmogorov-Arnold Network (KAN) to 

extract RNA-specific representations. Additionally, the model introduces the Ge-

negraph-Clinic Fusion (GCFusion) module to enhance the integration of multi-

modal data by extracting shared information through inter-modal interactions. 

This paper conducts extensive comparative experiments on two well-known 

Parkinson's disease datasets, and the results show that the MMGT-PD method 

outperforms baseline models. 

Keywords: Whole Blood RNA Sequencing Data, Gene Co-expression Net-

works, Clinical Omics Data, Graph Transformer. 

1 Introduction 

Parkinson's disease (PD) is a common neurodegenerative disorder that not only sig-

nificantly impairs the motor functions of the elderly but also has a profound negative 

impact on their cognitive abilities [1, 2]. Currently, the medical community primarily 

relies on the MDS-UPDRS scale for the diagnosis and assessment of Parkinson's dis-

ease [3, 4]. This scale is the most commonly used clinical assessment tool and compre-

hensively covers the motor and cognitive conditions of PD patients. However, recent 

research advancements have brought new hope for the diagnosis and prognosis of Park-

inson's disease. Specifically, studies based on blood RNA transcriptomics have 



revealed gene expression changes associated with the progression of PD, which hold 

promise as novel biomarkers to provide robust support for early diagnosis and precise 

prognosis of the disease [5]. Furthermore, integrating blood RNA Sequencing (RNA-

seq) data with MDS-UPDRS scale assessments can complement each other, potentially 

leading to the construction of more precise bio-AI models. 

Previous studies have mainly focused on single-modal models [6, 7]. However, 

multi-modal learning now enables the integration of blood RNA-seq data with MDS-

UPDRS scale assessments for more precise bio-AI models. Research shows that com-

bining these data improves disease diagnosis compared to single-modal approaches [8, 

9]. Blood RNA-seq reflects gene expression patterns, capturing microscopic disease 

mechanisms , while MDS-UPDRS clinical data summarizes macroscopic cognitive and 

motor symptoms. These two data types exhibit strong complementarity [7]. 

Previously, the analysis of blood RNA-seq data has predominantly relied on proba-

bilistic statistics, with some applications of machine learning methods[6, 10]. However, 

these straightforward analyses are only capable of mining information at the level of 

differential gene expression patterns, lacking insights into the interactions between 

genes. In recent years, the advent of Graph Neural Network (GNN) has offered a prom-

ising approach to capture the interactions between genes [11-13]. By learning the inter-

actions and information flow between nodes, GNN can extract structural features of 

genes, thereby revealing the underlying principles of biological systems. Nonetheless, 

these methods have primarily focused on data mining from multiple perspectives within 

a single information source, without integrating the rich clinical data. Moreover, despite 

significant progress in multi-modal learning, most current frameworks neglect the com-

plex gene interactions in blood RNA-seq data and their potential links to clinical data 

when integrating multi-modal data. This oversight may hinder models from fully uti-

lizing the structural information of gene expression networks, limiting the in-depth un-

derstanding of disease mechanisms and accurate prediction of disease progression. 

Based on the aforementioned considerations, we propose a novel MMGT-PD model 

framework to integrate multi-modal data and explore the rich structural information of 

patients. Specifically, this model incorporates Graph Attention Networks (GAT) and 

Kolmogorov–Arnold Networks (KAN) to jointly analyze whole blood RNA-seq data 

and gene co-expression networks, and then utilizes the GCFusion strategy to extract 

interactive information between modalities. The main contributions of this work are as 

follows: 

─ This work proposes MMGT-PD, a diagnostic solution for Parkinson’s disease that 

integrates whole-blood RNA-seq data, gene co-expression networks, and clinical 

data. The method integrates modality-specific information and modality-consensus 

information to improve the diagnostic accuracy of Parkinson's disease (PD). 

─ A gene co-expression network is constructed using whole-blood RNA-seq data to 

explore potential associations between genes. An RNA-seq encoder integrating 

multi-level GAT and KAN is designed to extract RNA-specific representations. 

─ The GCFusion module is proposed to extract shared information between modalities 

by leveraging their inter-modal interactions. 
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2 Method 

The workflow of the proposed method is illustrated in Fig. 1. Whole-blood RNA-

seq data are first used to construct a gene graph via the Graph Construction module and 

then processed by the proposed RNA-seq Encoder to extract RNA-specific representa-

tions. Meanwhile, clinical data are processed by the Clinic Encoder to extract clinic-

specific representations. After obtaining the modality-specific representations from 

both types of data, the GCFusion module is employed to extract modality-consensus 

representations. Subsequently, a joint representation is obtained by integrating the mo-

dality-specific and modality-consensus representations. Finally, a classification head is 

used to assess motor and non-motor impairments of Parkinson's disease based on the 

joint representation. 

 

Fig. 1. The framework of the proposed MMGT-PD method. 

2.1 Graph Construction 

Let 𝑋𝑅𝑁𝐴 ∈ ℝ𝑁×𝑀 denote the input of whole-blood RNA-seq data, where 𝑁 is the 

number of samples and 𝑀 is the number of gene features. Given the large number of 

genes in RNA-seq data, which contains certain levels of noise and redundancy, we pre-

process the data using the scanpy [14] tool and select 500 highly variable genes to retain 

those with significant expression differences across different states. The resulting data 

is denoted as 𝑋𝑅𝑁𝐴500 ∈ ℝ𝑁×500. Subsequently, the associations between genes are an-

alyzed using the MEGENA [15] tool to construct a gene co-expression matrix, thereby 

generating the gene co-expression network 𝐺 =< 𝑉, 𝐸 >. Where 𝑉 = {𝑣1, 𝑣2, … , 𝑣500} 
is a set containing 500 nodes, and 𝐸 is the set of edges representing the relationships 

between nodes. Each edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸  indicates the weight from node 𝑣𝑖 to node𝑣𝑗. 

Furthermore, for the 𝑡-th batch 𝐵𝑡  with input 𝑋𝑅𝑁𝐴500  and the gene co-expression net-

work 𝐺 =< 𝑉, 𝐸 > , a gene graph 𝐺0 = (𝑋𝑅𝑁𝐴500 , 𝐸)  can be constructed, where 

𝑋𝑅𝑁𝐴500 ∈ ℝ𝐵𝑡×500×𝑑0   is the feature matrix,  𝐸 ∈ ℝ500×500 is the edge matrix, and 𝑑0 

is the dimension of node features. 



2.2 RNA-seq Encoder 

 

Fig. 2. The details of the RNA-seq encoder. 

Previous studies have shown that interactions between genes influence the progres-

sion of Parkinson's disease, and graph neural network techniques are effective in cap-

turing such interactions. Given that graph attention mechanisms can adaptively aggre-

gate neighborhood information, we designed an RNA-seq encoder that integrates Graph 

Attention Network [16] and Kolmogorov–Arnold Networks (KAN) [17] for graph rep-

resentation learning to explore gene interactions, as illustrated in Fig. 2. Taking 𝐺0 as 

input, a GAT can be built by stacking multi-head attention layers. Each layer is defined 

as: 

 ℎ𝑢
′ = ||𝑘=1

𝐾 𝜎(∑ 𝛼𝑢𝑣
𝑘 𝑊𝑘ℎ𝑣𝑣∈𝒩𝑣 ) (1) 

where, ℎ𝑣 denotes the input features of node 𝑣, 𝒩𝑣 represents the first-order neighbors 

of node 𝑢, 𝛼𝑢𝑣
𝑘  is the 𝑘-th normalized attention coefficient, 𝑊𝑘 is the weight matrix of 

the 𝑘 -th attention head, and 𝜎(∙) is a nonlinear activation function. The symbol || in-

dicates the concatenation of 𝐾 attention heads. The attention coefficient 𝛼𝑢𝑣 is com-

puted via the attention mechanism 𝑎: 

 𝛼𝑢𝑣 =
𝑒𝑥𝑝(ℎ𝑢,ℎ𝑣)

∑ 𝑒𝑥𝑝(𝑎(ℎ𝑢,ℎ𝑣′))𝑣′∈𝒩𝑢

 (2) 

 𝑎(ℎ𝑢 , ℎ𝑣′) = 𝐿𝑒𝑎𝑘𝑅𝑒𝐿𝑈(𝑊𝑎
𝑇[ℎ𝑢||ℎ𝑣]) (3) 

The attention score between node 𝑢 and its neighboring node 𝑣 is computed using a 

single-layer feedforward neural network parameterized by the weight vector 𝑊𝑎
𝑇, fol-

lowed by the LeakyReLU activation function. 

Furthermore, by applying a multi-head Graph Attention Network layer on 𝐺0 , a 

higher-level graph 𝐺1 = (𝑋1, 𝐸)  is generated, where 𝑋1 ∈ ℝ𝐵𝑡×500×𝑑1 . Similarly, 

𝐺2 = (𝑋2, 𝐸) is derived from 𝐺1, where 𝑋2 ∈ ℝ𝐵𝑡×500×𝑑2 . To facilitate the concatena-

tion of multi-level features, a fully connected layer is used to generate 𝑑0-dimensional 

node features for 𝐺1 and 𝐺2. Subsequently, the graph embeddings from the three levels 

are concatenated, producing more enriched multi-level representations: 
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 𝐺𝑅𝑁𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐺0, 𝐺1, 𝐺2) (4) 

where, 𝐶𝑜𝑛𝑐𝑎𝑡𝑒(∙) denotes the concatenation operation. Subsequently, the 𝑑-dimen-

sional vector 𝐺𝑅𝑁𝐴 = (𝑔1, 𝑔2, . . , 𝑔𝑑) is fed into a three-layer KAN network for further 

feature extraction. 

 𝑋̂𝑅𝑁𝐴 = ∑ (∑ 𝜙𝑙,𝑗
(3)

(∑ 𝜙𝑗,𝑖
(2)

(𝜙𝑖
(1)(𝑔𝑖))𝑑

𝑖=1 )𝐽
𝑗=1 )𝐿

𝑙=1  (5) 

where, 𝐽 denotes the number of nodes in the second layer, 𝐿 denotes the number of 

nodes in the third layer, and 𝜙  represents the univariate functions in each layer. 

Through this RNA-seq Encoder, the RNA-seq-specific representation 𝑋̂𝑅𝑁𝐴 ∈ ℝ𝑁×𝐿 is 

obtained. 

2.3 Clinic Encoder 

Let 𝑋𝐶𝑙𝑖𝑛𝑖𝑐 ∈ ℝ𝑁×𝐶 denote the input of the clinical data, where 𝑁 is the number of 

samples and 𝐶 is the number of clinical features. The proposed Clinic Encoder, pow-

ered by a self-attention mechanism [18], aims to adaptively capture the correlations 

between clinical data features and assign more weight to important information. Spe-

cifically, three weight matrices are defined: the query weight matrix 𝑊𝑄 ∈ ℝ𝐶×𝐶 , the 

key weight matrix 𝑊𝐾 ∈ ℝ𝐶×𝐶  , and the value weight matrix 𝑊𝑉 ∈ ℝ𝐶×𝐶 . The query 

vector 𝑄𝑐, key vector 𝐾𝑐, and value vector 𝑉𝑐 of the modality features are computed and 

can be defined as follows: 

 𝑄𝑐 = 𝑊𝑄𝑋
𝐶𝑙𝑖𝑛𝑖𝑐  (6) 

 𝐾𝑐 = 𝑊𝐾𝑋
𝐶𝑙𝑖𝑛𝑖𝑐 (7) 

 𝑉𝑐 = 𝑊𝑉𝑋
𝐶𝑙𝑖𝑛𝑖𝑐 (8) 

Therefore, the self-attention (SA) mechanism is employed to compute the intra-

modal associations, and the enhanced feature 𝑋̂𝐶𝑙𝑖𝑛𝑖𝑐 ∈ ℝ𝑁×𝐿  for the clinical data is ob-

tained through a linear transformation. The computation of 𝑋̂𝐶𝑙𝑖𝑛𝑖𝑐 is as follows: 

 𝑋̂𝐶𝑙𝑖𝑛𝑖𝑐 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑐𝐾𝑐

𝑇

√𝑑𝑘
) 𝑉𝑐) (9) 

where 𝑑𝑘 is a hyperparameter. 



2.4 Genegraph-Clinic Fusion(GCFusion) 

 

Fig. 3. The details of the GCFusion encoder. 

A fusion strategy based on cross-attention mechanisms, GCFusion, is proposed to 

integrate RNA-specific representations and clinic-specific representations, as illus-

trated in Fig. 3. This strategy computes inter-modal relationships to generate a consen-

sus representation, which is further combined with single-modal information to obtain 

a joint representation. By computing attention weights among Query, Key, and Value, 

two cross-modal representations are obtained: 

 𝑋̂𝑅𝑁𝐴←𝐶𝑙𝑖𝑛𝑖𝑐 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑅𝑁𝐴𝐾𝐶𝑙𝑖𝑛𝑖𝑐

𝑇

√𝑑𝑘
) 𝑉𝐶𝑙𝑖𝑛𝑖𝑐 (10) 

 𝑋̂𝐶𝑙𝑖𝑛𝑖𝑐←𝑅𝑁𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐶𝑙𝑖𝑛𝑖𝑐𝐾𝑅𝑁𝐴

𝑇

√𝑑𝑘
) 𝑉𝑅𝑁𝐴 (11) 

where, 𝑄𝑅𝑁𝐴, 𝐾𝑅𝑁𝐴, and 𝑉𝑅𝑁𝐴 represent the query matrix, key matrix, and value matrix 

of the RNA-seq modality, respectively; 𝑄𝐶𝑙𝑖𝑛𝑖𝑐 , 𝐾𝐶𝑙𝑖𝑛𝑖𝑐 , and 𝑉𝐶𝑙𝑖𝑛𝑖𝑐  represent the query 

matrix, key matrix, and value matrix of the clinical modality, respectively. 𝑑𝑘 denotes 

the dimensionality of the key vectors, used to scale the dot-product attention scores. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(∙) is the normalization function applied to compute the attention weights. 

To fuse the consensus information from the dual modalities, the two cross-modal 

representations are concatenated to obtain the consensus representation. 

 𝑋𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑋̂𝑅𝑁𝐴←𝐶𝑙𝑖𝑛𝑖𝑐 , 𝑋̂𝐶𝑙𝑖𝑛𝑖𝑐←𝑅𝑁𝐴) (12) 

The consensus representation 𝑋𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠  incorporates bidirectional interaction in-

formation, encompassing both RNA-seq to clinical data and clinical data to RNA-seq 

interactions. To further enrich the feature information, this consensus representation is 

integrated with single-modal information to obtain a joint representation. 

 𝑋𝐽𝑜𝑖𝑛𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑋𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 , 𝑋̂𝑅𝑁𝐴, 𝑋̂𝐶𝑙𝑖𝑛𝑖𝑐) (13) 
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To further evaluate whether the modality interaction features possess consensus 

properties across modalities, we leverage label information for each data sample and 

employ a supervised contrastive loss to provide effective guidance. Specifically, if data 

samples from different modalities share the same label, we expect their modality con-

sensus features to be as close as possible in the embedding space. For a set of 𝑁 labeled 

data pairs {(𝑋𝑗
𝑅𝑁𝐴, 𝑋𝑗

𝐶𝑙𝑖𝑛𝑖𝑐 , 𝑦𝑗)}𝑗=1,2,…,𝑁
, we first map the features of each modality 

through their respective feature extractors and an GCFusion module into a shared em-

bedding space, obtaining the feature representations 𝑓𝑅𝑁𝐴 and 𝑓𝐶𝑙𝑖𝑛𝑖𝑐 . Subsequently, 

we compute the similarity between these features and optimize them using the super-

vised contrastive loss function. 

 ℒ𝑐𝑜𝑛 = −
1

𝑁
∑ log (

∑ 𝑒𝑥𝑝(𝑠𝑖𝑚(𝑓𝑗
𝑅𝑁𝐴,𝑓𝑘

𝐶𝑙𝑖𝑛𝑖𝑐))/𝜏𝑘∈𝑃(𝑗)

∑ 𝑒𝑥𝑝(𝑠𝑖𝑚(𝑓𝑗
𝑅𝑁𝐴,𝑓𝑘

𝐶𝑙𝑖𝑛𝑖𝑐))/𝜏𝑘≠𝑗

)𝑁
𝑗=1  (14) 

where, 𝑃(𝑗) denotes the set of indices of all positive samples in the batch that share the 

same label as sample 𝑗. 𝜏 is a scalar temperature parameter that controls the range of 

the similarity scores. 𝑠𝑖𝑚(𝑓𝑗
𝑅𝑁𝐴, 𝑓𝑘

𝐶𝑙𝑖𝑛𝑖𝑐) represents the similarity measure between the 

features of sample 𝑗 and sample 𝑘, which is typically computed using the normalized 

dot product. 

 𝑠𝑖𝑚(𝑓𝑗
𝑅𝑁𝐴, 𝑓𝑘

𝐶𝑙𝑖𝑛𝑖𝑐) =
𝑓𝑗
𝑅𝑁𝐴∙𝑓𝑘

𝐶𝑙𝑖𝑛𝑖𝑐

‖𝑓𝑗
𝑅𝑁𝐴‖‖𝑓𝑘

𝐶𝑙𝑖𝑛𝑖𝑐‖
 (15) 

 The final loss is obtained as the weighted sum of the previously defined losses: 

 ℒ = ℒ𝑐𝑙𝑠 + α𝑐𝑜𝑛ℒ𝑐𝑜𝑛 (16) 

where ℒ𝑐𝑙𝑠 is the cross-entropy loss for classification, and where α𝑐𝑜𝑛 are hyperparam-

eters that control the relative importance of the contrastive learning. 

Experiments 

2.5 Dataset description and task settings 

The two datasets were both downloaded from the Accelerating Medicines Partner-

ship Parkinson's Disease (AMP-PD). The Parkinson's Progression Marker Initiative 

(PPMI) dataset contains 4,397 samples, while the Parkinson's Disease Biomarker Pro-

gram (PDBP) dataset contains 3,345 samples. The clinical data used are from the Move-

ment Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part 

I, II, and III, where Part I includes information on cognitive assessments, and Parts II 

and III provide evaluations of motor functions. Based on this, two tasks were estab-

lished: the motor disability assessment task and the non-motor disability assessment 

task. The labels for the non-motor disability assessment task are derived from the cog-

nitive impairment score, which includes five stages; the labels for the motor disability 



assessment task are derived from the Hoehn and Yahr staging criteria, which includes 

six stages. 

  

(a) PPMI (b) PDBP 

Fig. 4. The gene networks constructed from the whole-blood RNA-seq data of the PPMI da-

taset and the PDBP dataset are demonstrated. 

To further illustrate the distribution of the two datasets, we visualized the constructed 

gene graph, as shown in Fig. 4. It can be observed that there are diverse connections 

among genes, which may potentially offer fundamental explanations for the pathogen-

esis of Parkinson's disease. 

2.6 Implementation Details 

In the work of staging diagnosis for Parkinson's disease, we conducted an in-depth 

analysis of motor and non-motor assessments based on whole blood RNA-seq data and 

clinical data. The model training process was carried out on a single Nvidia GeForce 

RTX 4090 GPU, utilizing the Adam optimizer for optimization.  Throughout the train-

ing process, the batch size was fixed at 32. 

Four statistical metrics are employed to evaluate model performance: Accuracy, F1 

Score, Recall, and Precision. All experiments were performed in quintuplicate, and the 

results were averaged. Comparative analysis of different thresholds for highly variable 

gene selection (200, 500, 800, and 1000 genes) demonstrated that the 500-gene thresh-

old yielded the best performance. 

2.7 Key Biological Processes  

Functional enrichment analysis of the significantly associated GO terms revealed 

that multiple biological processes related to neural development, immune response, car-

diovascular regulation, and metabolic function were consistently enriched across both 
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datasets, as shown in Fig. 5, indicating the pivotal roles of the identified key genes 

within multi-scale biological networks. 

  

(a) PPMI (b) PDBP 

Fig. 5. GO biological processes from whole-blood RNA-seq data in the PPMI and PDBP da-

tasets. 

Specifically, several neural system-related pathways—such as regulation of neuron 

projection development, synaptic signaling, and behavioral processes—were signifi-

cantly activated, suggesting that these genes may contribute to neuronal morphogene-

sis, synaptic plasticity, and maintenance of neural function, with potential implications 

in the pathogenesis of neurological disorders. 

Concurrently, enrichment of immune-related pathways, including both innate and 

adaptive immune responses and the regulation of inflammatory signals, supports the 

involvement of neuroinflammation as a key driver in disease progression. Furthermore, 

the enrichment of pathways associated with extracellular matrix organization, cell-cell 

adhesion, and cardiovascular system development points to a potential link between 

these genes and blood-brain barrier integrity, tissue microenvironment homeostasis, 

and cerebral blood flow regulation. 

Notably, metabolic pathways related to mitochondrial function, oxidative stress, and 

hypoxia response were also enriched, implying that the identified genes may influence 

neuronal energy metabolism and cellular viability. 

Collectively, these findings highlight the coordinated involvement of the selected 

genes in neural, immune, and metabolic systems, providing mechanistic insights and a 

solid foundation for exploring their clinical relevance in neurodegenerative diseases. 

2.8 Comparison Methods 

We compare our model with the following six baselines. Transformer [19] and 

Acmix [20] are two single-modality methods that utilize the Transformer architecture 

and a combination of convolution and attention mechanisms, respectively, to process 

RNA or clinical data. MLA-GNN [13] and GREMI [12] are graph neural network-

based methods for the joint analysis of RNA and gene co-expression networks. Addi-

tionally, MADDI [21] and SimMMDG [22] integrate blood RNA-seq and clinical data 

from two modalities, with MADDI capturing inter-modal interactions through cross-

modal attention mechanisms and SimMMDG separating modality-specific and shared 



features via contrastive learning. Ultimately, the proposed MMTG-PD method further 

integrates RNA, gene co-expression networks, and clinical data to achieve a more com-

prehensive multi-modal analysis. 

2.9 Comparison and Result Analysis 

Table 1. Performance Comparison for Motor Tasks. 

Model 
Motor-PPMI Motor-PDBP 

Acc F1-score Recall Precision Acc F1-score Recall Precision 

Transformer 

-Clinic[19] 

0.836  

(±0.013) 

0.830  

(±0.018)  

0.836 

(±0.013)  

0.830  

(±0.018) 

0.808 

(±0.017) 

0.788  

(±0.021) 

0.801  

(±0.022) 

0.778 

(±0.012) 

Transformer-

RNA 

0.603 

(±0.003) 

0.591 

(±0.007) 

0.613 

(±0.003) 

0.589 

(±0.002) 

0.641 

(±0.018) 

0.590 

(±0.019) 

0.643 

(±0.017) 

0.579 

(±0.022) 

ACmix-

Clinic[20] 

0.815 

(±0.006) 

0.795 

(±0.011) 

0.815 

(±0.006) 

0.795 

(±0.013) 

0.800 

(±0.012) 

0.774 

(±0.023) 

0.742 

(±0.006) 

0.770 

(±0.033) 

ACmix-RNA 
0.574 

(±0.003) 

0.556 

(±0.004) 

0.575 

(±0.003) 

0.546 

(±0.003) 

0.646 

(±0.004) 

0.636 

(±0.001) 

0.646 

(±0.004) 

0.625 

(±0.001) 

GREMI[12] 
0.608 

(±0.007) 

0.598 

(±0.004) 

0.608 

(±0.007) 

0.599 

(±0.006) 

0.675 

(±0.009) 

0.660 

(±0.006) 

0.685 

(±0.009) 

0.648 

(±0.008) 

MLA-GNN[13] 
0.611 

(±0.011) 

0.596 

(±0.006) 

0.612 

(±0.008) 

0.578 

(±0.003) 

0.684 

(±0.008) 

0.659 

(±0.006) 

0.684 

(±0.008) 

0.643 

(±0.008) 

MADDI[21] 
0.846 

(±0.007) 

0.841 

(±0.009) 

0.846 

(±0.007) 

0.841 

(±0.009) 

0.816 

(±0.011) 

0.798 

(±0.003) 

0.817 

(±0.011) 

0.789 

(±0.009) 

SimMMDG[22] 
0.838 

(±0.009) 

0.837 

(±0.009) 

0.827 

(±0.008) 

0.832 

(±0.011) 

0.825 

(±0.008) 

0.789 

(±0.013) 

0.816 

(±0.008) 

0.789 

(±0.019) 

MMGT-PD 

(Ours) 

0.855 

(±0.012) 

0.852 

(±0.013) 

0.857 

(±0.012) 

0.852 

(±0.013) 

0.842 

(±0.006) 

0.809 

(±0.019) 

0.836 

(±0.006) 

0.790 

(±0.021) 

Table 2. Performance Comparison for Non-Motor Tasks. 

Model 
Non-Motor-PPMI Non-Motor-PDBP 

Acc F1-score Recall Precision Acc F1-score Recall Precision 

Transformer 

-Clinic[19] 

0.728 

(±0.007) 

0.665 

(±0.015) 

0.729 

(±0.007) 

0.661 

(±0.028) 

0.815 

(±0.025) 

0.794 

(±0.029) 

0.816 

(±0.027) 

0.787 

(±0.003) 

Transformer-

RNA 

0.660 

(±0.025) 

0.630 

(±0.030) 

0.663 

(±0.021) 

0.615 

(±0.033) 

0.654 

(±0.001) 

0.583 

(±0.006) 

0.655 

(±0.001) 

0.552 

(±0.012) 

ACmix-

Clinic[20] 

0.740 

(±0.002) 

0.677 

(±0.004) 

0.740 

(±0.002) 

0.666 

(±0.004) 

0.869 

(±0.008) 

0.710 

(±0.002) 

0.869 

(±0.008) 

0.774 

(±0.004) 

ACmix-RNA 
0.677 

(±0.012) 

0.628 

(±0.009) 

0.679 

(±0.012) 

0.617 

(±0.001) 

0.626 

(±0.004) 

0.600 

(±0.002) 

0.625 

(±0.002) 

0.584 

(±0.002) 

GREMI[12] 
0.678 

(±0.006) 

0.634 

(±0.007) 

0.678 

(±0.006) 

0.620 

(±0.009) 

0.667 

(±0.009) 

0.620 

(±0.012) 

0.667 

(±0.009) 

0.602 

(±0.016) 

MLA-GNN[13] 
0.682 

(±0.002) 

0.635 

(±0.008) 

0.682 

(±0.002) 

0.613 

(±0.006) 

0.658 

(±0.003) 

0.616 

(±0.009) 

0.659 

(±0.003) 

0.599 

(±0.012) 

MADDI[21] 
0.814 

(±0.017) 

0.779 

(±0.026) 

0.814 

(±0.017) 

0.774 

(±0.024) 

0.908 

(±0.021) 

0.898 

(±0.003) 

0.908 

(±0.021) 

0.903 

(±0.037) 

SimMMDG[22] 
0.855 

(±0.024) 

0.843 

(±0.025) 

0.854 

(±0.025) 

0.839 

(±0.024) 

0.871 

(±0.009) 

0.863 

(±0.010) 

0.871 

(±0.009) 

0.860 

(±0.011) 

MMGT-PD 

(Ours) 

0.926 

(±0.037) 

0.911 

(±0.042) 

0.928 

(±0.037) 

0.914 

(±0.041) 

0.923 

(±0.025) 

0.906 

(±0.028) 

0.921 

(±0.021) 

0.905 

(±0.024) 

As shown in Table 1, Table 2 and Fig. 6, in the classification and diagnostic tasks 

of motor and non-motor dysfunctions, the MMGT-PD method significantly outper-

forms other fusion methods across various evaluation metrics. To validate the effec-

tiveness of the multimodal learning approach, baseline tests were conducted on RNA-

seq data and clinical diagnostic data using two single-modal models. The experimental 

results indicate that while single-modal data alone can achieve basic classification of 
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motor and non-motor dysfunctions in Parkinson's disease, the joint representations con-

structed through multimodal fusion schemes (MADDI and SimMMDG) significantly 

enhance classification accuracy. This finding further confirms the substantial comple-

mentarity between whole-blood transcriptomic data and clinical data. Additionally, it 

was observed that graph neural network models combining RNA-seq data with gene 

co-expression networks (GREMI and MLA-GNN) capture deeper-level information 

more effectively compared to deep learning models using only RNA-seq data, high-

lighting the significant value of integrating gene association information with RNA-seq 

data. 

  

(a) Motor-PPMI (b) Motor-PDBP 

  

(c) Non-motor-PPMI (d) Non-motor-PDBP 

Fig. 6. In (a) and (b), the PPMI dataset and the PDBP dataset are respectively used to evaluate 

the baseline methods for assessing patient motor disability, where the red solid lines in each ra-

dar subplot represent the MMGT-PD method. In (c) and (d), the PPMI dataset and the PDBP 

dataset are respectively used to compare the baseline methods for assessing non-motor disabili-

ties in patients. 

The MMGT-PD model, through its design of multi-layer graph learning and the fu-

sion of modality-specific representations with modality-consensus representations, sig-

nificantly improves diagnostic accuracy and reliability. Specifically, compared to the 

two existing graph representation learning methods, the MMGT-PD method effectively 



captures inter-gene relationships using graph attention mechanisms and the KAN 

model, resulting in more efficient RNA-seq representations. Furthermore, in compari-

son to the two existing multimodal deep learning methods, the fusion strategy designed 

in the MMGT-PD method captures more comprehensive and effective joint represen-

tations, further enhancing the model's performance. 

2.10 Ablation study 

Ablation experiments on two datasets across four subtasks validated the effectiveness 

of the proposed modules. Specifically, we individually removed the RNA-seq Encoder 

(GAT-KAN) module and the GCFusion module, with the results shown in Table 3 and 

Fig. 7. The results indicate that each module, when used alone, can enhance the perfor-

mance of the MMGT-PD baseline model to some extent. However, the optimal perfor-

mance is achieved only when both modules are integrated into the model. 

Table 3. Ablation study of the RNA-seq Encoder and GCFusion module in the MMGT-PD 

method. 

  
GAT-

KAN 
GCFusion Acc 

F1-

score 
Recall Precision 

Motor 

Task 

PPMI 

  0.848 0.838 0.847 0.839 

✓  0.848 0.845 0.851 0.848 

 ✓ 0.831 0.825 0.838 0.826 

✓ ✓ 0.855 0.852 0.857 0.852 

PDBP 

  0.819 0.782 0.815 0.753 

✓  0.832 0.800 0.835 0.832 

 ✓ 0.819 0.776 0.822 0.738 

✓ ✓ 0.842 0.809 0.836 0.790 

Non-

motor 

Task 

PPMI 

  0.900 0.928 0.902 0.901 

✓  0.904 0.900 0.903 0.881 

 ✓ 0.918 0.910 0.917 0.904 

✓ ✓ 0.926 0.911 0.928 0.914 

PDBP 

  0.896 0.859 0.887 0.835 

✓  0.910 0.911 0.915 0.899 

 ✓ 0.911 0.883 0.923 0.894 

✓ ✓ 0.923 0.906 0.921 0.905 

Effectiveness of GAT-KAN. In the experimental design of this work, we focused 

on the characteristics of whole-blood RNA-seq data, particularly the interactions be-

tween genes and their impact on the progression of Parkinson's disease. To verify the 

effectiveness of the gene interactions we extracted, we designed an ablation experiment 

for the RNA-seq Encoder (GAT-KAN) module. As shown in Table 3, the results indi-

cate that compared with the traditional combination of graph neural networks and mul-

tilayer perceptrons, the GAT-KAN module can more effectively capture the associa-

tions between genes, thereby significantly improving the classification performance of 

Parkinson's disease. Specifically, the multi-head attention mechanism in GAT dynam-

ically learns the regulatory weights between genes, effectively addressing the signal 
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dilution issue commonly caused by traditional GNN pooling operations. At the same 

time, the B-spline basis functions in KAN offer strong nonlinear adaptability, with 

piecewise polynomial fitting capabilities that accurately capture high-order interactions 

among complex biomarkers. More importantly, the integration of GAT and KAN es-

tablishes an attention-guided strategy for representation refinement: the topology-

aware features produced by GAT are further transformed by KAN's flexible basis func-

tions to enhance pathway-specific feature representations. A gated feature fusion mod-

ule is then used to jointly preserve local neighborhood structures and global functional 

associations. This architecture demonstrates strong effectiveness in capturing multi-

scale biological network features across four tasks on the PPMI and PDBP datasets. 

  

(a) Motor-PPMI (b) Motor-PDBP 

  

(c) Non-motor-PPMI (d) Non-motor-PDBP 

Fig. 7. In (a) and (b), the PPMI dataset and the PDBP dataset are respectively used to evaluate 

the baseline methods for assessing patient motor disability. In (c) and (d), the PPMI dataset and 

the PDBP dataset are respectively used to compare the baseline methods for assessing non-mo-

tor disabilities in patients. 

Effectiveness of GCFusion. In the implementation of multi-modal approaches, de-

signing the interaction between two types of modality information is crucial. This is 

because simple fusion strategies may struggle to effectively balance two types of infor-

mation: one is the modality-specific information that is closely related to the disease 

but only exists in a single modality, and the other is the consensus information shared 

between modalities. As shown in Table 3, experimental results indicate that compared 

with simple concatenation-based fusion strategies, the GCFusion module we designed 

can more fully integrate modality-specific and consensus information, thereby signifi-

cantly enhancing the classification performance of the model. Specifically, GCFusion 

leverages a cross-modal attention mechanism to establish explicit interaction pathways 



between different modalities, enabling the model to dynamically perceive and select 

the most discriminative modality-specific information during the fusion process. This 

mechanism not only enhances the collaborative representation capability across modal-

ities but also strengthens the focus on key features, effectively addressing the insuffi-

cient cross-modal interaction problem inherent in simple concatenation strategies. 

3 Conclusion and Future Work 

In this work, we used multi-modal deep learning to integrate blood RNA-seq data 

and clinical assessments. The results highlight the importance of gene interactions and 

clinical data for understanding disease mechanisms and improving diagnosis. The 

MMTG-PD framework, integrating RNA, gene co-expression networks, and clinical 

data, underscores the benefits of a comprehensive approach. This strategy provides 

deeper disease insights and more effective diagnostic tools, leading to more accurate 

predictions and improved patient outcomes. However, our work has limitations. The 

complexity of biological systems and the heterogeneity of clinical data pose challenges 

in fully capturing the nuances of disease mechanisms. Future research should address 

these challenges by incorporating more data types such as imaging and proteomics data, 

and by developing more complex models. 
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