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Abstract. Federated Learning (FL) has gained considerable attention in machine 

learning for its ability to preserve data privacy while enabling collaborative mod-

eling. However, statistical heterogeneity, such as non-independent and identi-

cally distributed (non-IID) data severely limits performance. To address this lim-

itation, this study proposes an Adaptive Kernel Alignment-based Personalized 

Federated Learning framework (AKPFL). This approach achieves a balance be-

tween global model sharing and local adaptation by incorporating a dynamic ker-

nel adjustment mechanism and a personalized model fusion strategy, thereby im-

proving model generalization and robustness in heterogeneous data environ-

ments. Experimental results demonstrate that, compared to existing algorithms, 

AKPFL delivers substantial improvements in test accuracy on datasets such as 

Fashion MNIST, CIFAR-10, and CIFAR-100, particularly under high statistical 

heterogeneity. The code for the framework will be released publicly following 

the completion of the paper review process. 

Keywords: Federated Learning, Personalized Federated Learning, Statistical 

Heterogeneity, Kernel Function, Meta-Learning. 

1 Introduction 

Modern machine learning has shown exceptional capability in handling high-dimen-

sional and complex data. However, with the increasing demand for privacy protection 

and distributed data, traditional centralized learning has encountered challenges related 

to data security and storage costs in recent years. Federated Learning (FL), an emerging 

distributed learning paradigm, offers an effective solution to these issues [1]. It plays a 
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unique role in the manufacturing [2], communication [3] and transportation industries 

[4]. 

Federated Learning strikes a balance between data privacy protection and collabora-

tive optimization by training models on multiple local clients, uploading the trained 

model parameters to a central server for aggregation, and then distributing the aggre-

gated model back to the clients [5]. However, the data on different clients often exhibit 

distinct local distributions in practice. This characteristic, known as local data statistical 

heterogeneity, presents significant challenges to the generalization performance of the 

global model [6]. Due to the severe statistical heterogeneity, a single global model 

struggles to generalize effectively across different local clients. As a result, balancing 

the global shared model with the regional, personalized models has become a critical 

issue in Federated Learning research. 

Statistical heterogeneity refers to the non-IID (non-independent and identically dis-

tributed) problem in Federated Learning, caused by significant differences in data dis-

tributions among clients [7]. To address this challenge, several methods have been pro-

posed. Ahmad et al. introduced a weight aggregation mechanism based on the Hessian 

matrix, which improves the robustness and convergence performance of the global 

model under statistical heterogeneity by more accurately capturing gradient infor-

mation [8]. Azimi and Fodor proposed a hierarchical Federated Learning framework 

that integrates quantized communication optimization to coordinate gradient aggrega-

tion and model aggregation across multiple layers, thereby mitigating the impact of data 

distribution discrepancies on model performance [9]. Additionally, Li et al. developed 

a contrastive learning-based Federated Learning method, Model-Contrastive Federated 

Learning (MOON), which effectively alleviates the impact of statistical heterogeneity 

on model convergence by contrasting representations of the global and local models 

[10]. However, existing personalized aggregation schemes often face feature shift is-

sues, where features from datasets with prominent characteristics disproportionately 

influence global clients. To systematically address these challenges, Tan et al. con-

ducted a comprehensive review of personalized Federated Learning, analyzing current 

research progress and challenges while providing theoretical guidance for future studies 

[11]. Furthermore, Xu et al. proposed a balanced information and dynamic update pro-

totype representation Federated Learning method (BD-FedProto), which dynamically 

adjusts the balance between local and global learning to enhance the adaptability and 

generalization of models under non-IID data [12]. 

This paper proposes a personalized Federated Learning scheme based on adaptive 

hierarchical kernel alignment to mitigate the feature shift phenomenon. By utilizing a 

central kernel alignment dynamic adjustment mechanism and a customized model lay-

ering method, the proposed approach alleviates the impact of statistical heterogeneity 

on the model's generalization ability. To provide a more intuitive understanding of the 

algorithm's overall framework and workflow, the core algorithm framework is illus-

trated in Figure1. 
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Fig. 1. This figure illustrates the training process of the personalized and global models in the 

Federated Learning algorithm. First, the clients split the local model into a personalized model 

ℎ𝑖 and global model ∅𝑖. The Meta-Learner performs preprocessing operations on both compo-

nents, and the kernel distance function 𝐷(𝑘,∙) is used to calculate the distance between the mod-

el's previous and current iterations. A custom smoothing function 𝑄(𝑡) is applied to dynamically 

adjust the model's optimization direction. Subsequently, the personalized and global models are 

fused using the weight 𝜔𝑖, resulting in ∅𝑖
𝑓𝑢𝑠𝑒𝑑

.The client uploads the fused model to the server, 

where the server aggregates the models uploaded by all clients to generate a new global model 

∅𝑡+1 and sends it back to the clients, completing one iteration of the update. 

Specifically, the main contributions of this paper are as follows: 

1. We propose a dynamic adjustment mechanism based on kernel alignment 

to measure the feature deviation between local and global clients. This mechanism 

overcomes the limitations of traditional distance metrics, which tend to fail in high-

dimensional spaces. 

2. We empirically demonstrated the effectiveness of AKPFL,with its perfor-

mance improving by several percentage points across different datasets. Notably, it 

exhibited outstanding robustness and generalization capabilities on the CIFAR-10 

and CIFAR-100 datasets under pathological data distribution. 

3. We establish a comprehensive and easily modifiable framework to ensure 

its effective application in real-world scenarios. 

2 Related Work 

In recent years, Federated Learning (FL) has garnered significant attention for its ad-

vantages in preserving data privacy and enabling distributed collaborative modeling. Li 

et al. [13] proposed the FedProx algorithm, which mitigates the global performance 

degradation caused by differences in client updates by incorporating a proximal regu-

larization term. Reddi et al. [14] introduced the FedOpt framework, which employs 

adaptive optimization strategies to enhance model convergence and generalization. 

Ghosh et al. [15] proposed an aggregation mechanism based on kernel distance, which 

optimizes global model performance on heterogeneous data by measuring the similarity 

of client models. 

Personalized Federated Learning (PFL) has emerged as a critical research direction 

by balancing global sharing with local adaptability. Fallah et al. [16] designed a 



 

Personalized Federated Learning method based on MAML, enabling rapid client adap-

tation. T. Dinh et al. [17] proposed the pFedMe framework, which incorporates a Mo-

reau regularization term to improve local model performance. Hanzely and Richtárik 

[18] introduced a hybrid optimization approach to effectively balance global and per-

sonalized needs. 

The application of kernel functions has further advanced Federated Learning in het-

erogeneous data scenarios. Yurochkin et al. [19] applied Bayesian Nonparametric Fed-

erated Learning (BNFL) to integrate global and local distributions using kernel meth-

ods, significantly enhancing generalization. Tang et al. [20] proposed a Federated 

Learning method based on dynamically adjusted kernel functions, which improves ro-

bustness in nonlinear data scenarios through adaptive kernel selection. These studies 

highlight the potential of kernel functions in addressing the challenges posed by statis-

tical heterogeneity. 

3 Preliminary knowledge 

Preliminary knowledge provides the theoretical foundation for model design and opti-

mization. The proposed hierarchical personalized Federated Learning framework inte-

grates the rapid adaptation capability of meta-learning, the dynamic adjustment mech-

anism of kernel functions, and a model fusion strategy. This combination enables the 

collaborative optimization of global sharing and local, personalized models, offering 

theoretical support for efficient modeling in heterogeneous data scenarios. 

3.1 Federated Learning 

Federated Learning (FL) is a distributed machine learning framework designed to train 

a global model through collaborative optimization while preserving data privacy. In 

this framework, the system consists of multiple clients, each with a local dataset 𝐷𝑖 =

{(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗)}𝑗=1
𝑀𝑖 , where 𝑀𝑖 represents the size of the local dataset. Clients first train the 

model parameters ∅𝑖on their local data to minimize the local loss function 𝑓𝑖(∅): 

∅𝑖
𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓𝑖(∅) (1) 

where ∅𝑖
𝑡  represents the locally optimized model parameters for client 𝑖 . Subse-

quently, the central server receives the parameters ∅𝑖 uploaded by the clients and up-

dates the global model parameters ∅𝑡+1 using a weighted average: 

∅𝑡+1 =
1

𝑛
∑ ∅𝑖

𝑡

𝑛

𝑖=1

(2) 

This process optimizes the global model through multiple rounds of iteration be-

tween the clients and the server. However, due to the non-IID nature of client data dis-

tributions, Federated Learning faces challenges in the generalization performance of 

the global model. This requires optimization strategies to balance the needs of the glob-

ally shared model and local adaptability. 
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3.2 Meta-Learning 

To address the personalized modeling challenges posed by non-IID data in Federated 

Learning, we introduce the Model-Agnostic Meta-Learning (MAML) method. MAML 

optimizes the initial parameters ∅ of the global model, enabling it to rapidly adapt to 

client-specific local data, thereby enhancing personalized adaptability with minimal 

computational overhead. During training, MAML balances global sharing and local 

personalization through two optimization loops: inner and outer. 

For the global model, MAML employs stochastic gradient descent (SGD) to quickly 

adjust the global model parameters, with the update formula given by: 

∅＇ = ∅ − 𝛼∇∅𝐿(ℎ(𝑥), 𝑦) (3) 

where ∅ represents the global model parameters, 𝐿  is the local loss function, and 𝛼 

is the learning rate. 

 

MAML optimizes the personalized model parameters on local data to adjust the 

model for improved client adaptability. The updated formula for the personalized model 

is: 

ℎ＇ = ℎ − 𝛼∇ℎ𝐿(ℎ(𝑥), 𝑦) (4) 

By jointly optimizing both the global and personalized model parameters, MAML 

enables the model to rapidly adapt to client-specific data, significantly improving mod-

eling performance in non-IID environments. 

3.3 Kernel Functions 

Kernel Functions are used in Federated Learning to measure the similarity between 

personalized models and global models by calculating the distance between the model 

parameters from previous and current rounds, dynamically adjusting the model update 

process. In heterogeneous data scenarios, Kernel Functions ensure the generalization 

of the global model while enabling the personalized fitting process. For two sets of 

model parameters 𝜃1 and 𝜃2, the distance based on the Kernel Functions is defined as: 

𝐷(𝜃1, 𝜃2) = √𝑘(𝜃1, 𝜃1) + 𝑘(𝜃2, 𝜃2) − 2𝑘(𝜃1, 𝜃2) (5) 

where 𝑘(∙,∙) denotes the kernel function used to calculate the similarity between vec-

tors. 

In this study, we utilized various kernel functions, including linear, RBF, polyno-

mial, Laplacian, and Matern kernels. The linear kernel computes the inner product of 

parameters directly and is suitable for scenarios with linear correlations. The formula 

is: 

𝑘𝑙𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑦) = 𝑥𝑇𝑦 (6) 

For complex nonlinear relationships, the RBF kernel captures the nonlinear features 

of data distribution through a Gaussian function: 

𝑘𝑟𝑏𝑓(𝑥, 𝑦) = exp (−
|𝑥 − 𝑦|2

2𝜎2
) (7) 

The polynomial kernel extends the feature space to capture nonlinear relationships, 

and its formula is: 



 

𝑘𝑝𝑜𝑙𝑦(𝑥, 𝑦) = (𝛾𝑥𝑇𝑦 + 𝑐)𝑑 (8) 

The Laplacian kernel, based on linear distance, emphasizes local nonlinear features 

with the following form: 

𝑘𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(𝑥, 𝑦) = exp (−
|𝑥 − 𝑦|

𝜎
) (9) 

Additionally, the Matern kernel provides flexibility by adjusting the smoothness of 

the kernel function via the smoothness parameter $\nu$. For instance, when $\nu = 1.5$, 

the formula is: 

𝑘𝑚𝑎𝑡𝑒𝑟𝑛(𝑥, 𝑦) = (1 + √3
|𝑥 − 𝑦|

𝑙
) exp (−√3

|𝑥 − 𝑦|

𝑙
) (10) 

The above Kernel Functions provide diverse tools for calculating data similarity. By 

selecting the appropriate kernel function based on task requirements, it is possible to 

construct a framework that effectively integrates heterogeneous data and personalized 

models, thereby improving modeling performance and optimization capabilities under 

heterogeneous data distributions. 

3.4 PFL algorithm 

We propose a hierarchical optimization framework that combines a global shared 

model and local, personalized models to address modeling challenges in non-IID data 

environments across clients. Through collaborative optimization, the global model cap-

tures shared features across clients. In contrast, the local, personalized models refine 

adjustments based on the distribution characteristics of client data, satisfying both 

global and local requirements. 

Assume the system includes 𝑛  clients, where each client 𝑖  has a dataset 𝐷𝑖 =

{(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗)}𝑗=1
𝑀𝑖 .The global model parameters are denoted as $\phi$, and the personal-

ized model parameters as ℎ𝑖.The joint optimization objective for the global and local 

models is 

ℎ𝑖(𝑥) = 𝐸𝑥~𝐷𝑖
[𝐿 (ℎ𝑖(𝑞∅(𝑥)), 𝑦)] (11) 

Where 𝑓𝑖(∅, ℎ𝑖) is the loss function for client 𝑖,which accounts for the collaborative 

optimization of the global and personalized models. The personalized model is refined 

based on local data, and its predictive output is expressed as: 

min
𝛷∈Н

1

𝑛
∑  𝑓𝑖(∅, ℎ𝑖)

𝑛

𝑖=1

(12) 

where L measures the error between the predicted output ℎ𝑖(𝑞∅(𝑥)) and the true la-

bel 𝑦. 

Building on this, we introduce a model fusion strategy that dynamically adjusts the 

weights 𝜔 to combine the global and personalized models efficiently. The dynamic 

weights are adjusted based on the changes in the client's loss, represented as: 

𝜔 = 𝑓(𝑙𝑜𝑠𝑠𝑝𝑟𝑒𝑣 , 𝑙𝑜𝑠𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡) (13) 

Where 𝜔 is the weighting coefficient used to balance the contribution of the global 

and personalized models in the current round. The fusion and update formulas for the 

personalized model and global model parameters are as follows: 
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ℎ𝑖 = 𝜔ℎ𝑖
𝑝𝑟𝑒𝑣

+ (1 − 𝜔)ℎ𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (14) 

∅𝑖 = 𝜔∅𝑖
𝑝𝑟𝑒𝑣

+ (1 − 𝜔)∅𝑖
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (15) 

The server aggregates the fused model parameters uploaded by the clients to update 

the global model: 

∅𝑡+1 =
1

𝑛
∑ ∅𝑖

𝑓𝑢𝑠𝑒𝑑

𝑛

𝑖=1

(16) 

Through the dynamic fusion mechanism, clients can adaptively adjust between the 

global shared and personalized models based on task requirements. This reduces the 

generalization error of the global model and enhances the personalized model's adapt-

ability to local data. Finally, the server optimizes the global model's performance by 

aggregating the fused parameters from clients, providing theoretical support and prac-

tical value for federated learning in federated data scenarios. 

4 AKPFL Algorithm 

This section elaborates on the core design and implementation of our algorithm, focus-

ing on two key components: adaptive kernel function adjustment and personalized 

model fusion. By introducing a dynamic kernel adjustment mechanism, we accurately 

capture the feature shift between local and global models, enabling adaptive adjust-

ments to the optimization direction and enhancing the model's robustness and general-

ization capabilities in heterogeneous data scenarios. 

The personalized model fusion strategy also integrates kernel distance with a dy-

namic weight smoothing mechanism, achieving an efficient balance between global 

sharing and local personalization requirements. The server performs weighted aggre-

gation of the fused model parameters uploaded by clients, further improving the stabil-

ity and performance of the global model. These designs effectively address the chal-

lenge of statistical heterogeneity, significantly enhancing the applicability of federated 

learning in complex real-world scenarios. 

4.1 Client update 

Client-Side Personalized Model: In local, personalized model updates on the client side, 

the initial parameters of the personalized model are first adjusted through meta-learning 

to enable rapid adaptation to local data. Based on these initial parameters, further per-

sonalized optimization for local tasks is performed, generating the personalized head 

parameters for the current round ℎ𝑖
𝑡,𝑠

. 

To enhance the robustness and generalization capability of the personalized model, 

a structured regularization constraint is introduced during the optimization process. An 

L2 regularization term is applied to the personalized head parameters to effectively 

suppress overfitting. The regularization formula is as follows: 

𝑅(ℎ𝑖
𝑡,𝑠) = 𝜏 ∑ |𝑝|2

2

𝜌∈ℎ𝑒𝑎𝑑

(17) 



 

where 𝜏 is the regularization weight, and |𝑝|2
2 represents the L2 norm of the person-

alized head parameters. This regularization improves the stability and adaptability of 

the model. The updated formula for the personalized head is as follows: 

ℎ𝑖
𝑡,𝑠 = 𝑆𝐺𝐷(𝑓𝑖(ℎ𝑖

𝑡,𝑠−1, ∅𝑡), ℎ𝑖
𝑡,𝑠−1, 𝛿) + 𝑅(ℎ𝑖

𝑡,𝑠) (18) 

where 𝑆𝐺𝐷(∙) denotes the stochastic gradient descent algorithm used to update the 

personalized head parameters. 

After completing the gradient updates, the difference between the personalized head 

in the current and previous rounds is calculated using a kernel function. The kernel 

function adaptively computes the kernel distance between the personalized parameters 

from the current and previous rounds to measure the extent of the parameter change: 

𝐷(ℎ𝑖
𝑡,𝑠, ℎ𝑖

𝑡,𝑠−1) = √𝑘(ℎ𝑖
𝑡,𝑠, ℎ𝑖

𝑡,𝑠) + 𝑘(ℎ𝑖
𝑡,𝑠−1, ℎ𝑖

𝑡,𝑠−1) − 2𝑘(ℎ𝑖
𝑡,𝑠, ℎ𝑖

𝑡,𝑠−1) (19) 

Combining the kernel distance 𝐷 with an auxiliary adjustment function  𝑄ℎ𝑒𝑎𝑑(𝑡), 

the smoothing coefficient 𝜇 is dynamically adjusted. The function 𝑄ℎ𝑒𝑎𝑑(𝑡) is adapted 

based on the current training round it and the total number of rounds 𝑇ℎ𝑒𝑎𝑑 : 

 𝑄ℎ𝑒𝑎𝑑(𝑡) = 1 −
𝑡

𝑇ℎ𝑒𝑎𝑑

(20) 

The dynamic smoothing coefficient 𝜇𝑖 is then calculated as: 

𝜇𝑖 = 𝐷(ℎ𝑖
𝑡,𝑠, ℎ𝑖

𝑡,𝑠−1) ∙ 𝑄ℎ𝑒𝑎𝑑(𝑡) (21) 

Using the dynamic smoothing coefficient 𝜇, the update strategy for the personalized 

head parameters in the current round is as follows: 

ℎ𝑖
𝑡,𝑠 = ℎ𝑖

𝑡,𝑠−1 + (1 − 𝜇𝑖)ℎ𝑖
𝑡,𝑠 (22) 

This design enables the model to adaptively smooth the current optimization using 

historical information, ensuring that the training process for the personalized head pa-

rameters converges gradually. It also effectively enhances the robustness and generali-

zation capability of the personalized model. By incorporating regularization terms and 

a dynamic smoothing mechanism based on kernel functions, the client achieves effi-

cient optimization and stable updates for the personalized model. 

Global Model: Building upon the optimization of personalized models, global model 

training aims to integrate local information from all clients, achieving efficient gener-

alization of shared knowledge across clients. Meta-learning is used to pre-train the 

global model parameters, enabling the model to quickly adapt to the diverse data dis-

tributions of different clients, thereby reducing local optimization time and providing a 

robust initialization for subsequent global model updates. 

In each round of global optimization, clients perform local training on their datasets 

using stochastic gradient descent (SGD) to update the global model parameters ∅𝑖, The 

optimization formula is as follows: 

∅𝑖
𝑡,𝑠 = 𝑆𝐺𝐷(𝑓𝑖(∅𝑖

𝑡,𝑠−1, ∅𝑖
𝑡,𝑠), ∅𝑖

𝑡,𝑠−1, 𝛿) (23) 

To measure the difference between the global model parameters of the current and 

previous rounds, the kernel function module is used to compute the similarity between 

the parameters. By dynamically selecting the optimal kernel function, the kernel dis-

tance between the global model parameters of the current and previous rounds is calcu-

lated 
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𝐷(∅𝑖
𝑡,𝑠, ∅𝑖

𝑡,𝑠−1) = √𝑘(∅𝑖
𝑡,𝑠, ∅𝑖

𝑡,𝑠) + 𝑘(∅𝑖
𝑡,𝑠−1, ∅𝑖

𝑡,𝑠−1) − 2𝑘(∅𝑖
𝑡,𝑠, ∅𝑖

𝑡,𝑠−1) (24) 

Here, 𝑘(∙) is the kernel function, which can adaptively select the kernel type based 

on the data characteristics. Combining the kernel distance 𝐷 and an auxiliary adjust-

ment function 𝑄𝑏𝑎𝑠𝑒(𝑡), the smoothing coefficient 𝛼𝑖 is dynamically calculated as: 

𝛼𝑖 = 𝐷(∅𝑖
𝑡,𝑠, ∅𝑖

𝑡,𝑠−1) ∙ 𝑄𝑏𝑎𝑠𝑒(𝑡) (25) 

where the auxiliary adjustment function is defined as: 

𝑄𝑏𝑎𝑠𝑒(𝑡) = 1 −
𝑡

𝑇𝑏𝑎𝑠𝑒

(26) 

Here, 𝑄𝑏𝑎𝑠𝑒(𝑡) represents the total number of training rounds, and $s$ is the current 

round. As training progresses, the auxiliary adjustment function gradually decreases, 

allowing the smoothing coefficient to converge and ensuring stability during synchro-

nized optimization. 

After completing local optimization, the server performs a smoothing fusion of the 

personalized model parameters uploaded by the clients with the global model parame-

ters from the current round to achieve dynamic updates of the global model parameters: 

∅𝑖
𝑡,𝑠 = ∅𝑖

𝑡,𝑠−1 + (1 − 𝛼𝑖)∅𝑖
𝑡,𝑠 (27) 

Through this mechanism, global model training not only preserves the personalized 

updates uploaded by the clients but also dynamically adjusts and smooths the contribu-

tions using kernel functions. This balances global sharing with local adaptation, achiev-

ing cross-client model generalization and efficient optimization. It establishes a solid 

foundation for further optimization and stable convergence of personalized models. 

Model Fusion Strategy: After optimizing the personalized and global models, we 

introduce a dynamic model fusion mechanism to balance their contributions. During 

the fusion process, the kernel distance 𝑑 between the personalized head parameters ℎ𝑖
𝑡,𝑠

 

and the global model parameters ∅𝑖
𝑡,𝑠

 is computed using a kernel function. The fusion 

weight 𝜔𝑖  is dynamically adjusted based on the changes in the loss, following the 

weight adjustment strategy: 

𝜔𝑖 = {

0.3, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑜𝑠𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦
0.7, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑜𝑠𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦

0.5, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑜𝑠𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑠𝑡𝑎𝑏𝑙𝑒
(28) 

Incorporating the kernel distance and an exponential decay mechanism, the final 

weight 𝜔𝑖 is further dynamically adjusted as: 

𝜔𝑖 = 𝜔𝑖 ∙ exp(−𝑑) , 𝜔𝑖 ∈ [0.05,0.95] (29) 

Based on the dynamic weight 𝜔𝑖, the fused model parameters are updated using a 

weighted average: 

∅𝑖
𝑓𝑢𝑠𝑒𝑑

= 𝜔𝑖ℎ𝑖
𝑡,𝑠 + (1 − 𝜔𝑖)∅𝑖

𝑡,𝑠 (30) 

This mechanism achieves a dynamic balance between globally shared information 

and personalized adaptability. It effectively combines the generalization performance 

of the global model with the adaptability of the personalized head model, thereby en-

hancing model performance in non-IID data scenarios. 



 

4.2 Server update 

In each training round, the server receives the fused model parameters ∅𝑖
𝑓𝑢𝑠𝑒𝑑

 uploaded 

by the clients and updates the global model parameters ∅ through a weighted average 

based on the local sample sizes of the clients. The specific update formula is: 

∅𝑡+1 =
1

𝑟
∑ 𝜔𝑖

𝑟

𝑖=1

∅𝑖
𝑓𝑢𝑠𝑒𝑑 (31) 

Where ∅𝑖
𝑓𝑢𝑠𝑒𝑑

 represents the fused parameters uploaded by client 𝑖, it is the number 

of participating clients in the training ground, and 𝜔𝑖 is the weight for client 𝑖, typically 

determined by the proportion of local sample size. 

Using this weighted averaging strategy, the server effectively aggregates the local 

updates from clients to generate new global model parameters  ∅𝑡+1. The server then 

distributes the updated global model parameters to all clients as the initialization for the 

next training round, continuing until the global model converges. 

This process ensures stable updates of the global model under clients' diverse data 

distributions while maintaining the generalization ability of the globally shared 

knowledge. The detailed implementation steps are presented in Algorithm 1. 
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Algorithm 1      The training process of AKPFL. 

Require: Number of rounds 𝑇, number of clients 𝑁, local epochs 𝜏𝑔, head epochs 𝜏ℎ (person-

alized), learning rates 𝛿𝑔 and 𝛿ℎ, initial global model ∅0, initial personalized model ℎ0, 

smoothing coefficient 𝛼 and 𝜇, fusion weight 𝜔 

Ensure: Final global model ∅𝑡+1 and personalized head model ℎ𝑡 

For each round 𝒕 = 𝟎, … , −𝟏 do 

       Server sends global model ∅𝑡 and personalized model ℎ𝑡 to selected clients 𝑆𝑡 

       For each client 𝒊 ∈ 𝑆𝑡 in parallel do 

          Initialize global model ∅𝑖
𝑡,0 ← ∅𝑡, personalized model ℎ𝑖

𝑡,0 ← ℎ𝑡  

         Local Update: Personalized Head 

         For each head epoch 𝒔 = 𝟏, … , 𝜏ℎ do 

               ℎ𝑖
𝑡,𝑠 ← ℎ𝑖

𝑡,𝑠−1 =  𝛿ℎ∇ℎ𝐿𝑖(ℎ𝑖
𝑡,𝑠−1

)  

               𝜇𝑖 = 𝐷(ℎ𝑖
𝑡,𝑠, ℎ𝑖

𝑡,𝑠−1) ∙ 𝑄ℎ𝑒𝑎𝑑(𝑡) 

               ℎ𝑖
𝑡,𝑠 = ℎ𝑖

𝑡,𝑠−1 + (1 − 𝜇𝑖)ℎ𝑖
𝑡,𝑠

 

         End for 

          Local Update: Global Model 

         For each global epoch 𝒔 = 𝟏, … , 𝜏𝑔 do 

               ∅𝑖
𝑡,𝑠 ← ∅𝑖

𝑡,𝑠−1 =  𝛿𝑔∇𝑔𝐿𝑖(∅𝑖
𝑡,𝑠−1

) 

               𝛼𝑖 = 𝐷(∅𝑖
𝑡,𝑠, ∅𝑖

𝑡,𝑠−1) ∙ 𝑄𝑏𝑎𝑠𝑒(𝑡) 

              ∅𝑖
𝑡,𝑠 = ∅𝑖

𝑡,𝑠−1 + (1 − 𝛼𝑖)∅𝑖
𝑡,𝑠

 

         End for 

         Fusion Step: Combine Global and Personalized Models 

         ∅𝑖
𝑓𝑢𝑠𝑒𝑑

= 𝜔𝑖ℎ𝑖
𝑡,𝜏ℎ + (1 − 𝜔𝑖)∅

𝑖

𝑡,𝜏𝑔
 

          Send fused parameters ∅𝑖
𝑓𝑢𝑠𝑒𝑑

 to the server 

       End for 

       Server Aggregation: 

       ∅𝑡+1 =
1

|𝑆𝑡|
∑ 𝜔𝑖

𝑟
𝑖=1 ∅𝑖

𝑓𝑢𝑠𝑒𝑑
 

End for 

Output: Global model ∅𝑡+1  

5 Experiment 

To demonstrate the efficacy of AKPFL, two aspects are empirically investigated: 

1. Does AKPFL work? We compare our algorithm with classic baselines on pub-

lic datasets under varying levels of data heterogeneity. 

2. How does AKPFL work? We conduct ablation experiments to compare how 

different kernel functions contribute to the FL process. 



 

5.1 Set up 

Dataset: The datasets used in this study include FashionMNIST [21], CIFAR-10, and 

CIFAR-100 [22]. These datasets are commonly used as benchmarks commonly used to 

to evaluate the performance of federated learning in image classification tasks. 

Baselines: Our baselines include two classic federated models: classical federated 

learning and personalized federated learning. 1) Classical federated learning includes 

FedAvg [23] and FedProx [13]; 2) Personalized federated learning includes FedBABU 

[24], MOON [10], FedBN [25], FedRod [26], and FedRep [27]. 

Implementation: Our baseline reproduction is based on the PFLIB framework [28]. 

All experiments are conducted on a high-performance computational setup with the 

following specifications: NVIDIA RTX 4090 GPU (25.2 GB memory), AMD EPYC 

9354 CPU (16 cores), 60.1 GB RAM, and 751.6 GB storage. 

 
Fig. 2. Experimental comparison chart of different 𝛼 heterogeneities on the Cifar100 

dataset. 

Data Heterogeneity Settings: We employ two dataset partitioning methods: Dirichlet 

partitioning and pathological label partitioning. In Dirichlet partitioning method, de-

noted as 𝐷𝑖𝑟(𝛼), the parameter 𝛼 is set to 0.1, 0.5, and 1, while in pathological label 

partitioning method, denoted as 𝑃𝑎𝑡(𝛽), the parameter 𝛽 is assigned values of 1, 2, and 

3. 

 
Fig. 3. E Experimental comparison chart of different 𝛽 heterogeneities on the Cifar10 

dataset. 
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5.2 Comparative experiment 

The experimental results of AKPFL under Dirichlet data heterogeneity are shown in 

Table 1, while the results under pathological data heterogeneity are presented in Table 

2. Our method demonstrates superior performance compared to classic baseline models 

across most settings. The comparative experiments conducted on the CIFAR-10 dataset 

are summarized in Fig. 2 and Fig. 3. 

 

Table 2. Test Accuracy of Different Algorithms on Fashion MNIST, CIFAR-10, and 

CIFAR-100 Datasets under Dirichlet Distribution Parameters 𝛼 = 0.1,0.5,1. 

Algorithm Fashion MNIST Cifar-10 Cifar-100 

 Dir 0.1 Dir 0.5 Dir 1 Dir 0,1 Dir 0.5 Dir 1 Dir 0.1 Dir 0.5 Dir 1 

FedAvg 74.91 83.00 82.87 36.92 48.58 52.19 18.83 21.06 21.24 

FedProx 74.89 82.98 82.86 36.91 48.62 52.18 18.83 21.05 21.24 

FedBabu 72.54 81.07 80.94 35.69 44.90 48.20 16.31 17.96 17.90 

MOON 74.85 83.00 82.86 36.95 48.16 52.18 18.82 21.06 21.26 

FedBN 74.87 83.00 82.86 36.91 48.60 52.18 18.87 21.07 21.24 

FedRod 95.85 88.72 87.68 86.39 68.58 63.21 41.76 28.26 23.88 

FedRep 96.01 88.53 87.32 87.16 68.92 62.14 43.08 24.32 18.58 

AKPFL 95.26 90.02 89.48 84.77 70.71 64.14 38.59 27.47 25.86 

 

Table 2. Test Accuracy of Different Algorithms on FashionMNIST, CIFAR-10, and 

CIFAR-100 Datasets under Pathological Distribution Parameters 𝛽 = 1,2,3. 

Algorithm Fashion MNIST Cifar-10 Cifar-100 

 Pat1 Pat 2 Pat 3 Pat 1 Pat 2 Pat 3 Pat 1 Pat 2 Pat 3 

FedAvg 73.19 73.21 73.22 44.77 44.78 44.78 18.30 18.30 18.35 

FedProx 73.21 72.22 72.22 44.75 44.76 44.76 18.32 18.32 18.32 

FedBabu 71.14 71.80 70.95 41.83 41.85 41.89 16.70 16.70 16.64 

MOON 73.26 73.22 73.19 44.79 44.80 44.77 18.29 18.29 18.32 

FedBN 73.20 73.21 73.21 44.75 44.77 44.76 18.32 18.32 18.31 

FedRod 98.70 98.72 98.63 85.24 85.24 85.23 52.72 52.70 52.68 

FedRep 98.71 98.70 98.61 86.72 86.70 86.68 57.65 57.64 57.72 

AKPFL 98.75 98.72 98.64 86.86 86.85 64.89 49.20 49.91 49.69 

 

  



 

5.3 Ablation experiment 

Table 3. Performance of Different Kernels and Meta-Learning Methods in Ablation 

experiment. 

Algorithm Fashion MNIST Cifar-10 Cifar-100 

 Dir0.5 Dir1 Pat3 Dir0.5 Dir1 Pat3 Dir0.5 Dir1 Pat3 

Linear 98.94 89.58 98.64 70.52 63.94 86.86 27.39 25.83 49.84 

RBF 90.03 89.57 98.66 70.34 64.12 86.86 27.33 25.88 49.04 

Poly 89.68 89.05 98.36 69.82 63.57 86.48 26.86 25.52 49.39 

Lap 89.56 88.94 97.66 70.45 63.43 86.34 26.84 25.21 48.48 

Matern 90.07 89.75 98.72 70.62 64.25 86.92 27.30 25.83 49.80 

MAML 89.06 89.31 75.70 60.84 63.73 53.81 27.72 27.47 21.54 

 

The ablation experiments validate the significant contributions of the adaptive kernel 

distance formula and the meta-learning module to the framework's performance. The 

adaptive kernel selection enhances the model's generalization capability for heteroge-

neous data, while the meta-learning module accelerates model training and improves 

local data adaptability. The complete framework leverages the synergy of these two 

components, demonstrating superior performance across various tasks and distribution 

settings. The ablation experiment results are shown in Table 3. 

6 Conclusion 

This study investigates methods to mitigate statistical heterogeneity in federated learn-

ing. Our primary focus is on an adaptive kernel alignment-based federated learning 

approach to address model discrepancies caused by heterogeneity across clients. The 

proposed AKPFL algorithm demonstrates that selecting different kernel functions for 

feature alignment during model aggregation significantly reduces. Future work will ex-

plore the application of the client kernel alignment approach to more complex model 

heterogeneity and large-scale federated learning models, further examining whether 

kernel alignment can effectively mitigate heterogeneity across various dimensions. 
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