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Abstract. In this paper, we propose a lightweight facial expression recognition 

model: CP-Xception for AI companions, which is based on the Mini-Xception 

and features a small number of parameters, fast inference speed, and high recog-

nition accuracy. Specifically, we integrate the feature segmentation concept from 

CSPNet into the model, splitting the input features into primary and secondary 

paths to extract deep and shallow features, respectively. We also incorporate the 

ParC module into the last two feature extraction stages of the backbone network. 

This enhancement enables the model to effectively capture both local details and 

global contextual information. The CP-Xception model is trained and evaluated 

on four public datasets: FER2013, FER2013Plus, CK+, and JAFFE. The results 

show that the CP-Xception model achieves recognition accuracy improvements 

of 2.16%, 3.37%, and 4.31% over the Mini-Xception model on the FER2013, 

CK+, and JAFFE datasets, respectively. And CP-Xception has only 30,149 pa-

rameters and 3.527 MFLOPs, which are approximately 50% of those of the Mini-

Xception model, which makes the model more lightweight while also ensuring 

fast inference speed. We have deployed the model to the companion terminal for 

practical testing and observed satisfactory performance. 

Keywords: facial expression recognition, CP-Xception model, AI companions, 

deep learning, lightweight model 

1 Introduction 

Over the past two years, the rapid advancement of artificial intelligence(AI), especially 

the large language model (LLM) technology has led to the emergence of various emo-

tional companion electronic devices. These innovative products have delivered a novel 

experience to many consumers, particularly in stress relief and mental well-being im-

provement. Some devices have intelligent sensors and cameras, and the on-site images 

could be fetched. By using facial expression recognition(FER) technology, the com-

panions directly give the required friendly and warm feedback to users, achieving a 

deeper understanding of users and providing genuine emotional companionship. Par-

ticularly for individuals with tendencies toward loneliness or depression, the device's 

ability to accurately identify negative emotions such as tension and anger enables it to 



 

 

improve their psychological state through friendly dialogue and playing soothing mu-

sic. 

Facial expression recognition reveals the true emotional state by analyzing the 

changing features of the face. The detection of this capability relies on extracting salient 

features from the datasets. However, due to varying image acquisition conditions, da-

tasets often exhibit significant feature fluctuations caused by factors such as illumina-

tion changes, head pose variations, and facial occlusion. Traditional machine learning 

methods mainly adopt feature engineering strategies, such as HOG  [1], SVM[2], 

SURF[3], and SIFT[4]. Although these methods are simple, they often produce unsat-

isfactory results. In recent years, deep learning methods have achieved significant 

breakthroughs in many fields, including the FER task. The VGG model has demon-

strated high accuracy on classical facial expression recognition datasets such as 

FER2013 and CK+. However, its deep architecture with 19 layers is prone to overfitting 

and gradient vanishing during training. Yexiu Zhong et al.[5] proposed a depth-FER 

model inspired by ResNet and SENet. Their results demonstrate that this model 

achieves higher accuracy compared to the VGG model. Yingjian Li[6] proposed an 

attention-based SPWFA-SE model capable of simultaneously perceiving local and 

global features, thereby achieving effective automatic facial expression recognition. 

Chang[7] introduced a Patch Attention Convective Vision Transformer (PACVT) 

model, which addressed the challenge of occluded facial expression recognition by 

adaptively calculating the horizontal attention weight of local features.  However, the 

aforementioned models have problems of large parameter sizes and high computational 

complexity, which makes them unsuitable for deployment on such consumer-level elec-

tronics. Therefore, lightweight models that balance accuracy and parameter efficiency 

are essential to meet the demands of terminal deployment. 

Mini-Xception[8] is a lightweight convolutional neural network model that achieves 

efficient feature extraction and classification through depthwise separable convolution 

and residual connections. It has been extensively applied in the field of facial expression 

recognition, particularly in resource-constrained scenarios[9]. Nevertheless, the opera-

tional efficiency of the Mini-Xception model still needs to be improved on certain re-

source-constrained devices, and its capabilities in feature extraction and recognition 

accuracy also have limitations[10]. To enhance the accuracy of facial expression recog-

nition in companion robots, we propose an improved lightweight FER algorithm named 

CP-Xception, which is based on the Mini-Xception model but has less parameters and 

higher accuracy. The model has been deployed on the AI companion and shows im-

pressive performance. 

2 Methodology 

2.1 Mini-Xception model 

Mini-Xception is a lightweight neural network architecture based on the Xception[11] 

network, optimized for devices with limited resources. The Xception(Extreme Incep-

tion) network, proposed by Google, combines the strengths of traditional Inception 

modules with Depthwise Separable Convolutions. Depthwise Separable Convolutions 
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split the standard convolution operation into two stages: depthwise convolution and 

pointwise convolution. This design significantly reduces the computational complexity 

and the number of parameters while retaining the network’s representation ability. 

Building on the Xception network, Mini-Xception further simplifies the model struc-

ture by reducing the number of layers and channels. These improvements substantially 

lower the demands on computing resources and memory, making it well-suited for de-

ployment on mobile devices and other resource-constrained environments. However, 

despite its reduced parameter count and suitability for edge devices, Mini-Xception still 

exhibits limitations in real-time performance and recognition accuracy. 

2.2 CP-Xception model 

 

Fig. 1 Overall architecture of  CP-Xception model 

To enhance the real-time performance and accuracy of expression recognition, we pro-

pose CP-Xception model. While reducing the parameters, we enhance the model's abil-

ity to capture key facial feature areas, thereby improving accuracy in expression recog-

nition tasks. In the backbone network design, we integrated the feature segmentation 

concept from CSPNet, splitting the basic features extracted from the initial features into 

two paths: the deep path is mainly responsible for deep feature extraction, while the 

shallow path retains the original feature details through the lightweight structure. After 

feature extraction by four modules, multi-level feature fusion is achieved via channel 

concatenation. Additionally, the ParC module is integrated into the last two feature ex-

traction modules for further feature extraction. Finally, while maintaining classification 

performance, we lightened the original classification head to reduce the model's param-

eters and computational complexity. Given that our model builds on the Mini-Xception 

architecture and incorporates CSPNet and ParC concepts, we named it as CP-Xception. 

The overall architecture is shown in Fig. 1. 



 

 

ParC module ParC-Net(Position-aware Circular Convolution Network)[12] is an in-

novative convolutional neural network that combines traditional convolution with 

global modeling capabilities through position-aware circular convolution (ParC). Its 

core design includes Circular Padding: the input feature map is spliced to form a circu-

lar boundary, enabling the convolution kernel to capture global context across the im-

age edges; Position Embedding: it enhances the model's perception of key local areas 

by injecting spatial structure information; Grouped Convolution: it reduces the calcu-

lation amount through the lightweight design of independent channels, while retaining 

the translational invariance of convolution. The FER task mainly depends on the char-

acteristics of local key areas (such as eye and mouth shapes) and the overall relevance 

of the face. The ability of circular padding and large kernel convolution to capture the 

global context can improve the discrimination of complex expressions (such as "sur-

prise" and "fear"); Meanwhile, position embedding enhances the model's perception of 

key areas, and the complexity of grouping convolution and linear calculation makes it 

more suitable for real-time expression recognition. Thus, the ParC module is integrated 

in the last two modules of the backbone network and performs convolution operations 

in vertical and horizontal directions, respectively. In this way, the ParC module can 

help the model to improve the comprehensive processing of global information and 

local features. The structure of the ParC module in the network is shown in Fig. 2. 

 

Fig. 2  ParC module 

CSPNet CSPNet (Cross Stage Partial Network)[13] is based on optimizing the pro-

cessing mode of the feature map, reducing the calculation and memory occupation, and 

enhancing the learning ability of the convolutional neural network (CNN). Its core lies 

in cross-stage partial connection. Specifically, the feature map is divided into multiple 

parts, processed separately, and then reassembled in the subsequent stage. After the 

initial feature extraction of the model, inspired by the concept of CSPNet, we divide 

the input feature map into two parts with a ratio of 6:4. The main path is responsible 

for deep feature extraction and is the main module of the model. It includes two Depth-

wise Separable Convolution layers and ParC modules added to the last two modules to 

further enhance the expression ability of the features. The secondary path is responsible 

for shallow feature extraction, where basic features can be quickly extracted through a 

simple 1×1 convolution and batch normalization. Finally, the features extracted from 

the main path and the secondary path are merged in the channel dimension and activated 

by the GELU activation function to obtain the final output. The model can strike a 

balance between deep and shallow features. At the same time, due to the segmentation 
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of feature maps, only 60% of features enter the main path for deep processing, which 

significantly reduces the model parameters. 

In addition, to address the problem of gradient vanishing caused by zero gradient in 

the negative interval of the traditional ReLU activation function, we replace the activa-

tion function in the network with the GELU activation function. Compared with the 

unidirectional suppression characteristic of ReLU, GELU exhibits a smooth, differen-

tiable, and non-monotonic activation characteristic. Its smooth and non-monotonic na-

ture is conducive to the model capturing more nonlinear feature interactions. 

It is worth noting that after improving the Mini-Xception model by incorporating the 

CSPNet feature segmentation concept and adding the ParC module, the CP-Xception 

model's parameters were reduced to approximately 53% of the original. This signifi-

cantly decreased the parameter count while maintaining model performance. 

3 Experiments and Analysis 

3.1 Datasets 

Facial expression recognition(FER) datasets are crucial resources in the fields of affec-

tive computing and computer vision, serving as the foundation for training and evalu-

ating facial expression recognition models. In this experiment, we utilized four com-

mon datasets as follows. 

FER2013 Dataset. The FER2013 dataset is a widely used benchmark in the field of 

facial expression recognition. The dataset comprises 35,887 grayscale images of size 

48×48 pixels, labeled with seven basic expressions: anger, disgust, fear, happiness, sad-

ness, surprise, and neutral. 

FER2013+ Dataset. This dataset is an extension of the original FER2013 dataset. The 

annotations were refined by the Microsoft Research Institute, with each image relabeled 

by 10 crowdsourcing annotators. The dataset contains the same number of images as 

the original FER2013 dataset, comprising 35,887 facial expression images, each with a 

size of 48×48 pixels. 

CK+ Dataset. The Extended Cohn-Kanade Dataset (CK+) is a widely used benchmark 

for facial expression recognition. It comprises 593 image sequences from 123 subjects, 

capturing the transition from a neutral expression to a target expression. The target ex-

pressions include six basic emotions—anger, disgust, fear, happiness, sadness, and sur-

prise—as well as neutral. By extracting the last three frames of each sequence, a total 

of approximately 981 images were obtained for the dataset. 

JAFFE Dataset. The dataset consists of facial expression images captured from 10 

Japanese female participants who posed various expressions according to experimental 



 

 

instructions. The dataset contains a total of 213 images, with each participant displaying 

seven distinct expressions: anger, disgust, fear, happiness, sadness, surprise and neutral. 

Each expression category includes approximately 20 samples. 

Fig. 3 shows sample images of seven basic expressions in these four public datasets. 

 

Fig. 3 Facial expression recognition datasets 

There is a serious imbalance in the distribution of FER2013 and FER2013+ datasets, 

which leads to the fact that the model can not learn fewer types of data when learning. 

In the training process, we implement the following strategies to solve the problem of 

unbalanced datasets: first, we apply more extensive data augmentation to the classes 

with fewer samples in order to increase the volume of data in these categories; Second, 

we assign appropriate weights to each category. This ensures that the model focuses 

more on categories with less data while still paying attention to other categories, thereby 

achieving a relative balance across the entire dataset.  

The original datasets are divided into training, validation, and test sets according to 

a 7:2:1 ratio. The model is trained on the training set and subsequently evaluated on the 

validation and test sets. For datasets with limited data, we employ 10-fold cross-vali-

dation to train the proposed model. 

3.2 Experimental conditions and Evaluation metrics 

The experimental environment is configured as follows: The Python version is 3.9, with 

an NVIDIA GeForce RTX 3090 GPU capability. The training parameters are set as 

follows: The batch size is 64, and the initial learning rate is set to 0.001. The AdamW 

optimizer is employed to optimize the training process, and Focal Loss is used as the 

loss function. 

In the task of facial expression classification, Confusion Matrix, Accuracy, and ROC 

curve are used as evaluation metrics, K-fold cross-validation is as the validation meth-

ods. The following are the specific introductions： 
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Confusion Matrix In facial expression recognition, the confusion matrix evaluates clas-

sification performance. For a binary case ("happy"=positive, "unhappy"=negative): 

TP(True Positive): "happy" expressions correctly classified as "happy" 

TN(True Negative): "unhappy" expressions correctly classified as "unhappy" 

FP(False Positive): "unhappy" expressions mistakenly classified as "happy" 

FN(False Negative): "happy" expressions mistakenly classified as "unhappy". 

Accuracy In facial expression recognition, accuracy measures the proportion of cor-

rectly classified emotional instances relative to the total number of samples. The calcu-

lation formula is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
(1) 

ROC Curve The ROC curve helps evaluate model performance in expression recog-

nition tasks. The closer the ROC curve is to the upper-left corner, the better the model's 

performance, indicating a higher true positive rate at a lower false positive rate. 

K-Fold Cross-Validation In scenarios with small-scale datasets, K-Fold Cross-Vali-

dation can significantly enhance model evaluation robustness by maximizing the use of 

limited data resources. In this study, we apply a 10-Fold Cross-Validation strategy to 

the CK+ and JAFFE datasets. The datasets are randomly divided into 10 mutually ex-

clusive and balanced subsets via stratified sampling, ensuring that the category distri-

bution of each subset mirrored the original dataset. During each iteration, one subset 

serves as the test set, while the remaining nine subsets are combined into the training 

set. A model is trained on the current training set, and its expression recognition accu-

racy is evaluated on the corresponding test set. Finally, the average accuracy across the 

10 iterations is used as the comprehensive performance metric. 

3.3 Experiment results 

In this study, systematic experiments have been conducted on four public datasets: 

FER2013, FER2013Plus, CK+, and JAFFE. The comprehensive performance of our 

model is evaluated by comparing it with other deep neural network models, such as 

Xception, MobilenetV2[14], and Mini-Xception. The comparisons have been made in 

two key dimensions: recognition accuracy and parameter Count.  

Table 1 Experimental comparison results of the model 

Model FER2013/% FER2013+/% CK+/% JAFFE/% 
Parame-

ters/M 

Xception 68.12 77.32 97.13 90.47 22.8 

MobileNetV2 67.90 78.35 90.82 89.48 3.47 

Mini-Xception 66.20 77.76 93.88 86.82 0.06 

CP-Xception(ours) 68.36 76.58 97.25 91.13 0.03 



 

 

The experimental results in Table 1 indicate that our model outperforms the Mini-

Xception model on CK+ and JAFFE datasets, particularly on the CK+ dataset, and the 

recognition accuracy reaches 97.25%. The CK+ dataset consists of high-precision la-

beled images captured in controlled laboratory environments, with sequential transi-

tions from neutral to peak expressions. The ParC module in CP-Xception enhances 

global context modeling to capture holistic correlations in facial muscle movements. 

Meanwhile, the dual-path structure of CSPNet improves sensitivity to subtle expression 

variations. Remarkably, CP-Xception achieves this with only half of the parameters 

while maintaining competitive accuracy on FER2013 (68.36% vs. 66.20%).  The model 

demonstrates an optimal balance between lightweight efficiency and robust perfor-

mance across diverse scenarios. 

To comprehensively evaluate the model's performance across various datasets, we 

present the confusion matrix for each dataset, the average accuracy of the CK+ and 

JAFFE datasets under 10-fold cross-validation, and the corresponding ROC curves in 

Fig. 4, Fig. 5, and Fig. 6. 

  
CK+ JAFFE 

  
FER2013Plus FER2013 

Fig. 4 The confusion matrix of each dataset. The color shading indicates the classification per-

formance. The darker the color, the higher the accuracy of prediction. 
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CK+ JAFFE 

Fig. 5 The average accuracy of 10-fold cross-validation on the validation set for the CK+ and 

JAFFE datasets 

  
CK+ JAFFE 

  
FER2013Plus FER2013 

Fig. 6 ROC curve of each dataset 

From the confusion matrix (as shown in Fig. 4), it can be seen that the CP-Xception 

model shows high recognition accuracy across most expression categories. Fig. 5 pre-

sents the results of 10-fold cross-validation on CK+ and JAFFE datasets, and the aver-

age accuracy of the improved model on the two datasets reaches 97.25% and 91.13% 

respectively. The ROC curves in Fig. 6 demonstrate that the improved model's ROC 



 

 

curves are close to the upper-left corner for both datasets, indicating high classification 

accuracy and strong discriminative ability. 

3.4 Ablation study 

The CP-Xception is based on the Mini-Xception architecture, enhanced by incorporat-

ing the CSPNet concept and the ParC module. To thoroughly investigate the impact of 

these components on the network, we conduct ablation studies to analyze their specific 

contributions in reducing parameter count and improving performance. 

In this ablation study, we systematically test various module combinations in the 

model to evaluate the specific impact of each module on model performance. The re-

sults clearly demonstrate that both the ParC module and the CSPNet module signifi-

cantly enhance model performance, particularly on the CK+ dataset. Moreover, when 

the CSPNet and ParC modules are integrated simultaneously, the model achieves opti-

mal performance on both the FER2013 and CK+ datasets. Comparisons of the ablation 

study results confirm that the CSPNet and ParC modules are highly effective in im-

proving model performance in this experiment. 

Table 2 Ablation experiment results 

Model FER2013/% CK+/% 

Mini-Xception 66.20 93.88 

Mini-Xception +ParC 67.31 94.42 

Mini-Xception +CSPNet 65.87 95.80 

Mini-Xception +CSPNet+ParC 68.36 97.25 

Table 3 Comparison of parameters and complexity 

Model MFLOPs Parameters 

Mini-Xception 7.102 56951 

CP-miniXception(ours) 3.527 30149 

By comparing the performance of the Mini-Xception model and the CP-Xception 

model in terms of parameters and computational complexity, our model has achieved 

significant optimization in both aspects. Specifically, the MFLOPs of our model is 

3.527, approximately 50% lower than that of the Mini-Xception model. This indicates 

that our model requires fewer computing resources and is more suitable for deployment 

in resource-constrained environments. Additionally, the parameter count of our model 

is 30,149, which is about 47% less than the Mini-Xception model's parameters. There-

fore, while maintaining high performance, the CP-Xception model significantly re-

duces computational complexity and parameter count, enhancing its practicality and 

efficiency. This is particularly advantageous in scenarios requiring rapid inference and 

limited resources. These results demonstrate that optimizing the model structure can 

significantly improve efficiency and practicality without sacrificing performance. 
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4 Applications 

To verify the actual operational efficiency of the CP-Xception model, we specially de-

veloped an AI companion toy named Judy. Judy is designed to look like a monkey, 

which is quite aesthetically pleasing. It is equipped with a Raspberry Pi 5B, a high-

definition camera, a microphone, speakers, and other hardware components. Addition-

ally, it integrates an open-source DeepSeek large language model through network API, 

enabling the device to receive voice inputs, respond appropriately to questions, and play 

back responses through the speaker. The high-definition camera is intended for captur-

ing facial images, analyzing facial expressions to determine the user's emotional state 

at the time, and providing positive feedback in conjunction with the user's queries, 

thereby achieving emotional companionship. 

Fig. 7 illustrates the technical application process. The file size of the CP-Xception 

model weights deployed on the terminal device is only 297 KB, representing a signifi-

cant 65% reduction compared to the Mini-Xception model's 853 KB. This substantially 

alleviates the storage requirements of hardware devices. Actual measurements indicate 

that the loading speed of the optimized model on terminal equipment is 70% faster, 

with an inference time of just 0.021 seconds.We have conducted a practical test with a 

group of five people. In front of the AI companion Judy, due to factors such as facial 

angles, hair occlusion, and dynamic movements, the accuracy of emotion recognition 

reached 72.5%, and the device also provided relatively ideal emotional feedback. It 

should be noted that these facial expressions were intentionally made during the test 

and did not reflect genuine emotions. In the future, we will continue to evaluate Judy's 

performance in real-world usage scenarios, with a particular focus on improving emo-

tion recognition capabilities by fully considering various influencing factors. 

 

Fig. 7 Overall process of emotional AI companion interaction 

5 Conclusion 

In this paper, we propose a lightweight deep-learning model CP-Xception for FER 

study on resource-constrained devices. The model is based on the Mini-Xception and 

has improvements in both network architecture and feature extraction mechanisms. The 



 

 

backbone network is divided into primary and secondary paths for feature extraction at 

different depths, and the ParC module is integrated into the last two feature extraction 

modules of the backbone network to improve feature extraction capabilities. Experi-

ments on typical datasets demonstrate that the CP-Xception model achieves recognition 

accuracies of 95.25% on the CK+ dataset, 91.13% on JAFFE, 68.36% on FER2013, 

and 76.58% on FER2013Plus. Moreover, it maintains a significantly reduced parameter 

size and computational complexity, approximately 50% lower than that of the bench-

mark model. We finally deploy the model on a special AI companion toy with camera, 

demonstrating impressive performance. In future work, we will further optimize the 

model to adapt to diverse environmental conditions for better emotional feedback from 

the AI companion. 
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