2025 International Conference on Intelligent Computing
July 26-29, Ningbo, China
https://www.ic-icc.cn/2025/index.php

).

“

Patn v marmem sl (

ra
¢

Meta-learning and Residual Block Enhanced YOLO for
Accurate Detection of Gastrointestinal Pathology Lesions
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Abstract.Early identification and accurate diagnosis of gastrointestinal diseases,
particularly gastric cancer, are paramount for enhancing patient survival rates and
treatment outcomes. However, diagnosing these diseases can be challenging, es-
pecially when symptoms are mild or absent. Endoscopy, a standard diagnostic
tool, relies heavily on the endoscopist's expertise. Integrating artificial intelli-
gence (AD) with endoscopic imaging has the potential to assist in diagnosis, re-
duce missed cases, and expedite timely treatment. Previous studies have focused
on refining disease classification and and improving diagnostic accuracy, often
neglecting issues of data reliability and imbalance. This study proposes a novel
approach utilizing model-agnostic meta-learning (MAML) strategies to address
the challenges posed by sparse and imbalanced medical image data. We introduce
the YOLO-MR model, which incorporates meta-recognition mechanisms and re-
sidual blocks into the YOLO framework. Experimental results demonstrate that
the traditional YOLO model achieves an average precision (mAP) of only 41.7%
on imbalanced data, highlighting the negative impact of data imbalance. Tradi-
tional data augmentation techniques improve the mAP to 65.2%. whereas our
proposed YOLO-MR model achieves an impressive mAP of 96%, representing
a significant improvement of 54.3% over the traditional model. This enhance-
ment effectively reduces the diagnostic accuracy gap between different disease
categories and mitigates the issue of data imbalance. Furthermore, our research
validates the strong potential of advanced techniques such as MAML and residual
blocks in resource-limited medical image recognition tasks. These findings pro-
vide valuable insights into addressing the challenges of limited and imbalanced
medical data in the healthcare field.

Keywords:Gastrointestinal endoscopy, Medical image, Meta-learning, YOLO,
Lesions

1 Introduction

Image-based diagnostics are crucial in medicine, with gastrointestinal (GI) imaging
playing a key role in evaluating the digestive system [1]. Gl endoscopy is the primary
method for directly detecting anomalies like tumors, ulcers, and bleeding, comple-
mented by techniques such as X-rays, CT, and MRI. Early and accurate diagnosis of
GI conditions, such as gastric cancer, is vital for patient survival but often challenging
due to subtle early symptoms [2, 3].



A major hurdle in developing automated detection systems using computer vision
(e.g., object detection, classification) is the difficulty in obtaining large, well-structured
medical datasets, particularly endoscopic images [4-6]. Class imbalance is a common
issue, where certain conditions are underrepresented. Data augmentation techniques
(e.g., oversampling, SMOTE, geometric transformations) are frequently used to miti-
gate this [7-9]. However, while methods like sampling [7, 8], selective transformations
[9], transfer learning [10], and transformer-based models [11] have shown promise in
improving detection on imbalanced medical data, traditional augmentation involving
data alteration can raise reliability concerns critical in the medical domain.

Meta-learning offers a compelling approach to address data scarcity and imbalance
by enabling models to adapt quickly from limited examples, potentially without altering
the original data [13, 14]. Existing methods like Meta-SSD [13] and Meta-YOLO [14]
demonstrate its potential in object detection. Inspired by this, and building upon ad-
vancements like EAD-YOLO [15], we propose YOLO-MR. This model integrates
meta-learning, specifically the model-agnostic meta-learning (MAML) algorithm, with
the YOLO object detection framework. We further incorporate Residual Blocks to en-
hance feature extraction for challenging lesion identification tasks. Meta-learning is
particularly suitable due to its effectiveness with limited data and its ability to learn
from domain-specific medical data characteristics, bypassing potential issues with mis-
matched pre-training data.

The contributions of this study are summarized as follows:

® Development of YOLO-MR, an automated object detection algorithm for iden-

tifying gastric lesions (cancer, adenoma, ulcer).

® Integration of meta-learning for optimized weight initialization and Residual

Blocks into the YOLO architecture, improving lesion identification perfor-
mance over existing methods.

®  Experimental investigation into the impact of data imbalance and validation of

the proposed YOLO-MR's effectiveness for robust real-time lesion detection.

2 Basic knowledge of proposed baseline

This section provides explanations of important theories behind the proposed algo-
rithm. First, it describes the object detection and YOLO model, which serves as the
basic framework. It then elaborates on meta-learning and the MAML algorithm, which
are the key concepts driving the algorithm. Finally, we discuss residual blocks.

2.1  Object detection and YOLO

Obiject detection is a computer vision problem that involves the simultaneous identifi-
cation of the location and class of objects in images or videos [16]. It has various ap-
plications in fields, such as autonomous driving, medical image analysis, and security.
Several algorithms have been developed for object detection, including region-based
convolutional neural network (R-CNN) [17], Fast R-CNN [18], Faster R-CNN [19],
you only looking once (YOLO) [20], and single-shot multibox detector (SSD) [21].
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YOLO has evolved through multiple versions [22-28] and is structured with three com-
ponents for object detection: backbone, neck, and head. The backbone is responsible
for extracting essential features from the input image and is typically composed of con-
volutional neural networks [29]. It processes images of various scales and resolutions
to generate feature maps used to capture object shapes and visual features. Second, the
neck collected and combined feature maps with different resolutions and scales from
the backbone to create a feature pyramid. This feature pyramid allows detection of ob-
jects of all sizes, from small to large. Third, the head is where the final detection results
are the output. It comprises output layers for class prediction and bounding-box regres-
sion. Class predictions indicate the probability of an object's class within a grid cell,
whereas bounding box predictions provide information about the object's location and
size. Multiple anchor boxes are used in each grid cell to predict multiple bounding
boxes, thereby enabling adaptability to various sizes and aspect ratios.
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Fig.1. YOLO structure flow.

Figure 1 illustrates the overall structure of YOLO, which combines three compo-
nents: the backbone, neck, and head. This structure provides excellent performance and
speed for real-time objects.

2.2 Meta-learning and model agonistic meta learning

Meta-learning [30] is a method that enhances the ability of a machine learning model
to adapt quickly to new tasks. It can be broadly categorized into three main perspec-
tives: research on adjusting a model's hyperparameters to achieve optimal performance;
exploring model structures or initial parameters that can quickly adapt to new tasks
using knowledge and experience from various tasks or domains; and utilizing infor-
mation on relationships and similarities between datasets to improve generalization per-
formance. One meta-learning technique that can be applied regardless of the model is
MAML [31].

Figure 2 shows a structure of the MAML. MAML focuses on training an algorithm
to quickly modify a deep learning model, addressing the problem of finding model
structures or initial parameters that can rapidly adapt to new tasks. This approach is
effective even with a small amount of new data, and is suitable for novice-level learn-
ing. MAML fine-tunes initial model parameters using example data and the adjusted
initial parameters are used for adaptation to different tasks or domains. This process
was repeated several times, with each iteration aimed at improving the generalization



of the initial parameters across various tasks. Therefore, the goal of MAML is to create
models that can quickly learn and adapt to various tasks by adjusting initial parameters.
It is a versatile meta-learning algorithm that can be applied to various fields.
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Fig.2. MAML structure.

2.3  Residual block

The residual block [32] is a crucial component of deep learning networks that helps
mitigate the vanishing gradient problem and improves learning performance while in-
creasing the depth of the network. Residual blocks decompose the input data into their
original values and residuals (the difference between the input and output). This was
achieved by adding a residual connection to the output of the previous layer, allowing
the neural network to obtain additional learned representations of the input data. These
residual connections facilitate the smooth propagation of gradients throughout the neu-
ral network, thereby alleviating the vanishing gradient problem that can occur as the
network depth increases.
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Fig.3. Residual block structure.
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As shown in Figure 3, x represents the input, and F(x) represents the transformation
function for the input (e.g., convolutional layers and feedforward neural networks). F(x)
transforms input x to create a new representation y, and the residual connection com-
bines the transformed y with the original input X to obtain the final output. This process
can be expressed by the following equation:

y=F(x)+x @

where y is the final output, F(x)is the transformed representation, and x is the original
input. The addition operation combines the transformed representation with the original
input, yielding the final output.

3 Proposed method

First,we investigate the impact of class imbalances resulting from differences in data
quantity on the accuracy of endoscopic image classification. To address this issue, we
performed the following experiments. In all the experiments, the training and testing
data were set at a ratio of 9:1, and each experiment was run for 1,000 epochs.

3.1  Correlation between data imbalance and accuracy

Experiments were conducted under the assumption that all classes had an equal number
of data samples. Considering that the ulcer class contained approximately 4,000 sam-
ples, we constructed an experimental dataset based on this class. In other words, we
extract 4,000 samples for each class or the experiments, which was the same as the
number of samples in the ulcer class. Additionally, we conducted experiments using a
smaller dataset comprising 400 samples, which accounted for 10% of the dataset.

Table 1. Test accuracy for balanced data using 400 samples.

Num(train/test) p r mAP

Cancer 360/40 0.897 0.9 0.933
Ulcer 360/40 0.927 0.905 0.97
Adenoma 360/40 0.744 0.756 0.814

all 1080/120 0.856 0.854 0.906




Table 2. Test accuracy for balanced data using 4000 samples.

Num(train/test) p r mAP

Cancer 3600/400 0.776 0.723 0.751
Ulcer 3600/400 0.653 0.558 0.61
Adenoma 3600/400 0.645 0.695 0.661
all 10800/1200 0.691 0.695 0.674

First, we conducted experiments using 400 and 4,000 balanced data samples, respec-
tively. Table 2 presents the results of training with 4,000 balanced data samples for
each class using pre-trained weights, showing that the cancer class achieves a relatively
high accuracy of approximately 0.75 compared to the other classes, with ulcer at 0.61
and adenoma at 0.661. This suggests that while the ulcer and adenoma classes exhibit
slightly lower accuracy, the overall difference between the classes is not substantial.
However, referring to Table 1, when the data quantity is limited to 400 samples, the
accuracy is significantly high at approximately 0.9. Particularly, the ulcer class demon-
strates higher accuracy than cancer. These results are likely attributed to overfitting and
insufficient test data, highlighting the challenge of distinguishing between cancer and
ulcer. Secondly, we conducted experiments considering the imbalances in the number
of data samples for each class.

Table 3. 1/10th of imbalanced data test accuracy.

Num(train/test) p r mAP

Cancer 728/104 0.539 0.51 0.473
Ulcer 308/44 0.516 0.257 0.314
Adenoma 951/136 0.475 0.499 0.463
all 1987/284 0.51 0.422 0.417

Table 4. Imbalanced data test accuracy.

Num(train/test) p r mAP

Cancer 7289/1043 0.785 0.769 0.81
Ulcer 3090/442 0.68 0.57 0.62
Adenoma 9522/1361 0.738 0.683 0.714

all 19901/2846 0.734 0.674 0.715
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The following presents the results of experiments conducted using an imbalanced
dataset. According to Table 3, the accuracies for the cancer, ulcer, and adenoma classes
are 0.473, 0.314, and 0.463, respectively, with an average accuracy of approximately
0.417. These results demonstrate a decrease in accuracy for classes with relatively
fewer data samples. Table 4 illustrates the results of experiments conducted by increas-
ing the dataset size. The accuracy for the cancer class improved slightly to 0.81. The
ulcer class still recorded a low accuracy of 0.62, while the adenoma class showed a
slight increase to approximately 0.714. Therefore, the overall average accuracy in-
creased by approximately 29.8% with the increase in dataset size.

However,low accuracy persists in cases with relatively few data samples, such as the
ulcer class. This confirms the difficulty of distinguishing objects belonging to specific
classes during the learning process. However, a more fundamental problem lies in the
limited number of data samples and the learning approach used.

....................................................................................................................
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Fig.4. Proposed model structure.

3.2 Proposed structure

In this paper, we propose a method based on the YOLOv7 model to address object
detection considering the imbalanced nature and class characteristics of medical data.
We utilize MAML (Meta-learning Adaptive Model) to learn the optimal weights and



apply them to a YOLO model with residual blocks. The model trained using this ap-
proach is named YOLO-MR (YOLO with meta-learning and residual blocks), and its
structure is illustrated in Figure 4.

Model-agnostic meta-learning module

Model-agnostic meta-learning is a meta-learning algorithm utilized to rapidly adapt
model parameters to various tasks. On the other hand, residual blocks act as a network
structure, establishing a direct pathway between the input and output, thereby mitigat-
ing the issue of gradient vanishing that can arise in complex networks and enabling
deeper network training.

The primary objective of our proposed YOLO-MR model is to combine the ad-
vantages of MAML and residual blocks to achieve high-performance object detection.
MAML leverages a network architecture that combines a convolution-based backbone
with the YOLO object detection head and utilizes gradient-based optimization algo-
rithms to determine optimal weights. MAML consists of two main steps. In the first
step, the initial model parameters are updated using the support set data, while in the
second step, the performance of the updated initial parameters is evaluated and opti-
mized using the query set data. By iteratively performing these steps, the initial param-
eter values are finely adjusted, resulting in model weights capable of adapting to diverse
tasks. Consequently, the derived optimal weights are utilized in object detection tasks
within the YOLO model, enabling MAML to maintain high performance while being
adaptable to a variety of image object detection tasks.

YOLO with residual block module

In the YOLO framework, residual blocks play a crucial role in facilitating seamless
information transfer from ConvModules to subsequent layers. ConvModules consist of
a combination of layers, including convolution, batch normalization, and activation
functions, which perform transformations on the input data.

Importantly,even after the post-ConvModule processing, the input data are directly
transmitted through a skip connection, establishing a residual association between the
input and output data. Within the residual block, an additive summation occurs between
the input and output data, resulting in the generation of a residual value between the
output and input of the ConvModule. This residual value is utilized during the learning
process and can contribute to improved accuracy. By keeping the residual value concise
and compact compared to the previous pathway, information is transmitted without
loss, enabling deeper learning within the network. Consequently, residual blocks work
collaboratively wit ConvModules to enhance the accuracy of object detection tasks.

Therefore,an algorithmic structure that leverages MAML and residual blocks has
been proposed, ensuring high performance even in the presence of data imbalances.
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4 Experimental results

The experiments compared the conventional YOLO model with a YOLO model that
uses data augmentation techniques and a YOLO model that applies both MAML and
residual blocks (YOLO-MR).

4.1 Data and experimental environment

The dataset used in this study comprised endoscopy data collected from patients who
underwent upper gastrointestinal endoscopy at Gachon University Gil Medical Center's
outpatient and inpatient departments from 2008 to October 2022. The data included
patients'medical records, excluding cases with unclear diagnoses, and consisted of pa-
tient records stored in EMR and image databases. The dataset (IRB Number:
GBIRB2021-383) included 61,734 cases classified into four classes, as shown in Table
5. The dataset exhibits variations in the number of data samples per class, with the ulcer
class having notably fewer data samples compared to the other classes. As demon-
strated in Section Il1-A, such dataset imbalances were shown to lead to accuracy deg-
radation. This experiment is conducted with a dataset about one-tenth the size of all
datasets except for the normal class. The details of the equipment utilized for this study
are provided in Table 6.

Table 5. Dataset.

Class Count
Cancer 10414
Ulcer 4415
Adenoma 13603
Normal 33302

Table 6. Experimental environment.

CPU AMD Ryzen Threadripper 3960X 24-Core Processor 3.79 GHz
GPU NVIDIA Geforce RTX 2080 Ti
RAM 64GB

0sS Windows11,64bit OS




42 YOLO

Figure 5 presents the prediction results obtained using the conventional YOLO model.

Fig.5. YOLO results (L:GroundTruth, R:Prediction).

As shown in Table 7, the average precision (AP) for the cancer, ulcer, and adenoma
classes were 0.473, 0.314, and 0.463, respectively, resulting in a mean average preci-
sion (MAP) of 0.417. This experiment was conducted using only 10% of the dataset,
which led to issues related to data imbalance and a limited amount of data. As observed
in Table 7, there was a significant disparity in accuracy between each class, and the
overall accuracy was also low. Comparing the average accuracy obtained in this exper-
iment with the 0.7 accuracy achieved when training on the full dataset, the results ob-
tained in this experiment were approximately half. This suggests that the model strug-
gled to learn properly due to the limited amount of data and resulting data imbalance.

Table 7. Data test results using the YOLO model.

Num(train/test) p r mAP

Cancer 728/104 0.539 0.51 0.473
Ulcer 308/44 0.516 0.257 0.314
Adenoma 951/136 0.475 0.499 0.463
all 1987/284 0.51 0.422 0.417

4.3  Data augmentation YOLO

Data augmentation involves transforming existing data in various ways to expand a
dataset. To compare it with the proposed model, data augmentation was used to increase
the amount of data during training and to compare it with the previous YOLO model.
Among the various data augmentation methods, a basic approach was employed to per-
form data augmentation on existing image data within a range that did not significantly
distort the data. The data augmentation methods applied include illumination changes,
contrast adjustments, saturation changes, and Gaussian blurring, as shown in Figure 6.
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Fig.6. Data augmentation example.

Fig.7. Presents the prediction results corresponding to data augmentation.

In this study,a dataset was generated based on 10% of the dataset for data augmen-
tation.However,the augmentation techniques used increased the number of original data
samples to approximately 19,870. Data augmentation techniques that minimally altered
the data were employed to maintain the reliability of the medical data. As shown in
Table 8, the average precision (AP) for the cancer, ulcer, and adenoma classes were
0.697, 0.602, and 0.657, respectively. The mean average precision (mAP) across these
classes wa approximately 0.652, representing a significant improvement of approxi-
mately 23.5% compared to the YOLO baseline results. This confirms that, as previously
observed, increasing the amount of data has an impact on performance.

Table 8. Test results of YOLO model with data augmentation.

Num(train/test) p r mAP

Cancer 728(7280)/104 0.739 0.641 0.697
Ulcer 308(3080)/44 0.646 0.579 0.602
Adenoma 951(9510)/136 0.652 0.666 0.657
all 1987(19870)/284 0.679 0.692 0.652

However,it is worth noting that these results are sill approximately 6.3% lower than
those obtained from training with the original dataset. Additionally, when analyzing the



differences in accuracy between classes, it can be observed that the issue of data imbal-
ance persists, although to a lesser extent than in the initial experiments.

4.4 Results of the proposed model

Figure 8 presents the prediction results using YOLO-MR.

Fig.8. YOLO-MR results (L:GroundTruth,R:Prediction).

In the final experiment,the Meta-Learning Adaptive Model (MAML) was employed
to learn the optimal weights, which were subsequently set as the initial weights for the
YOLO model. Following that, the YOLO-MR architecture with residual blocks was
applied. According to Table 9,the average precision (AP) for the cancer, ulcer, and ad-
enoma classes were 0.984, 0.919, and 0.976, respectively. The overall mean average
precision (MAP) was approximately 0.96, signifying significant improvements of ap-
proximately 54.3% and 30.8% compared to the previous YOLO model and the experi-
ment utilizing data augmentation techniques, respectively. These findings are particu-
larly noteworthy considering that the amount of data utilized was only one-tenth of that
used in the data augmentation experiment. This indicates a substantial contribution of
MAML and residual blocks to the enhancement of performance.

Table 9. Test results learned on YOLO-MR model.

Num(train/test) p r mAP

Cancer 364/364/104 0.947 0.974 0.984
Ulcer 154/154/44 0.928 0.878 0.919
Adenoma 475/475/136 0.936 0.951 0.976
all 993/993/284 0.937 0.934 0.96

Moreover,the disparity between the highest and lowest accuracies was approxi-
mately 0.07, significantly lower than in previous experiments. This implies that YOLO-
MR contributed to a reduction in performance disparities among classes, thereby alle-
viating the issue of data imbalance.
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Table 10. Below provides an overview of the average precision for each model across all the
experiments.

Model cancer ulcer adenoma mAP

YOLO 0.473 0.314 0.463 0.417

Data augmentation YOLO 0.697 0.602 0.657 0.652
Our YOLO-MR 0.984 0.919 0.976 0.96

Table 10 presents a summary of the previous three experiments. The results obtained
from the YOLO baseline experiment were unsatisfactory, and the method of increasing
the dataset by tenfold through data augmentation did not achieve comparable perfor-
mance for our model. Our approach exhibited the best performance despite being
trained on a smaller dataset compared to data augmentation. Furthermore, we success-
fully minimized the performance gap between classes.

Figure 9 shows the precision-recall curves of all evaluated models. The larger the
area under the curve, the better the performance. The proposed method showed the
highest precision and reproducibility curves compared to the existing YOLO model and
the data-enhanced YOLO model, which shows the superior performance.

Figure 10 depicts the training and validation loss curves for the entire experiment.
Upon closer examination, the graph exhibits periods of stagnation. but overall, it
demonstrates a decreasing trend. Furthermore, it can be observed that the proposed
model exhibits a small gap between the training and validation loss.

YOLO DAYOLO

YOLO-MR
Fig.9. Precision-recall curves of YOLO baseline and data augmentation YOLO,YOLO-MR.



Loss Curve

Fig.10.Train loss and val loss graph.

Table 11. Overview of the accuracy for each model across all the experiments and related re-
search indicators.

Model cancer ulcer adenoma Accurary or mAP
InvNorm 0.842
ASSD-GPNet 0.942
DenseNet121 0.9868
Mask R-CNN+BiFPN 0.9333
Original YOLOv7 0.473 0.314 0.463 0.417
Data augmentation YOLO 0.697 0.602 0.657 0.652

Our YOLO-MR 0.984 0.919 0.976 0.96

To summarize once again, when dealing with imbalanced data, the conventional
YOLO model showed a relatively low mAP of 0.417. However, by augmenting the data
and increasing the dataset size, the mAP improved to 0.625, representing a 30.8% in-
crease. In contrast, the proposed YOLO-MR approach achieved a higher mAP of 0.96,
indicating a 54.3% increase in accuracy compared to the traditional YOLO model.
When comparing the differences between classes, the YOLO model exhibited the larg-
est difference of approximately 0.16, while the data-augmented YOLO model showed
a difference of approximately 0.09. The proposed YOLO-MR model significantly re-
duced the class imbalance to approximately 0.07.

These results emphasize the effectiveness of techniques such as meta-learning and
residual blocks in addressing data imbalance in image recognition tasks. This holds
practical potential for addressing imbalanced data in the field of medical image analysis,
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and it is expected that these methodologies can be applied to various problem-solving
scenarios beyond the medical domain.

Furthermore,when comparing the performance of recent research papers on object
detection in gastrointestinal endoscopy, a study conducted by using the InVNorm
model [33] achieved an mAP of 84.2% by applying interpretable style normalization,
without compromising the reliability of medical data augmentation. Another study pro-
posed the ASSD-GPNet model [34], which achieved an mAP of 94.2% for gastrointes-
tinal endoscopy videos and 76.9% for the Pascal VOC dataset. This model demon-
strated outstanding performance by generating intricate feature maps that focus on spe-
cific information, aiding in the detection of small polyps. A study introducing the
DenseNet121 model, used for histopathological image analysis achieved a top accuracy
of 98.68% and an AUC of 98.58%. Lastly, a study proposed the Mask R-CNN+BiFPN
model, which combined the object detection method with endoscopic images, improved
feature fusion, and enhanced early detection of gastrointestinal lesions, achieving an
mAP of 93.33%. Our model exhibited high accuracy and achieved a commendable
mAP of 96%, compared to recent research. Models based on the SSD model, which
utilized refined map blocks (RMB) and attention cascades to improve accuracy, out-
performed our study.

5 Conclusion

In this paper, we emphasize the importance of early detection and accurate diagnosis
of gastrointestinal diseases, including gastric cancer, through gastrointestinal endos-
copy. However, the accuracy of disease identification in this field varies depending on
the endoscopist, and there is a possibility of missed diagnoses. To address these chal-
lenges, the application of artificial intelligence as an assistive tool has shown promising
results in reducing missed diagnoses and improving patient survival rates by enabling
early treatment. However, previous studies have mainly focused on disease classifica-
tion and improving classification accuracy, overlooking the practical difficulties in
medical data collection and the handling of imbalanced datasets.

In this study, we implemented-meta learning using the MAML algorithm and pro-
posed the YOLO-MR model by combining the YOLO object detection algorithm with
Residual Blocks. The YOLO-MR model significantly improved the object detection
accuracy compared to the baseline YOLO model. The object detection mAP of the
baseline YOLO model was relatively low,with detection AP for cancerous tumors, ul-
cers, and adenomatous tumors being 0.473, 0.314, and 0.463, respectively, resulting in
an mAP of 0.417. By augmenting the dataset and increasing its size by 10 times, the
accuracy improved, with detection AP for cancerous tumors, ulcers, and adenomatous
tumors being 0.697, 0.602, and 0.657, respectively, resulting in an mAP of 0.652. How-
ever, these results were still lower compared to training with the original data without
data augmentation. The proposed YOLO-MR method, utilizing MAML and residual
blocks, achieved detection AP for cancerous tumors, ulcers, and adenomatous tumors
0f 0.984, 0.919, and 0.976, respectively, resulting in an mAP of 0.96. Furthermore, the
proposed approach significantly reduced the accuracy gap between different classes
and contributed to addressing the issue of data imbalance.



In summary,when dealing with imbalanced data, using only the conventional YOLO
model leads to relatively low mAP. Data augmentation can greatly improve mAP, but
the YOLO-MR method surpasses such improvements, achieving 54.3% increase in
mAP. In particular, it successfully reduces the accuracy gap between classes and effec-
tively addresses the issue of data imbalance. These results highlight the effectiveness
of techniques such as meta-learning and residual blocks in addressing the challenge of
data imbalance in image recognition tasks and emphasize the performance of medical
image object detection. However, both the data augmentation technique and the pro-
posed YOLO-MR model have the limitation of long execution times in the data aug-
mentation module and meta-learning module. Nevertheless, once the best model is
trained using the YOLO model, quick test results can be obtained.

Therefore, training with imbalanced class datasets using the proposed model can
achieve good performance and comparable performance to state-of-the-art research.
Additionally, it would be worthwhile to explore the applicability of these methods in
other fields and rare diseases.

Disclosure of Interests. The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work reported in this

paper.
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