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Abstract. Singing voice conversion is to convert the source singing voice into 

the target singing voice without changing the content. Currently, flow-based 

models can complete the task of voice conversion, but they struggle to effectively 

extract latent variables in the more rhythmically rich and emotionally expressive 

task of singing voice conversion, while also facing issues with low efficiency in 

voice processing. In this paper, we propose a high-fidelity flow-based model 

based on multi-condition feature constraints called MCF-SVC, which enhances 

the capture of voice details by integrating multiple latent attribute encoders. We 

also use Multi-stream inverse short-time Fourier transform(MS-iSTFT) instead 

of traditional vocoder to enhance the speed of voice reconstruction. We have 

compared the synthesized singing voice of our model with those of other com-

petitive models from multiple dimensions, and our proposed model is highly con-

sistent with the current state-of-the-art, with the demo which is available at 

https://lazycat1119.github.io/MCF-SVC-demo. 

Keywords: Singing voice conversion · Flow model · MS-iSTFT · Multi- Con-

dition. 

1 Introduction 

Singing Voice Conversion (SVC) aims to change a source singer’s timbre to that of a 

target singer while preserving the original singing content, melody, and emotional ex-

pression. As an advanced form of Voice Conversion (VC), SVC places additional em-

phasis on expressive features. With the advancements in deep neural networks, state-

of-the-art SVC models such as DDSP-SVC-Diff1, So-VITS-SVC, DiffSVC[1], and 

CoMoSVC[2] have demonstrated outstanding performance and are widely applied in 

areas like entertainment, music production, and human-computer interaction [3, 4].  

H. Li and H. Wang—Contributing equally to this work. 
1 https://github.com/yxlllc/DDSP-SVC 

https://github.com/yxlllc/DDSP-SVC


 

 

 

Fig. 1. The performance of competitive models on SVC task, MCF-SVC has the best result in 

metric of MOS/Similarity, CoMoSVC has the best result in metric of MOS/Naturalness. 

The converted singing voice must fully preserve content information from the 

source audio. Early approaches employed phonetic posteriorgram (PPG)-based 

methods [5–7], which extract linguistic features by predicting the posterior proba-

bilities of each phoneme. However, the effectiveness of these methods heavily re-

lies on the performance of Automatic Speech Recognition (ASR) systems, which 

require large amounts of labeled data for training. To overcome this limitation, un-

supervised learning-based representation methods were developed, enabling mod-

els to learn from unlabeled or non-parallel speech data and reducing the dependence 

on annotated datasets. Despite these advancements, unsupervised systems still fall 

short of supervised ones in terms of quality and intelligibility. To bridge this gap, 

numerous self-supervised learning (SSL) techniques, such as HuBERT, have been 

introduced. These methods [8] focus on discretizing speech representations by con-

verting continuous waveforms into discrete tokens, thereby accelerating speech 

processing and integrating semantic information from large language models 

(LLMs). However, this approach can inadvertently omit some linguistic content, 

leading to mispronunciations in the converted speech. For instance, when pro-

cessing fricative sounds, ambiguous frames may be incorrectly assigned to nearby 

units, resulting in pronunciation errors that compromise the naturalness and accu-

racy of the singing voice conversion.  

Generative models are typically used to implement the encoder-decoder functionality 

in singing voice conversion tasks. Autoregressive (AR) models [9, 10] convert contin-

uous waveforms into discrete tokens using neural audio encoders and decoders, training 

on discrete speech representations obtained through self-supervised learning. These 
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models excel in zero-shot singing voice conversion, but suffer from slow inference 

speeds due to the recursive nature of predicting each subsequent token. To address this 

limitation, diffusion model-based SVC systems have been developed. Diffusion-based 

SVC systems [11]can generate high-quality audio with excellent fidelity and natural-

ness. However, their multiple iterative sampling steps also result in slower inference 

speeds. To improve this, the CoMoSVC model [2] was introduced, which employs a 

diffusion-based teacher model and further refines a student model under consistency 

constraints to enable single-step sampling. This approach not only significantly speeds 

up inference but also enhances the quality of the generated audio. Despite these im-

provements, CoMoSVC still struggles to achieve sufficient similarity to the target 

singer in cross-domain conversion tasks. In contrast, flow-based generative models 

[12–17] for SVC offer faster inference speeds compared to diffusion-based systems, 

because they perform inverse processing without requiring multiple sampling steps. For 

instance, the widely used So-VITS-SVC model is popular for its rapid inference capa-

bilities. However, its audio quality still lags behind the state-of-the-art diffusion-based 

SVC systems. Additionally, these flow-based models typically incorporate only 

speaker identity and content embeddings, which results in generated songs that lack 

naturalness and expressiveness. As a result, achieving effective and high-quality sing-

ing voice conversion remains challenging with current flow-based approaches. 

A vocoder is a crucial component in singing voice conversion systems, responsible for 

transforming acoustic features such as Mel-spectrograms into audible waveform sig-

nals, typically serving as the final stage of the model. In recent years, Generative Ad-

versarial Network (GAN)-based vocoders have gained significant attention due to their 

ability to efficiently generate high-quality waveforms. Mel-GAN [20, 21], the first 

GAN-based vocoder, utilizes a transposed convolution generator along with multi-scale 

and multi-resolution discriminators to achieve impressive songs synthesis without re-

lying on additional distillation or perceptual losses. However, MelGAN encounters 

challenges when processing complex audio signals, particularly in accurately recon-

structing high-frequency components. To address these limitations, HiFi-GAN [22] 

was developed with several enhancements. It incorporates Multi-Period Discriminators 

(MPD) and Multi-Scale Discriminators (MSD), which improve the discriminator’s ca-

pability to distinguish between synthetic and real audio, thereby enhancing the quality 

of the generated waveforms. Despite these improvements, HiFi-GAN still exhibits a 

quality gap compared to autoregressive models such as WaveNet [29] in terms of sam-

ple fidelity. 

To solve the above problems, we propose a multi-condition based flow model assigned 

for singing voice conversion task. We use the HuBERT-Soft model [23] to complete 

content information extraction by modeling the distribution of discrete units rather than 

units itself. We also use the flow model to accurately maximize the exact log-likeli-

hood, transform a simple distribution to a complex one. Compared to the multi-step 

sampling strategy of diffusion models, the flow based approach only need reverse 

voice, which is faster. Additionally, we introduce timbre encoder, pitch encoder, and 



 

 

emotion encoder as conditions, which improves the information integrity of the gener-

ated voice. Finally, we choose MS-iSTFT to speed up the processing of the decoder 

module. In this study, we have achieved a fast and high-quality singing conversion mo 

del that achieves performance comparable to state-of-the-art (SOTA) models, as shown 

in Figure. 

 

Fig. 2. Overview of MCF-SVC. (a) represents the training process of the model. The training 

process of the model is divided into two stages: the first stage generates reconstructed singing 

voice, and the second stage constructs a multi-conditional flow model to compute Kullback-

Leibler(KL) loss (b) represents the inference process of the model, which utilizes the flow model 

in reverse to achieve the synthesized singing voice 

The main contributions of this paper can be summarized as follows: 

– We propose to use the HuBERT-Soft model to gain soft singing’s units by predicting 

a distribution over the discrete units, which effectively extract the content information 

in singing voice conversion. 

– We propose a Multi-condition-based Flow, which not only extracts the timbre of 

speaker timbre but also introduces pitch and emotion as the condition of the flow by 

extra extractors, which greatly improves the naturalness and expressiveness of singing 

voice conversion. 

– We propose Multi-stream inverse short-time Fourier transform to directly convert 

from frequency domain features to time domain waveforms, which greatly enhances 

the speed of synthesis. 

– We demonstrate the advantages of conditional generative voice synthesis and the 

effectiveness of flow model compared to diffusion model in singing voice conversion 

task. 
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2 Method 

2.1 Overall pipeline 

As shown in Fig.2, our model is based on VITS model [24] . The detailed procedures 

for training and inference are elaborated in Subsection 2.6. Our model includes an F0 

encoder, an emotion encoder, a speaker encoder, a content encoder, a Multi-condition 

flow, an MS-iSTFT-Decoder, and a discriminator. In the following sections, we focus 

on describing the aforementioned multiple encoders, the Multi-condition flow, the MS-

iSTFT-Decoder, the loss function we used and the strategy in training and inference. 

 

Fig. 3. Multi-condition flow model based WaveNet 

2.2 Multi-condition encoder 

In this section, we will introduce four encoders used to assist voice generation before 

entering the flow-based model, namely content Encoder, speaker encoder, f0 encoder 

and emotion encoder. 

Content Encoder. Content encoding includes the Hubert-soft model and a content en-

coder. A major challenge in self-supervised voice representation learning is that voice 

contains multiple units and there are typically no discrete words or characters as input. 

By inputting the source voice into the pre-trained Hubert-soft model, we learn the latent 

distribution of the discrete variables of songs, which results in an aligned sequence h(x) 

= Z = [z1, . . . , zT ], where each unit has 1024-dimensional features. These features are 

then fed into the content encoder and transformed into a lower-dimensional content 

embedding Zc. 



 

 

Speaker Encoder. We input the Mel-spectrograms feature of the singer into a pre-

trained LSTM framework to obtain embeddings represent identity information. LSTM 

can handle long-term dependencies in singing sequence data, which is crucial for cap-

turing the global voiceprint features of a speaker. Additionally, LSTM can process in-

put sequences of varying lengths, allowing it to flexibly adapt to the different lengths 

of singing’s features from various speakers. 

F0 Encoder. We employ a monophonic pitch tracker based on a deep convolutional 

neural network to obtain the continuous fundamental frequency (F0), which is a 

timeseries feature. Considering the differences in fundamental frequencies between 

male and female voices can lead to unnatural-sounding singing, during the inference 

phase, we adjust the source singing’s dynamic F0 by adding the average difference in 

fundamental frequencies (F0) between the target and source voices over the time di-

mension. 
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This results in a final F0 feature that not only preserves the dynamic characteristics of 

the original song’s vocal track but also retains the averaged pitch range of the target 

singer 

Emotion Encoder. We employ emotion2vec [25], a self-supervised and pre- trained 

universal model for emotional expression, to extract the emotional features of each 

song. This model was developed through self-supervised pre-training on 262 hours 

of open-source emotional data, utilizing an online distillation paradigm. It incorpo-

rates both sentence-level and frame-level losses to more effectively capture emo-

tional nuances. The embeddings derived from emotion2vec serve as a constraint 

for our flow model, enhancing the naturalness of song conversion transitions and 

the expressiveness of the song’s artistic conception. 

2.3 Flow with multi-condition attribute constraints 

Flow models have demonstrated excellent performance in voice conversion tasks, 

but they tend to underperform in singing voice conversion, where naturalness 

and expressiveness are of higher importance. To address this issue, we propose a 

multi-condition flow model that not only extracts the speaker’s timbre but also in-

corporates pitch and emotion as additional conditions through extra encoders 

ahead. This enhancement significantly improves the naturalness and expressive- ness 

of the converted singing voice. 

Normalizing flows composed of multiple coupled affine layers transform a decom-

posed simple prior distribution into a more complex one. By applying reversible 

transformations to the simple prior distribution, they directly maximize the exact log-

likelihood. 
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As shown in Fig.3, we utilize features extracted from multiple encoders as conditions 

for the normalizing flow based on WaveNet[29]. This approach enhances the expres-

siveness of the prior distribution, allowing it to better capture the distribution charac-

teristics of real samples. We denote the standardized flow by fθ. According to the 

variable transformation theorem, the prior distribution can be rewritten as 

( )
( | ) ( ( ); ( ), ( )) det

f z
p z c f z c c

z


    


=


N                   (2) 

where c here is the output embedding of the priori encoder. c can be expressed as 

follows: 

 
content speaker emotion f0[ , , , ]c C C C C=                                     (3) 

Compared to the multi-step sampling strategy of diffusion models, the multi-condition 

flow model we proposed only requires reverse voice, which is faster. Additionally, it 

can synthesize natural and expressive singing voice conversions by incorporating mult 

iple conditions. 

2.4 MS-iSTFT-Decoder 

As depicted in Fig.4, we utilize iSTFT to replace certain repetitive network layers in 

the previous HiFi-GAN vocoder by introducing the computation of phase and amplit- 

ude, converting latent embedding into continuous time-domain waveforms. This ap-

proach effectively reduces computational load and accelerates the audio synthesis pro-

cess. 

2.5 Multi-loss construction 

Similar to VITS, we integrate Variational Autoencoder (VAE) and Generative Adver-

sarial Network (GAN) methodologies into our training process. The overall loss is ar-

ticu lated as follows: 

 total recon kl adv fm( ) ( )L L L L G L G= + + +                         (4) 

We transform the generated waveform to the mel-spectrogram domain and calculate 

the L1 loss against the source song’s mel-spectrogram to serve as the reconstruction 

loss: 

recon mel mel
ˆL X X= −                                   (5) 

KL loss is used to narrow the gap between the prior encoder and the posterior encod- 

er in terms of their distributions. The formula for KL loss is as follows: 



 

 

 

Fig. 4. The architecture of MS-iSTFT-Decoder 

kl linlog ( | ) log ( | )L q z x p z c = −                              (6) 

Among which, xlin represents the linear-scale spectrogram of the songs and the distri-

bution of the posterior encoder can be expressed as: 

lin lin lin( | ) ( ; ( ), ( ))q z x z x x   = N                          (7) 

By introducing a pre-trained discriminator D, we verify the authenticity of the songs 

generated by the decoder G, leveraging Ladv(G) for supervision. Furthermore, we in-

corporate an additional feature-matching Loss Lfm(G) to ensure consistency in the re-

construction loss measured within the discriminator’s hidden layers between the gen-

erated and authentic songs. 

2.6 Training and inference strategy 

As shown in Fig.2(a), during the training process, we input the same piece of singing 

into the network. The linear-scale spectrogram of the singing is sent to the Posterior 

Encoder to obtain the latent variable Z, which is then fed into the Decoder to produce 

reconstructed singing. We calculate Lrecon, Ladv(G) and Lfm(G). Simultaneously, un-

der the constraints of multiple disentangled attributes, the latent variable Z is trans-

formed through a flow and the output is computed with the content embedding derived 

from the Content Encoder to get Lkl . 
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As shown in Fig.2(b), during the inference process, we input the singing from two dif-

ferent singers into the network. The content and emotion originate from the source sing-

ing, the timbre comes from the target singing, and the pitch is derived from a combined 

calculation of both the source and the target singing. These elements serve as con-

straints for the flow, resulting in the latent variable Z, which is then fed into the decoder 

to produce synthesized singing. 

3 Experiment and Results 

3.1 Datasets 

We conduct experiments on four datasets: VCTK, Opensinger, M4singer and NUS-

48E. We take the model weights that have been trained on the VCTK dataset (which 

contains 44 hours of speeches from 107 English speakers with various accents) as the 

starting point and then continue to train on the Opensinger dataset (a large-scale Chi-

nese singing voice dataset) to learn the distinctive characteristics of Chinese singing 

voices, and observe the reconstruction results of singing audio. Finally, we use the 

M4singer dataset (a multi-style and multi-singer Chinese singing voice dataset) to test 

the evaluation of singing voice Reconstruction and combined the NUS-48E (an English 

singing voice dataset) to test the evaluation model’s capabilities in zero-shot singing 

voice conversion (SVC) and cross-domain conversion. 

3.2 Details 

In the training stage, the songs resampling frequency are 16khz, and the Mel- spectro-

gram is extracted by 512-point fast Fourier transform and 512-point window calcula-

tion. The model is preloaded with the pre-training weights of QuickVC [26] (trained on 

VCTK for 2 weeks), then trained on the Opensinger dataset for three days, and tested 

on M4singer and NUS-48E. At the same time, other experimental schemes such as 

FastSVC [27] and SoVITS-Flow are compared. All models have been fully iteratively 

trained on a single NVIDIA 3090ti, with a batch size of 64 and learning rates of 1e-4 

and 5e-5 respectively. 

3.3 Evaluation Metrics 

We conducted subjective and objective experiments to comprehensively evaluate the 

model. In the subjective experiment, we used Mean Opinion Score(MOS) to evaluate 

the synthesized songs. We invited more than 100 people to score the similarity and 

naturalness of the songs, with five grades ranging from 0 to 5. In the objective metrics, 

we use Perceptual evaluation of speech quality(PESQ) to evaluate the quality of the 

reconstructed songs, which are also divided into five grades. At the same time, we use 

the advanced and trained ASR model to calculate the similarity before and after the 

singing voice conversion, and finally give the reasoning speed RTF of the model, which 

refers to the several seconds that the model can process per second. The model is carried 

out on a single NVIDIA GeForce RTX 3090ti GPU. 



 

 

3.4 Results and analysis 

Evaluation of singing voice Reconstruction. In the training process, the source and 

target vocals are from the same song, and the aim is to reconstruct the song, we use 

different competitive models to reconstruct several songs in the validation set, and 

we use metrics, such as PESQ and MOS, to assess the quality of the reconstructed 

songs, and the validation set consists of unseen songs from 40 singers from the 

M4singer dataset. From Table 1, we can observe that our proposed model achieves 

the best performance in MOS/Similarity and also performs excellently in 

MOS/Naturalness and PESQ. 

Table 1. Reconstruction experiment. 

Method MOS/N MOS/S PESQ 

FastSVC 3.98± 0.10 3.87± 0.09 - 

SoVITS-Flow 4.15 ± 0.21 3.15 ± 0.17 2.486 

CoMoSVC 4.67 ± 0.12 4.32 ± 0.21 2.948 

DiffSVC 4.37 ± 0.02 4.01 ± 0.20 2.917 

Multi-F0 Model 4.03 ± 0.19 3.53 ± 0.18 - 

UCD-SVC 3.52 ± 0.13 3.01 ± 0.13 - 

Ours 4.56 ± 0.07 ↓ 4.54 ± 0.21↑ 2.834 

Evaluation of singing voice conversion. In the inference period of experiment, we 

use both objective and subjective evaluation metrics to compare our model with 

FastSVC, SOVITS-Flow2, CoMoSVC [2], DiffSVC [1], Multi-F0 Model [28] and 

UCD-SVC[2] models. The evaluation objects are the singing voice conversion of 

different models in the dataset M4Singer → NUS-48E and the singing voice con-

version across languages. 

Table 2 shows that, in terms of subjective metrics, the MOS naturalness of our proposed 

MCF-SVC model reaches 4.14, which exceeds all baseline models except CoMoSVC 

and DiffSVC, proving that the multi-condition strategy we joined did not reduce natu-

ralness, but made the emotion and pitch of singing more accurate and rich; In terms of 

MOS similarity, our model scored higher in the target timbre and the converted timbre, 

surpassing all baseline models, which proves that MCF-SVC can be more consistent in 

the conversion processing. In terms of subjective metrics, our model maintains the high-

est voice similarity in cross-domain and cross-language singing voice conversion. At 

the same time, our model reasoning speed has also maintained a good level. 

t-SNE visualization of converted songs. To verify how well our model maintain the 

identity information of the singers, we use the t-SNE, a dimensionality reduction 

algorithm, to plot identity in formation embeddings of the singers in two-dimen-

sional space. As shown in Fig. 5, we randomly selected seven different singers, and 

space. As shown in Fig. 5, we randomly selected seven different singers , and per-  

2 https://github.com/svc-develop-team/so-vits-svc?tab=readme-ov-fle#sovits-model 
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formed multiple song conversions for a number of their songs within them.  

The results show that the identity information of the seven singers before and after 

the conversion is still concentrated, which indicates that our multi-conditional em-

bedding does not destroy the singers’ identity information, but also effectively en-

hances the timbre similarity of songs, bridges the timbres distance difference even 

between different songs, and learns reasonable representational identity infor-

mation. 

Table 2. Model comparison.Compared with the indexes of the restored songs at 16kHz, many 

experiments have been done to get the average value, and bold indicates the best result.↑ and ↓ 

represent a rise or fall in metrics, the higher the MOS and voice similarity, the better. 

Method MOS/Naturalness MOS/Similarity Voice similarity RTF(GPU) 

FastSVC 3.52 ± 0.10 3.27 ± 0.22 0.433 0.031 

SoVITS-Flow 3.10 ± 0.22 2.90 ± 0.23 0.585 0.008 

CoMoSVC 4.27 ± 0.16 4.00 ± 0.19 0.585 0.006 

DiffSVC 4.23 ± 0.19 3.95 ± 0.21 0.598 0.278 

Multi-F0 Model 3.85 ± 0.02 3.47 ± 0.04 - - 

UCD-SVC 3.06 ± 0.08 2.67 ± 0.18 0.588 0.103 

Ours 4.14 ± 0.17 ↓ 4.02 ± 0.19↑ 0.603 ↑ 0.048 ↓ 

 

Fig. 5. t-SNE visualization of songs before and converted songs 

Visualization analysis of Spectrogram. From Fig. 6, it can be seen that the reso-

nance peaks move upward and the vertical spacing of the harmonics is obviously 

widened when the male voice shifts to the female voice; when the female voice 

shifts to the male voice, the resonance peaks move downward and the vertical spac-

ing of the harmonics is obviously narrowed. Meanwhile, the main spectral features 

of the original singing voice (e.g., the overall energy distribution of the spectro-

gram) are preserved after both transformations. It can be seen that our model can 



 

 

not only accurately adjust the fundamental frequency (f0) in the transformation of 

male and female voices, but also effectively preserve the singing content. 

 

Fig. 6. Visualization analysis of Spectrogram 

Contrast visualization of timbre similarity. We let the human judges listen to three 

songs first, namely: the target singer’s song, the source singer’s song, and the con-

verted song. After that, we changed the songs sung by the target singer and the 

source singer and asked the judges to compare the similarities between the three 

songs and the source singer one by one, and then compare the similarities with the 

target singer. There are four kinds of ratings: same absolute certainty, same uncer-

tainty, different uncertainty, and different absolute certainty. The results of the sim-

ilarity comparison are shown in Fig. 7, and the evaluation results show that our 

model can transform the singing voice similarly to the target singer. 

 

Fig. 7. visualization of timbre similarity 
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3.5 Ablation experiment 

To demonstrate the effectiveness of the multi-conditional flow model, we conducted an 

ablation study and the demo is available in the link within the abstract. Specifically, we 

first individually removed the F0 encoder, speaker encoder, and emotion encoder from 

the model. Subsequently, we removed these encoders in pairs to further investigate their 

individual and combined contributions to the model’s performance. Finally, we still 

used the subjective and objective metrics to evaluate them. According to Table 3, we 

can see that each condition we added contributes to the naturalness and similarity of the 

converted songs, with F0 encoder contributing the most to the naturalness and speaker 

Encoder contributing the most to the similarity. 

Table 3. Ablation experiment. 

Method MOS/N MOS/S Voice similarity 

Ours 4.14 4.02 0.603 

- F0 Encoder 3.31 3.35 0.538 

- speaker Encoder 3.45 3.20 0.522 

- emotion Encoder 3.88 3.81 0.572 

- F0 and speaker Encoder 2.97 2.62 0.361 

- speaker and emotion Encoder 3.22 3.08 0.493 

- F0 and emotion Encoder 2.82 3.00 0.472 

- F0 , emotion, speaker Encoder 2.65 2.55 0.350 

4 Conclusion 

In this paper, we propose a high-fidelity flow-based model based on multi- decoupling 

feature constraints. This model uses timbre, pitch, content, and emotion to assist the 

flow model in completing the song synthesis and conversion, and it is also used in di-

versified singing scenes. The inverse Fourier transform is also applied to the decoder 

to improve the conversion efficiency. The experimental results show that the natural-

ness and similarity of the songs after the conversion of our proposed model are 4.14 

and 4.02. Finally, we have given a demo and will release a Pytorch trainer for singing 

voice conversion to promote further research in this field. 
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