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Abstract. Modern mathematical neural networks are derived from biological 

neural networks, yet the currently popular general large models do not incorpo-

rate biological neural networks. The primary reason for this is that the differential 

equations based on biological neural networks are difficult to manipulate. At pre-

sent, mathematical neural networks are characterized by their capacity for large-

scale deployment, while biological neural networks offer strong biological inter-

pretability. This paper introduces a system of differential equations with perfect 

symmetry and convenient manipulability, enabling us to manipulate this system 

as easily as we manipulate numbers in a matrix, thus integrating the advantages 

of both. As we are introducing a brand-new neural network framework, we first 

explore the mathematical properties of the differential equations, then define a 

new signal propagation method, and finally propose a new training approach for 

the neural network. The training of this new neural network does not rely on the 

traditional back-propagation algorithm; instead, it depends solely on the propa-

gation of local signals. This implies that we no longer require global information 

to train the network. Each neuron can adjust based on the signals it receives and 

its predetermined strategy. As a verification, we mimicked the linking method of 

a multilayer perceptron (MLP) to create a new neural network and trained it on 

the MNIST dataset, demonstrating the effectiveness of our methodology. 

Keywords: Symmetric differential equations, Fixed point, Multilayer percep-

tron, Neural network, Backward propagation. 

1 Introduction 

In 1952, Alan Hodgkin and Andrew Huxley introduced a model based on differential 

equations (Equation (1.1)) derived from experiments, aimed at elucidating the intricate 

mechanisms of ion concentration, membrane potential, and conduction current in nerve 

cells[1] . This pioneering work advanced our understanding of nerve cell function and 

promoted the proposal of a variety of other models, and also earned them the Nobel 

Prize in 1963.  

In Equation (1.1), the first term represents the conduction current, which is influ-

enced by the membrane potential 𝑉𝑚 and two ionic currents (including potassium (K) 

and sodium (Na)), and leak current. The subsequent three equations illustrate how 

membrane potential 𝑉𝑚 affects ionic currents and leak current. Notably, the equation 



 

governing ionic currents and leak current exhibits good symmetry, while the conduc-

tion current equation lacks this property, posing challenges for obtaining desirable 

mathematical characteristics. Subsequent equations describing nerve cells also have 

similar problems. This is because they all describe the problem from an experimental 

perspective, which inevitably leads to some details that cause the equation to lose its 

symmetry. 

 

4 3( ) ( ) ( )

( )(1 ) ( )

( )(1 ) ( )

( )(1 ) ( )

 

 

 


= + − + − + −


 = − −


 = − −


 = − −


m

m K m K Na m Na l m l

n m n m

n m n m

n m n m

dV
I C g n V V g m h V V g V V

dt

dn
V n V n

dt

dm
V n V n

dt

dh
V n V n

dt

 (1.1) 

When the equation lost its symmetry and could not obtain perfect mathematical prop-

erties, it became very difficult to deal with such differential equations. Therefore, it was 

not until the late 20th century that biological neural networks such as cellular neural 

networks and chaotic neural networks began to develop[2, 3]. During this difficult pe-

riod, researchers began to simplify the model from a mathematical perspective and es-

tablished neural networks such as multilayer perceptron (MLP) and Hopfield through 

various means[4, 5]. These mathematically based models have become the basis of 

neural networks used on a large scale today. The frameworks such as RNN, CNN and 

TRANSFORMER that followed have profoundly changed the landscape of neural net-

works[6-8]. In this context, a question has become increasingly prominent. Humans 

and other organisms are clearly composed of a series of cells. Why do we need to turn 

nerve cells into numbers for calculation? 

So, when we go back to the starting point, the answer is that differential equations 

cannot be manipulated as conveniently as numbers, and we lack a differential system 

with perfect mathematical properties to describe biological nerve cells. With this in-

sight, we started from symmetry logic and established a completely symmetrical set of 

differential equations. In terms of logic, we chose the Five Elements (Wuxing) Theory, 

which has been circulated for more than 2,000 years. In terms of differential equations, 

we chose the widely recognized predator equation. While the Wuxing Theory embodies 

complete symmetry, it lacks corresponding mathematical equations; conversely, alt-

hough the predator equation is widely applied, it does not exhibit symmetry[9]. By in-

tegrating these two concepts, we formulated a new set of differential equations. 

With the establishment of the new differential equations, we proceeded to investigate 

its fixed point. In chaos theory, the fixed point is a fundamental mathematical property 

of the system. However, in many systems, this property is difficult to grasp. Sometimes 

we don’t even know whether the system has a fixed point, let alone control such a 

property. The differential equation established in this paper can easily specify the fixed 

point of the system due to its good symmetry. Fixed point theory is also used in early 

mathematical neural networks, such as Hopfield neural networks. People get the fixed 

point of the system through iterative calculations for information storage. That method 
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is very easy to implement in this paper, and we can easily specify any fixed point 

through calculation. 

In this paper, using fixed points to store information is not a particularly big break-

through. The major breakthrough of this paper is that a new signal propagation method 

is established, which is related to perturbation theory. On this basis, a new training 

method is established, which has been shown to be effective. Since the system has com-

plete symmetry, the propagation of signals is completely reversible. Consequently, the 

new training method developed does not rely on traditional back propagation, but only 

on local signal propagation.  

Among the many training methods of neural networks, back propagation plays the 

most critical role and has achieved the most and greatest success. However, its biolog-

ical rationality has always been doubted by many researchers. Although people have 

made a lot of efforts to explain the rationality of back propagation, this research has not 

yet reached a consensus[10]. The new training method proposed in this paper is a train-

ing method based on local signal propagation. Unlike the traditional back propagation 

algorithm, each neuron does not require global information, but only needs to focus on 

its own signal propagation, and then adjust according to the predetermined strategy to 

achieve the training goal. This method provides a new set of research ideas for the 

reasonable explanation of the learning process of biological neural systems. 

As a verification, we constructed a multilayer perceptron (MLP) with 784 inputs and 

10 outputs based on the MNIST dataset, and the results show that the method is effec-

tive. Although we only describe some positive results (not the best) in this paper, it is 

mainly because the adjustment parameters are limited, so the system generalization 

ability is insufficient. A few months ago, we had achieved 60% accuracy on the same 

model, which is about the level of neural networks in the early 21st century. 

We did not try specific structures such as Convolutional Neural Networks (CNNs) 

or Recurrent Neural Networks (RNNs); rather, we opted to simulate a multilayer per-

ceptron (MLP) in its simplest form to demonstrate its potential. As a new neural net-

work framework, our work has surpassed the development of the past few decades, and 

we think this should be a significant development. The high scalability and biological 

interpretability of the current system further support our conviction that this new frame-

work holds great promise. Considering the huge computing power improvement 

brought by CUDA to neural networks, we also implemented parallel computing, which 

is obvious because biological neural networks are inherently parallel. 

Figure 1 shows the basic framework of this article. Figure 1.a is a very simple MLP, 

on which we will replace the numeral neurons with a system of differential equations. 

Figure 1.b shows the traditional Wuxing logic, which is a closed system. Such logical 

relationships have been circulated in China for more than 2,000 years and have pro-

foundly changed Chinese culture and philosophy. In this logical system, there are five 

different elements, which generate or inhibit each other, forming a closed logical sys-

tem. This system has perfect symmetry, so many people have been fascinated by it since 

ancient times and used it to explain the laws of the world. In this article, this makes 

some sense, but their mistake is that they did not form Wuxing neurons into a larger 

system to simulate the world. 



 

Since the traditional Wuxing system is closed, modifications are necessary. We refer 

to the predator equation to create an open and natural system, as illustrated in Figure 

1.c. In this system composed of differential equations, the propagation of signals is 

completely reversible. Each element can function as an input node or an output node, 

but it cannot perform both roles simultaneously, which will cause signal interference. 

Figure 1.d depicts the interconnection of multiple Wuxing systems. We refer to the 

structure of MLP in Figure 1.a. The difference is that the connection between neuron 

nodes is one-to-one. Since each Wuxing neuron has only five nodes, some nodes may 

be unconnected. 

 
The subsequent chapters of this paper are organized as follows: In Chapter 2, we will 

introduce the logic of the Wuxing Theory and establish the corresponding cause-effect 

relationship. We will also present the predator-prey model, integrating these concepts 

to formulate a new set of differential equations. In Chapter 3, we will first generalize 

this set of differential equations to reveal the universality of the system. Also, we will 

explore the fixed points of the system and prove that fixed points can be used to store 

information. Chapter 4 will focus on the establishment of a new signal propagation 

method, which is related to perturbation theory. Under this theory, the initial value of 

the elements was set to the fixed point, and all signals are the displacement of elements 

near the fixed point. In view of this, we established a unified signal propagation path. 

In Chapter 5, we studied the training method of neural networks and proposed the 

 
Fig. 1 From multilayer perceptron to Wuxing neural networks. a.  A typical neural 

network, illustrated here using a multilayer perceptron as an example. b.  The traditional 

Wuxing logical relationship is a closed system, which posits that the world is composed of five 

elements that interact through generation and restriction, leading to four distinct types of rela-

tionships for each element. c. We adapted the predator-prey model to formalize Wuxing logic 

and introduced a self-attenuation term changing the system into an open neuron. Accordingly, 

each element is considered as a neural interface that functions as both input and output, with 

this process being reversible but disallowing simultaneous input and output. d. The connectiv-

ity of neural elements. We employ the hierarchical structure of a multilayer perceptron, which 

may involve random connections. However, since each neural element has only five interfaces, 

not all interfaces are guaranteed to connect with others, potentially leaving some interfaces un-

connected. 
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instinctive design method to completely localize the training of neural networks. For 

the training of a single neuron, it is no longer necessary to obtain global information, 

but only to care about its own signal propagation process. Finally, the paper will con-

clude with a summary and some prospects for future development. 

2 Wuxing logical relationship and corresponding differential 

equations 

Since ancient times, humans are seeking to understand and replicate nature, leading to 

the development of various theories and sciences. One such theory is the Wuxing The-

ory. Ancient Chinese thought held that the world was composed of five distinct ele-

ments (represented as J, M, S, H, T in Figure 1.b). Through the observation of natural 

phenomena, each element was associated with specific relationships. For example, Wa-

ter (S) can extinguish Fire (H), indicating that Water (S) restrains Fire (H). Conversely, 

Water (S) supports the growth of plants, thus Water (S) generates Wood (M). Based on 

these observations, numerous entities were classified into one of the five elements, and 

their interactions could be inferred from these classifications. 
However, the Wuxing logical relationship is merely a formal representation. To con-

vert this relationship into a mathematical equation, we draw on the predator-prey 

model, which describes the dynamic interactions between predators and prey.  
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 (2.1) 

Equation (2.1) represents the predator-prey model used in this paper[9]. In this model, 

x denotes prey, such as rabbits, while y represents predators, such as wolves. The prey 

population is influenced by two main factors: its own reproduction rate and the preda-

tion by wolves. The predator population is affected by two factors: the availability of 

prey (rabbits) and natural mortality. However, this model is not complete or symmet-

rical, and it appears somewhat unnatural. For example, rabbits do not die of natural 

causes, and wolves do not increase in number through reproduction. 
In contrast, the Wuxing Logic (Figure 1.b) maintains complete symmetry among its 

elements. Therefore, to align with the Wuxing logical structure, the system must be 

modified to be more natural. For instance, the rabbit population should be influenced 

by three factors: 1) reproduction limited by natural resource availability, 2) natural mor-

tality of rabbits, and 3) the impact of external factors (such as predation by wolves). 

The first factor is constrained by external conditions, the second by intrinsic factors, 

and the third by interactions with other elements. 
Incorporating the logical relationships from Figure 1.b, the mathematical model of 

the Wuxing theory can be expressed as Equation (2.2), and its logical structure is illus-

trated in Figure 1.c. 
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In biological neural networks, most models establish a set of differential equations to 

describe the propagation of electrical signals in neurons, with the Hodgkin–Huxley 

model being one of the earliest examples[1]. These equations stem from experimental 

data, resulting in numerous fitting processes and a lack of symmetry. In contrast, the 

differential equations proposed in this paper are grounded in logical structures, exhib-

iting complete symmetry and possessing excellent mathematical properties, including 

specified fixed points and reversible propagation. These key features provide the sys-

tem with robust expansion and training capabilities. 

3 Mathematical structure and properties of differential 

equations 

This section primarily explores the mathematical characteristics of the system to facil-

itate the subsequent construction of neural networks. 

3.1 General mathematical expressions of differential equations  

We will start with a general description of Equation (2.2). We use 𝐸 to denote the five 

different elements and  𝐾1, 𝐾2 and 𝐾3  to represent various parameters. Equation (2.2) 

can be rewritten as Equation (3.1): 

 1 2 3= − −
dE

K E K E K EE
dt

 (3.1) 

Among which，𝐾1 = {𝑘11, 𝑘12, 𝑘13, 𝑘14, 𝑘15}，𝐾2 = {𝑘21, 𝑘22, 𝑘23, 𝑘24, 𝑘25}，𝐾3 =

{𝑘31, 𝑘32, 𝑘33, 𝑘34, 𝑘35}。In Equation (3.1), the elements represented by 𝐸 at different 

positions are not identical. Therefore, we define the order of elements in 𝐸 as {J, S, M, 

H, T}, with different offset numbers used to indicate different elements (see Equation 

3.2). Consequently, Equation (2.2) can be conveniently described in terms of Equation 

(3.2) by specifying the number of elements in the equation beforehand. 
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Equation (3.2) is a general form of equation that describes a class of equations with two 

rings, one of which is a generating ring and the other is an inhibiting ring. The parameter 

of the generating ring is 𝐾1 and the parameter of the inhibiting ring is 𝐾3. In this paper, 

the number of elements is five, and as the research progresses, the number of elements 

can also be other numbers. 

Specifically, when the number of elements is one, and if  𝑘11, 𝑘21 and 𝑘31 are ap-

propriately chosen, we obtain the Logistics Equation (3.3). In the same way, if we 

choose appropriate parameters, we can also get an equation similar to the one in Equa-

tion (1.1) that describes the particle concentration. These equations are widely used. 

For example, the Logistics Equation can describe the natural growth of organisms under 

certain conditions.  

 1

1 1 11 21 311 ( )（ ）, = − = − =
dE

E E when k k k
dt

 (3.3) 

3.2 Fixed points of differential equations 

Obviously, zero is a fixed point of the equation, but this point is not stable. If the system 

is slightly perturbed, the system will move to another fixed point. However, if the pa-

rameters 𝐾1, 𝐾2 and 𝐾3 are different, and the initial value of 𝐸 is uncertain, identifying 

another fixed point of the equation becomes quite challenging. We assume that the in-

itial value of 𝐸 is greater than 0 but not excessively large to avoid system instability. 

Under this assumption, we further consider that all parameters within  𝐾1, 𝐾2 and 𝐾3 

are respectively equal. At this point, we can analytically calculate the fixed point  𝐵0 

(as shown in equation (3.4)) for equation (3.2).   

 1 2
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=

K K
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Although this formula is derived under the ideal condition where each set of parameters 

is equal, it remains the most significant formula in this article. It illustrates how differ-

ent parameters affect the fixed point, even when they are not equal. In many cases, 

calculating the fixed point for varying parameters is complex, but we can still adjust 

the parameters in 𝐾1, 𝐾2 and 𝐾3 according to Equation (3.4) to achieve the target fixed 

point. 

The fixed point is a crucial parameter in this system, because signal propagation 

relies entirely on fixed points in Chapter 4. If the fixed point of the system cannot be 

determined, the initial value of the system will remain indeterminate. Consequently, the 

signals generated by the system in response to external stimuli also cannot be defined, 

leading to a complete failure in the overall signal propagation of the system. Properly 

setting and utilizing the fixed point is a key skill for adjusting the system. 

For instance, the fixed point can be used to store specific values by comparing the 

target with the fixed point to obtain the error signal. Consider a model with parameters 

𝐾1={1, 1, 1, 1, 1}, 𝐾2={0.5, 0.5, 0.5, 0.5, 0.5}and 𝐾3={0.5, 0.5, 0.5, 0.5, 0.5}, and an 

initial value of 𝐸 set to 1. The following is a simple example of adjusting the fixed 

point: According to Equation (3.4), the system initial value stays at its fixed point. To 



 

move the target fixed point to {0.8, 0.6, 1.5, 1.0, 0.9}, we can use the following method 

to obtain error information and adjust 𝐾1, 𝐾2 and 𝐾3  accordingly. 

1. Set the value of 𝐸 to the fixed point to be stored 𝐸𝑡=0={0.5，1.5，1.3，0.6，0.9}.  

2. Iterate a small time step according to the equation to get the change ∆𝐸 in 𝐸 

(Equation 3.5) 

3. According to ∆𝐸 combined with (3.4), the corresponding 𝐾1, 𝐾2 and 𝐾3 can be 

adjusted（Equation 3.6, among which 𝜇1, 𝜇2 and 𝜇3 is small positive numbers）.  

4.Repeat steps 1-3 until ∆𝐸 is small enough, at which point it can be regarded that 

the target fixed point has been reached  
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Fig. 2 Training fixed points through adjusting parameters. a. Do nothing after set-

ting the initial value of the element to the target value. Because the fixed point of the system is 

different from the initial value, after a period of time, all elements of the system will return to 

their fixed points.  b. The initial value of the element is set to the target fixed point every 1 sec-

ond, and 𝐾1 is adjusted according to the parameters in 3.6. After about 20 adjustments, the 

fixed point of the system is trained to the target fixed point. c. The same setting as the previous 

one, but the fixed point is trained by adjusting 𝐾2, which can also complete the training task. In 

fact, adjusting 𝐾3 also has a similar effect, but the training speed is slightly different, but not 

too big. d. Verify the fixed point of the model obtained by adjusting 𝐾2. After setting the initial 

value of the element to the original fixed point 1, the system stabilizes to the target fixed point. 
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Figure 2 illustrates the training process for the fixed point. In Figure 2.a, the initial 

value of the element is simply set to the target value, and no further action is taken. 

This results in the system returning to its original fixed point, an inherent characteristic 

of the system. Figures 2.b and 2.c display the training curves achieved by adjusting 𝐾1 

and 𝐾2 respectively. The initial value of the element is reset to the target value every 

one second. Using Equation (3.5), we calculate the error signal, followed by parameter 

adjustments according to Equation (3.6). After approximately 20 adjustments, the sys-

tem gradually stabilizes at the new fixed point. A similar outcome occurs when adjust-

ing 𝐾3, though the training speeds differ slightly. Figure 2.d verifies that the trained 

system successfully reaches the new fixed point; when set to the original fixed point, 

the system stabilizes at the target fixed point.  

This is a very simple fixed point adjustment method. However, sometimes we don’t 

know what the fixed point should be set to. In this case, we need some other strategies 

to adjust the parameters, which we will discuss in the following chapters. 

3.3 Some additional explanations 

The main goal of this paper is to implement a neural network similar to a multilayer 

perceptron (MLP). While MLPs have significant potential and can be used to develop 

other powerful neural network structures such as Convolutional Neural Networks 

(CNNs) or Recurrent Neural Networks (RNNs), we will not explore these extensions 

here to maintain a clear focus. Numerous studies have been conducted on neural net-

work architectures, and many problem-solving methods are available for reference. We 

will not delve into these unless specifically required. Additionally, there are some mi-

nor adjustments in our approach. For instance, we use the improved Euler method in-

stead of the Runge-Kutta method for calculations. This choice is due to the improved 

Euler method’s lower computational cost and acceptable error margin. In summary, this 

work aims to establish a new methodological framework, with refinements to be ad-

dressed in future work. The following measures were implemented, along with the ra-

tionale for each: 

1. All parameters are constrained to positive numbers within a specific range (to 

ensure stability). 

2. All instantaneous elements values are restricted in a specific range (to ensure 

stability). 

3. The improved Euler method is employed in differential equation calculations 

due to its lower computational demand and acceptable error (for simplifica-

tion). 

4. All fixed points are assumed to be positive and close to 1 (to ensure stability). 

5. Connections between neurons are assumed to be uniformly random (based on 

experience). 

6. All neurons are set at their fixed points before receiving signals (to ensure 

stability). 

7. The input signal is normalized (based on experience). 

8. Parallel programming and asynchronous updates are used to accelerate cal-

culations, though results may vary slightly with different parallel parameters 

(to improve efficiency). 



 

4 Signal propagation and network structure 

The previous chapters mainly discussed some characteristics of the system itself, and 

did not discuss how the system interacts with external signals. In this section, we will 

define the related issues of signal propagation and network connection. 

4.1 Signal definition 

First, we define an input signal 𝐼𝑛𝑝𝑢𝑡(𝑡) for each neuron, which corresponds to the 

number of elements. In this article, we consider the case where the number of elements 

is five, meaning the dimension of the input signal 𝐼𝑛𝑝𝑢𝑡(𝑡) for a single neuron is five. 

The previous Equation (3.2) becomes: 
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At this point, the system will deviate from its original fixed point. Assume that the 

initial values of all elements in the system are at their fixed points, we define the per-

turbation between 𝐸(𝑡) and the fixed point 𝐵0 as the signal 𝐷(𝑡) generated by the sys-

tem. 

 0( ) ( )= −D t E t B
 (4.2) 

Here, 𝐵0 does not match Equation (3.4) because the parameters are not unique, but the 

value of 𝐵0 is still controlled by Equation (3.4). This signal 𝐷(𝑡) can be further propa-

gated to other neurons as input (see Figure 3.a). Thus, we observe a pattern of signal 

propagation: initially, all neurons are at their fixed point 𝐵0. When one neuron receives 

an input signal, 𝐸(𝑡) will deviate from the original fixed point, generating a new signal. 

This signal is then propagated through the network of neuron connections and eventu-

ally reaches the output. 

4.2 Network structure 

Here, we will imitate the multi-layer network structure of an MLP to build a similar 

network. Figure 3.a illustrates a network with three signal inputs and two signal outputs, 

organized into four layers with uniformly random connections between each layer. 

Additionally, based on the reversibility of propagation, we can derive the corre-

sponding backward propagation network (as shown in Figure 3.b). In Figure 3.b, not 

only does the direction of signal propagation between neurons change, but the direction 

of signal propagation within neurons also reverses. According to equation (4.1), we 

obtain a new propagation equation (4.3). 
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In Equation (4.3), both the order of 𝐸 and the order of 𝐾 are altered. This is because 

𝐾 describes the relationship between different elements of 𝐸. When the direction of 
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signal propagation changes, 𝐾 must continue to represent the relationship between the 

original two elements, necessitating a change in the order of 𝐾 in Equation (4.3). 

 

 
Biological neural networks have long had an advantage: they can be easily deployed in 

circuit systems. In practical applications, when trying to deploy the neural network 

structure, and if someone doubts whether the system is reversible, we can consider the 

following solution. In Figure 3, there are two systems. If we build two systems at the 

same time, they are mirror images of each other, then we only need to synchronize their 

parameters to achieve the function of a reversible system. At the same time, the estab-

lishment of two systems also allows forward propagation and reverse propagation to be 

carried out at the same time, which improves the efficiency of the system. 

5 Wuxing neural network training 

In this section, we will discuss the training methods of neural networks. Based on the 

characteristics of biological neural networks, we propose an instinctive design method 

so that the training of neural networks no longer depends on global information, but 

instead relies on its own signal propagation in a decentralized manner. 

 
Fig. 3 The forward and backward propagation of Wuxing neural networks. a. 
Forward propagation path of Wuxing neural network and corresponding equations. This net-

work adopts a randomly connected multi-layer neural network structure. Unlike the traditional 

MLP, each neuron has only 5 interfaces, and the connections between the interfaces are one-to-

one. b. Backward propagation path of Wuxing neural network and corresponding equations. 

Compared with the forward network structure, the connection method has not changed, the only 

change is the direction of signal propagation. The reverse propagation equation is changed ac-

cording to the connection method. 



 

5.1 Training theory 

Neural network training has long been a highly complex problem, prompting the de-

velopment of numerous training methods. Among these, the backpropagation algorithm 

is the most efficient and widely used[11]. This algorithm continuously optimizes con-

nection parameters by computing the partial derivatives between inputs and outputs. 

However, the biological plausibility of backpropagation has been questioned, with 

some researchers doubting that organisms could perform such intricate continuous de-

rivative calculations. 

In neural networks, causality and nonlinearity are fundamental characteristics. Neu-

ral networks function as mappings from inputs to outputs, with causality ensuring the 

determinism of this mapping and nonlinearity providing its diversity. Thus, to develop 

an effective neural network, it is crucial to satisfy both of these characteristics. Addi-

tionally, to enhance the operability and versatility of neural networks, they should be 

designed to be as elegant and symmetrical as possible. In mathematically-based neural 

networks, neurons are represented by numbers, which allows for convenient and rapid 

manipulation, though at the cost of extensive calculations. Conversely, biological neu-

ral networks do not possess advantageous mathematical properties, but they can be de-

ployed in many circuits with high biological interpretability. 

As previously mentioned, the essence of neural networks lies in nonlinearity and 

causality. Therefore, in theory, a neural network can be formed as long as these two 

principles are maintained. However, this requirement does not specify how to train the 

neural network. To address this, we propose adding a reversibility concept to the train-

ing process. In simple terms, the input signal at the front end passes through a nonlinear 

system to produce an output signal at the back end. This output signal is then compared 

with the target to generate a feedback signal (also known as an error signal). Because 

the system is causally reversible (as illustrated in Figure 3), the feedback signal is used 

as a new input to the back end and eventually returns to the front end. The propagation 

mode of these two signals is essentially the same, with the only difference being their 

directions of propagation. 

By comparing the signals traveling in both directions through the same neuron, we 

can determine the corresponding adjustment methods. This localized method for train-

ing is also called instinctive design. Through the instinctive design method, all neurons 

no longer need to obtain global information, but only need to pay attention to the infor-

mation flow in two directions flowing through themselves, and then they can adjust 

according to the predetermined strategy. We can insert any number and type of neurons 

at any position in the neural network, so that when neurons are expanded on a large 

scale, there is no need to notify all other neurons. 

We do not believe that individual will can precisely control each neuron. Instead, a 

neuron's ability to learn or forget information is more likely due to inherent system 

characteristics or preset strategies. Personal will is better suited to influencing broader 

aspects, such as the overall learning rate. 
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5.2 Training methodology 

We have provided an overall description above. Now, we will delineate specific issues 

and train this network using the MNIST dataset. MNIST is a well-known dataset for 

digit recognition; thus, a network model was constructed with 784 input nodes and 10 

output nodes, consistent with the dataset's structure. At the output layer, we integrated 

the output signal over time 𝑇 and defined a variable 𝐿𝑒𝑏 with 10 dimensions according 

to Equation (5.1). The largest component of 𝐿𝑒𝑏 was selected as the final output result. 

If this output corresponds to the training label, the training is deemed successful; oth-

erwise, it is classified as a failure. 

 
0

1
( )= 

T

Leb D t dt
T

 (5.1) 

In cases of successful training, parameter adjustments are unnecessary. However, if the 

results do not align with the expected outcome, an error signal must be generated. As-

suming that the 𝑃𝑡ℎ component should be the largest, the error signal for this component 

can be calculated using Equation (5.2). The error signals for the other output compo-

nents are derived from Equation (5.3). In these equations, 𝑡𝑎𝑟𝑔𝑒𝑡1 and 𝑡𝑎𝑟𝑔𝑒𝑡2 repre-

sent two predefined target values, where 𝑡𝑎𝑟𝑔𝑒𝑡1 is the larger value and 𝑡𝑎𝑟𝑔𝑒𝑡2 is the 

smaller one. This method will make the value of the 𝑃𝑡ℎ component larger after train-

ing, while the others will be smaller, allowing the system to achieve a higher accuracy 

rate. 

For the 𝑃𝑡ℎ component, the adjustment error is: 
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For other component, the adjustment error is: 
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Similarly, the error signal propagates in the reverse network and also generates a 

new propagation signal 𝐷̂(𝑡), which is determined by Equation (5.4). 

 0
ˆ ˆ ˆ( ) ( )= −D t E t B  (5.4) 

where 𝐸̂(𝑡) is the element value in the backpropagation and 𝐵̂0 is the fixed point deter-

mined by the backward propagation Equation (4.3).  

By comparing the different signals received by the same element during forward and 

backward propagation, we can derive the appropriate adjustment method. 

 In Equation 4.1, there are three sets of parameters: 𝐾1, 𝐾2 and 𝐾3. This article will 

focus on correcting the model by adjusting 𝐾3. We first define a comparison function, 

where its magnitude and sign reflect the correlation between the forward signal and the 

backward signal.  
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Of course, the size of 𝐺1 may exceed a certain limit, so we use the inverse tangent 

function to process the result as follows: 

 
2 1( * ) /=G atan G kt kt  (5.6) 



 

In (5.6), 𝑘𝑡 is the adjustment parameter, 𝐺2 is the control value after adjustment, and 

𝐾3 can be adjusted according to 𝐺2: 

 3_ 3_ 2( )= −new oldK K exp G  (5.7) 

 
After 10 times training, we achieved an accuracy rate of 25.7% on the training set and 

25.9% on the test set. The following Figure 4 shows the curve of the accuracy rate 

during the 10 training sessions. This result is not particularly ideal, but it shows that our 

training method is effective. There are two main reasons for this result. First, we only 

adjusted one parameter 𝐾3, which resulted in insufficient generalization ability of the 

system. Second, in order to ensure stability, we adopted a more conservative parameter 

range, which resulted in limited adjustment ability of the system. 

In Equation (5.5), 𝐷(𝑡) and 𝐷̂(𝑡) are local signals, not global ones, which means that 

a single neuron does not need to know the global information, but can adjust its own 

parameters according to the predetermined plan based on the methods in Equation (5.5) 

and later. 

People have been looking for a training method with good biological interpretability 

for a long time. Although the traditional back-propagation algorithm has achieved the 

most and greatest achievements, its biological interpretability has always been ques-

tioned[10]. The method proposed in this paper only relies on the propagation of local 

signals, and only signals are propagated in neurons. The only difference is that the 

propagation directions of forward signals and backward signals are different, which is 

natural. In addition, this paper does not make special settings for the signals, so we 

believe that the method proposed in this paper has good biological interpretability. 

6 Summary 

1. This paper presents a novel neural network designed to bridge the significant gap 

between mathematical and biological neural networks. The model incorporates the ad-

vantages of both: large-scale parallel applications and strong logical interpretability. 

The main contributions of this paper are as follows: 1. Designing a neuron structure 

based on symmetric differential equations to replace traditional MLP neurons; 2. De-

fining the propagation and connection of signals; 3. Developing a new training method 

instead of using traditional back-propagation algorithm. Ultimately, we trained the 

model on the MNIST dataset and achieved promising results. The three breakthroughs 

 
Fig. 4 Accuracy curve on the training set. Only 𝐾3 was adjusted, the accuracy curve on 

the training set after 10 times training  
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mentioned above will bring many new research perspectives to the development of 

neural networks. 

2. The neural network proposed in this paper features a completely new structure, 

with training based on a novel set of theories. To clarify this topic, we will systemati-

cally address how to interpret and train such a neural network in subsequent articles. In 

this study, we focused solely on adjusting the 𝐾3 parameters. To ensure system stabil-

ity, we employed a relatively conservative range for these parameters, which is why the 

reported accuracy is not particularly high. Although we achieved an accuracy of 60% a 

few months ago and parameter adjustments can enhance accuracy, but this is not the 

primary focus of this article. 

3. This paper introduces a new training method primarily based on the concept of 

instinctive design, aiming to minimize special intervention measures. However, in 

some practical applications, specific interventions and structure might prove to be more 

effective. At the same time, we also show many potential uses, including expanding the 

range of the number of elements, using more complex connection mechanisms, and 

forming more complex systems. We did not try these methods in this paper, mainly to 

show the real core value of this work, rather than a complex system made up of various 

techniques. Our work is a tracing back to the development of neural networks in the 

past hundred years, and also a Chinese romantic encounter across 2000 years. 
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