

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

PRLL: Policy Regularization and Reward Shaping

Assisted by Large Language Models

Qianxia Zheng1, Xiangfeng Luo1,  and Tao Wang 1

1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
{zhengqianxia, luoxf, wangt96}@shu.edu.cn

Abstract. Through continuous exploration and repeated trials, reinforcement

learning (RL) enables agents to learn the optimal strategy, acquiring a certain

level of behavioral intelligence. However, in complex and dynamically changing

real-world environments, the state space and action spaces grow significantly

larger. This implies that agents need to explore the environment more extensively

to identify viable solutions. Unfortunately, such repetitive and inefficient explo-

ration often leads to increased training time, higher costs, and greater risks. Sev-

eral methods have emerged that use prior knowledge from large language models

(LLMs) to assist RL training, but many of these approaches do not consider the

issue of low sample efficiency. To address these challenges, we propose Policy

Regularization and reward shaping assisted by Large Language models (PRLL).

Firstly, PRLL calculates the similarity between LLMs-generated suggestions and

the agent's actions, using this as a regularization term, to constrain the agent's

exploration direction. Secondly, to efficiently align the agent's behavior with hu-

man preferences, PRLL employs LLMs to evaluate the alignment between the

agent's actions and human values, translating this evaluation into an intrinsic re-

ward signal. Experiments in both discrete and continuous action spaces demon-

strate that PRLL outperforms most baseline methods while requiring fewer train-

ing time steps.

Keywords: Deep reinforcement learning, Large Language Models, Policy Reg-

ularization, Reward Shaping.

1 Introduction

Reinforcement learning (RL) enables agents to learn appropriate strategies in a com-

pletely unfamiliar and dynamically changing environment through continuous explora-

tion and multiple trials, thereby acquiring a certain degree of intelligent decision-mak-

ing ability [15, 19, 33]. Consequently, RL has become an important method for the

practical application of artificial intelligence technologies [16, 18, 28], with wide ap-

plications in industrial robot control [29], intelligent medical diagnosis [3, 9], Multi-

player Online Battle Arena (MOBA) games [2], military operations [32], and more.

However, the necessity of learning through continuous exploration of the environment

implies that the agent needs to interact continuously with the environment until training

is complete, inevitably leading to some repetitive exploration. Especially in complex

and dynamic training environments, both the action space and the solution space be-

come larger, requiring the agent to explore the environment more extensively to obtain

the solution space.

This can easily lead to rapid increases in training time, costs, and levels of danger

[12, 25]. For example, in military applications, the training efficiency and decision-

making accuracy of unmanned combat agents are important for gaining battlefield ad-

vantages, particularly when the battlefield environment undergoes significant changes

due to natural disasters or human bombings. If the agents cannot quickly adapt to new

battlefield environments and changes in enemy situations, learn new strategies, and

make decisions promptly, it could delay decision-making time, affecting tactical exe-

cution and overall combat effectiveness. Therefore, addressing the issues of large solu-

tion spaces and low learning efficiency in traditional deep reinforcement learning is

crucial to ensure that agents can execute new tasks quickly and accurately.

Fig. 1. The architecture of policy regularization and reward shaping assisted by large language

models (PRLL). On one hand, we utilize large language models (LLMs) to provide action sug-

gestions for the agent under the current observation, and calculating the similarity between these

suggestions and the actions currently output by the agent to form a regularization term. On the

other hand, we use LLMs to evaluate whether the actions conform to given human preferences,

and provides corresponding intrinsic rewards to the agent.

Currently, methods for addressing the challenges of large solution spaces and low

learning efficiency in RL can be roughly categorized into three groups. The first cate-

gory includes offline RL and imitation learning, but acquiring a large amount of expert

demonstration data is difficult for complex and costly tasks [14, 26]. Moreover, the

state distribution in the data may have errors compared to the real environment. The

second category involves model-based RL, but constructing models for complex and

dynamically changing environments is challenging, and these algorithms lack transfer-

ability between different environments [22]. The third category is intrinsic motivation

RL method, but actions that lead to new states in the environment do not necessarily

mean they are solutions within the solution space [33].

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Additionally, some researchers have used large language models (LLMs) to address

problems in RL [4, 30]. ELLM [6] leverages LLMs for pre-training, providing agents

with goal suggestions in a task-agnostic manner. However, since it is not tailored to

specific tasks, some tasks may never be addressed during pre-training. LCA [5] uses

Vision Language Models (VLMs) to map observations into text, which is then pro-

cessed by LLMs to generate subgoals. But it is limited to the task of stacking three

blocks in robotics. These methods provide agents with embeddings of subgoal texts,

requiring LLMs to be called at every time step. The frequent reliance on LLMs in-

creases time costs and fails to fully address the issue of low sample efficiency. In our

algorithm, we call LLMs only at critical time steps relevant to task completion. For

instance, in the unmanned ground vehicle (UGV) street-keeping scenario, LLMs are

invoked only when the UGV enters the area near a traffic light intersection.

To tackle this challenge, we propose the policy regularization and reward shaping

assisted by large language models (PRLL). In PRLL, there are two captioners, one of

which translates the current observations of the agent into descriptive text, while the

other translates the actions currently taken by the agent into descriptive text. Both

pieces of text are then input into the following two modules. On one hand, we utilize a

policy regularization method guided by LLMs. This method initially provides action

suggestions for the agent under the current observation based on the LLMs. Subse-

quently, it calculates the similarity between the suggestions and the actions currently

output by the agent, forming a parameterized regularization term. This term guides the

policy learning towards the solution space capable of completing tasks. On the other

hand, we employ a reward reshaping mechanism based on LLMs evaluation. We first

use the LLMs to evaluate whether the actions align with given human preferences.

Then, based on the degree of importance assigned to these human preferences, it pro-

vides the agent with a certain proportion of intrinsic rewards, assisting the policy in

learning the solution space with human preferences. By combining these two parts, we

form the PRLL to address the challenges of large solution spaces and low learning ef-

ficiency. The architecture is shown in Fig. 1.

We conducted experiments in the discrete action space of Crafter and the continuous

action space of the Unity3D UGV street-keeping scenario to validate the effectiveness

of PRLL. Additionally, we carried out ablation experiments to evaluate the influence

of policy regularization and reward reshaping on the PRLL algorithm. The results in-

dicate that our algorithm consistently outperforms most baseline methods across vari-

ous experimental environments while requiring fewer training time steps, highlighting

a greater learning efficiency for our approach.

The main contributions of this work are summarized as follows:

• We propose a policy regularization method guided by a LLMs to help the policy get

the solution space necessary for completing tasks.

• We propose a reward reshaping mechanism based on LLMs evaluation to assist the

policy in learning the solution space with abstract human preferences.

• Our algorithm outperforms most baseline methods in both discrete and continuous

action space environments, demonstrating greater sample efficiency for the agent by

requiring significantly fewer training time steps.

2 Related Work

The current methods for addressing the challenges of large solution spaces and low

learning efficiency in RL can be roughly categorized into three groups. The first in-

volves providing demonstration data, the second entails building environment models,

and the third involves designing intrinsic rewards. Offline RL and imitation learning

both involve learning directly from expert demonstration data [14, 26], utilizing the

prior knowledge in the data to help the agent narrow down the solution space. However,

both methods require the collection of expert demonstration data in advance, which can

be challenging for complex or costly tasks. Moreover, the state distribution in expert

demonstration data may have errors compared to the real environment, leading to the

agent learning incorrect action values. Model-based RL improves the efficiency of

learning policies by constructing environment models, including state transition models

and reward models, to predict the state and reward of the environment given the agent's

current state and action. However, constructing models for complex and dynamically

changing environments can be difficult. Additionally, this method lacks transferability

between different environments and may have limited generalization capabilities [22].

Intrinsically motivated RL methods primarily provide rewards based on the novelty

and predictability of the current state of the agent [33]. This encourages the agent to

explore parts of the environment that were previously unknown, thereby increasing the

coverage of exploration and speeding up policy learning. However, taking actions that

lead to new states in the environment does not necessarily mean discovering solutions

within the solution space. For instance, in the scenario of an UGV navigating through

streets, the frequent swaying of tree branches due to strong winds may provide pro-

longed novelty in the observations for the vehicle agent, but it may not significantly

affect the agent's driving behavior.

With the rapid development of LLMs, some researchers have also utilized their in-

tegration with traditional RL to address their respective shortcomings [17]. ChatGPT

[23] utilizes RL in the training process of LLMs to align the model with human prefer-

ences, thoughts, and abstract goals. However, it lacks the capability to directly control

UGVs at the most granular level, making it impractical for direct real-world applica-

tions. SayCan [1] utilizes LLMs to decompose natural language commands issued by

users into a sequence of robot skills, and then multiplies the probability of skill success

judged by the feasibility function with the probability of skill utility judged by LLMs.

EUREKA [20] takes the source code of the environment and task description text as

inputs to a LLM. It then generates executable reward function code, and iterates be-

tween sampling reward functions, evaluating rewards, and reflecting on rewards to im-

prove the reward function.

Moreover, some researchers also utilize LLMs to address issues in RL [4, 30].

ELLM [6] embeds suggestions generated by LLMs into the input of the policy. How-

ever, calling LLMs for suggestions at each step consumes a significant amount of time

and resources. LCA (The Language-Centric Agent) [5] is centered around language,

leveraging LLMs and visual language models to comprehend the environment, decom-

pose tasks, and then output actions based on subtasks and the current state of the

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

environment using RL policies. However, this is limited to the field of robotics and

requires providing examples of the desired language outputs.

Different from these methods, the main idea of our approach is to address the chal-

lenges of large solution spaces and low learning efficiency through policy regulariza-

tion and reward shaping assisted by LLMs. We leverage the commonsense knowledge

inherent in LLMs, which are zero-shot and do not require fine-tuning. Our approach is

lighter-weight compared to LCA and more efficient compared to EUREKA. Unlike

offline RL and imitation learning, we do not require the collection of demonstration

data. Additionally, we introduce a reward shaping mechanism based on LLMs evalua-

tion to imbue the agent with abstract human preferences such as safety and urgency,

without the need for designing corresponding reward functions.

3 Background

The RL problem can be formulated as a Markov Decision Process 𝒮 𝒜 𝒫 ℛ γ . Here,

𝒮 represents the state space and 𝒜 represents the action space. 𝒫 𝒮 × 𝒜 × 𝒮 → [0 1]
is the transition probability function that describes the dynamics of the environment,

while ℛ 𝒮 × 𝒜 × 𝒮 → 𝑅 is the reward function and γ ∈ 0 1] is the discount factor

that determines the importance of future rewards relative to immediate rewards.

In RL, the policy that outputs actual actions for the agent and the policy that updates

values can be the same (on-policy) or different (off-policy). In off-policy algorithms, a

classic algorithm is TD3, which integrates the idea of DDQN into the DDPG algorithm,

addressing the issue of overestimation and suitable for continuous control tasks [8]. The

TD3 consists of six networks: the actor network πθ, critic1 network 𝑄ϕ1
, critic2 net-

work 𝑄ϕ2
, target actor network πθ’, target critic1 network 𝑄ϕ1

’ , and target critic2 net-

work 𝑄ϕ2
’ . Compared to the two critic networks, the updates of the actor network and

the three target networks are delayed. The loss function for the actor network is as fol-

lows, where 𝔻 represents the experience pool.

 𝐽𝜋 𝜃 = 𝐸𝑠∼𝔻[−𝑄𝜙1
 𝑠 𝑎] 𝑎 = 𝜋𝜃 𝑠 (1)

The use of policy regularization in RL has already been employed. For example, con-

sidering maximum entropy during policy optimization [11] helps to enhance the ex-

ploratory nature of the policy to some extent. The loss function of SAC is as follows:

 𝐽 𝜋 = ∑ 𝐸 𝑠𝑡 𝑎𝑡 ∼𝜌𝜋
[𝑟 𝑠𝑡 𝑎𝑡 + 𝛼ℋ(𝜋 ⋅ |𝑠𝑡)]

𝑇
𝑡=0 (2)

where ℋ(π ⋅ |𝑠𝑡) is the entropy. In the PPO-Penalty algorithm [13], the stability of

training is enhanced by dynamically adjusting the coefficient β of the KL divergence

penalty term, thereby restricting the magnitude of policy optimization. The loss func-

tion is as follows, where 𝐴 represents the advantage function [33].

 𝐽θ
’
 θ = 𝐸 𝑠𝑡 𝑎𝑡 ∼π

θ’
[
πθ(𝑎𝑡|𝑠𝑡)
π
θ’(𝑎𝑡|𝑠𝑡)

𝐴θ’
 𝑠𝑡 𝑎𝑡 − βKL (πθ’ ⋅ |𝑠𝑡 πθ ⋅ |𝑠𝑡)] (3)

To successfully train an agent in environments with sparse rewards, it often requires

the design of specific exploration mechanisms to boost rewards. This is referred to as

intrinsic reward, in contrast to the rewards provided by the environment, known as ex-

trinsic reward. Some intrinsic rewards encourage the agent to explore more states, oth-

ers to explore more state-action pairs, and some to learn more diverse objectives (like

ELLM and PRLL). RND calculates the error of the state encodings predicted by the

predictor network 𝑓 𝑠𝑡+1 and the target network 𝑓 𝑠𝑡+1 to measure the novelty of

states [19], providing the agent with a corresponding intrinsic reward.

 𝑅𝑖 = ||𝑓θ 𝑠𝑡+1 − 𝑓θ̂̂ 𝑠𝑡+1 ||
2 (4)

The predictor network 𝑓 is trained simultaneously with PPO, while the target network

𝑓 is initialized with random parameters θ and kept fixed, with both neural networks

sharing the same structure.

4 Policy Regularization and Reward Shaping Assisted by LLMs

This section presents our proposed method, PRLL, designed to address the challenges

of expansive solution spaces and low learning efficiency. Our method comprises two

main components: (a) utilizing a LLMs-based policy regularization method to guide

policy learning towards solution spaces conducive to task-solving, and (b) employing

reward reshaping mechanisms assessed by LLMs to support policy learning towards

solution spaces aligned with human preferences.

4.1 LLMs-guided Policy Regularization

Regarding the use of LLMs for goal proposals in RL, ELLM [6] embeds the suggestions

generated by LLMs into the input of the policy. However, we propose a more efficient

approach to utilize suggestions generated by LLMs. As shown in Fig. 2, we calculate

the similarity between the suggestions from the LLMs and the actions selected by the

agent, and then We choose the highest suggestion similarity to form a regularization

term. In other words, we utilize the inherent prior knowledge in the LLMs to assist the

policy in narrowing down the solution space efficiently for task completion.

Two description captioners are used: one describing the state and one describing the

action. The state captioner 𝐶𝑜𝑏𝑠 is responsible for converting the agent's current state

𝑂𝑡 into text descriptions 𝐶𝑜𝑏𝑠 𝑂𝑡 following a fixed format. This includes the current

observations of the agent (e.g., in UGV street-keeping scenario: crosswalks, traffic

lights, grassy areas, other vehicles), the current status (whether it is driving or stopped),

and the available actions (e.g., possible driving directions on the current road: straight,

right, left). All this information can be obtained in Unity, and then utilized by the state

captioner to input the agent's current state in text form to the LLMs, helping the model

to comprehend the agent's current state. On the other hand, the action captioner 𝐶𝑎𝑐𝑡𝑖𝑜𝑛

converts the action 𝑎𝑡 selected by the agent's policy at the current timestep into text

Caction at (e.g., "stop in front of the crosswalk").

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Fig. 2. The architecture of LLMs-guided Policy Regularization. We calculate the similarity be-

tween the suggestions from the LLMs and the actions selected by the agent, and then choose the

highest suggestion similarity to form a regularization term.

In this module, besides describing the current state of the agent, scene descriptions and

task descriptions also need to be input to the LLMs. Scene descriptions refer to the

actions the agent can take in the current scene. For example, in UGV street-keeping

scenario, the agent's action space is continuous and includes only two dimensions:

steering and speed. Therefore, it is necessary to input the legal actions (continue driv-

ing, stop and wait, turn right, go straight, turn left, slow down, speed up) to the LLMs

to constrain the output of the LLMs. Task descriptions refer to a detailed introduction

of the agent's current role and task objectives. For instance, instructing the LLMs to act

as a car driver and provide the best action suggestions based on the current situation. In

this way, the LLMs can generate 𝑘 pieces of coarse-grained suggestions 𝑔𝑡
1 𝑘 at the pol-

icy level to guide the agent, rather than precise numbers such as degrees of steering or

specific speeds. In fact, LLMs cannot provide such highly precise numbers.

After obtaining the action description text 𝐶𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 and suggestions 𝑔𝑡
1 𝑘 from

LLMs, we use SentenceBERT 𝐸 [27] to calculate the cosine similarity between each

suggestion 𝑔𝑡
𝑖 and the action description text 𝐶𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 , resulting in k similarities

𝑇𝑡
𝑖(𝑎𝑡|𝑔𝑡

𝑖):

 𝑇𝑡
𝑖(𝑎𝑡|𝑔𝑡

𝑖) =
𝐸(𝐶𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡)𝐸(𝑔𝑡

𝑖)

||𝐸(𝐶𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡)||||𝐸(𝑔𝑡
𝑖)||

 i ∈ [1… 𝑘] (5)

where 𝐸(𝐶𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡) is the embedding of the action description text and 𝐸(𝑔𝑡
𝑖) is the

embedding of the suggestions. Higher similarity implies that the agent is attempting the

suggested action in a way that is beneficial for achieving the task, even though we do

not directly inform the agent of the suggestions. Then, we take the highest similarity as

 =

 =
 =

 = []

 =

the similarity 𝑇𝑡 𝑎𝑡 between the current action and the overall task objective at the

current time step:

 𝑇𝑡 𝑎𝑡 = max
𝑖=1…𝑘

𝑇𝑡
𝑖 (𝑎𝑡|𝑔𝑡

𝑖) (6)

The reason is that LLMs often provide multiple viable approaches to complete a task,

and the agent only needs to follow one of these suggestions to achieve success. For

example, at a red light, the agent can either stop and wait for the green light before

going straight, or it can make a right turn to go around. The agent only needs to be

executing one of these actions, rather than driving onto the grassy area on the side of

the road.

Next, we use this similarity 𝑇𝑡 𝑎𝑡 between the action and the task objective to form

a regularization term:

 𝐽π θ = 𝐸[𝑄ϕ 𝑠 𝑎 − α ⋅ 𝑇 𝑠] 𝑎 = πθ 𝑠 (7)

where the parameter α represents the importance given to this similarity regularization

term. In this way, by adding the similarity between the current action and the task ob-

jective during policy optimization, the agent can leverage the general prior knowledge

from LLMs to more quickly narrow down the solution space and efficiently achieve the

predefined goals.

4.2 LLMs-evaluated Reward Shaping

Regarding the use of LLMs for reward design in RL, EUREKA [20] involves inputting

the environment's source code and task description text into the LLMs, allowing it to

generate executable and complete reward function code. We propose a novel reward

approach that supplements rewards with evaluation results from the LLMs, enabling

the trained agent to exhibit human preferences without the need to define reward func-

tions for each preference explicitly. The overall framework is illustrated in the Fig. 3.

The human preferences we refer to include safety, urgency, and other human-spe-

cific characteristics in decision-making. For instance, some individuals are cautious and

prioritize safety when driving. They strictly adhere to traffic signals and speed limits,

even slowing down before a crosswalk when the light is green to prevent potential ac-

cidents with pedestrians or vehicles. However, in urgent situations such as police pur-

suits or military support missions, the agent must reach the destination as quickly as

possible, disregarding traffic signals and speed limits but ensuring no collisions with

other vehicles or pedestrians.

Using the same state captioner and action captioner as in the previous module, we

obtain text descriptions of the state and action, which are then input to the LLMs. In

addition, we input a task description with a specific human preference (for example,

"you are a conservative and safety-oriented driver"), along with a query asking whether

the current action satisfies this human preference, and We constrain the LLMs to only

output "Yes" or "No". This way, the LLMs can evaluate whether the current action

aligns with our desired human preference. If the LLMs output "Yes", we consider the

reward given to the agent by the LLMs 𝑅_{𝑙𝑙𝑚} as 1. If the output is "No", the reward

from the LLMs to the agent 𝑅_{𝑙𝑙𝑚} is considered as 0.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Fig. 3. The network architecture of LLMs-evaluated Reward Shaping. Given state descriptions,

action descriptions, and task descriptions with human preferences, we use LLMs to evaluate

whether the agent's behavior meets these human preferences. This evaluation is used as part of

the reward.

 𝑅𝑙𝑙𝑚 = {
1 ← "𝑌𝑒𝑠"
0 ← "𝑁𝑜"

 (8)

In different scenarios, the emphasis on the human preferences possessed by the agent

varies, hence the need for a parameter σ to control the magnitude of the intrinsic re-

wards 𝑅𝑖𝑛𝑡 actually given to the agent. This parameter σ is a constant between 0 and 1,

allowing for flexible adjustment according to different human preference requirements.

Subsequently, the intrinsic reward 𝑅𝑖𝑛𝑡 is added to the environmental reward 𝑅𝑒𝑛𝑣 to

form the total reward 𝑅 for the agent.

 𝑅𝑖𝑛𝑡 = 𝜎𝑅𝑙𝑙𝑚 𝜎 ∈ 𝑹 𝜎 ∈ [0 1] (9)

 R ← Renv + Rint (10)

In other words, if the LLMs deem the current action of the agent to align with the spec-

ified human preferences, an additional positive intrinsic reward is given to the agent.

This encourages the agent to perform more actions in line with human preferences,

facilitating the rapid narrowing of the solution space imbued with human preferences.

5 Experiments

In order to verify that the strategy regularization and reward reshaping mechanisms

based on LLMs can effectively improve sample efficiency, we conducted experimental

validation in the benchmark Crafter environment [6] and in a virtual simulation UGV

street-keeping scenario built on Unity3D, as shown in Fig. 4.

5.1 Experiment setting

Crafter is a partially observable 2D open-world survival environment inspired by Mine-

craft, originally introduced by Danijar Hafner [6, 24]. In the Crafter experimental envi-

ronment, the initial landscape is randomly generated, requiring the agent to explore its

surroundings, gather essential resources such as food and water, and craft specific tools

for survival. In each round, the agent earns a sparse reward of +1 for unlocking an

achievement. For every health point lost, the reward decreases by -0.1, while for each

health point restored, the reward increases by +0.1.

The UGV street-keeping scenario is a virtual simulation environment we developed

in Unity3D. This scene includes various elements such as traffic lights, crosswalks,

other vehicles, and lawns. The UGV needs to learn to navigate autonomously along the

road while avoiding collisions with other unmanned vehicles, all while considering spe-

cific human preferences (e.g., conservative safety or emergency support). The UGV

earns a reward of +1 each time it passes a checkpoint or crosses through a green traffic

light. Conversely, if it collides with another vehicle, a wall, or a lawn, it receives a

penalty of -7, which results in the immediate termination of the current episode.

Fig. 4. Diagrams of the PRLL experimental environments, including Crafter (top row) and UGV

street-keeping scenario (bottom row).

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

We selected LLaMA 3.3 (70.6B) [7, 10, 31] as the LLMs for the PRLL algorithm.

Given that Crafter features a one-dimensional discrete action space represented by ac-

tion IDs, we built upon the DQN [21] algorithm to implement the PRLL. In contrast,

the UGV street-keeping scenario involves a two-dimensional continuous action space,

encompassing direction and speed, for which we utilized the SAC algorithm [11]. The

experimental hyperparameters for the PRLL algorithm are provided in Table 1.

Table 1. Hyperparameter table for PRLL algorithm experiment.

hyperparameters Crafter UGV street-keeping

discount factor 0.99 0.99

max steps 2000000 150000

update coefficient 0.005 0.005

update steps 8000 1

learning rate 0.0000625 0.0003

evaluate steps 25000 1000

evaluate episodes 10 3

5.2 Overall performance

We compare our algorithm with the following baselines: ELLM [6], DQN [21], and

SAC [11], where ELLM is also an algorithm that combines LLMs with RL. In the

Crafter environment, we use the Crafter score as the evaluation metric, which is influ-

enced by the number of achievements unlocked by the agent, lost or recovered health

points, and the difficulty of the unlocked achievements. Additionally, we selected two

challenging achievements with preconditions, "deforestation" and "make wood sword",

as human preferences. To fine-tune the trained policy for these downstream tasks, we

trained a new agent while replacing 50% of the random sampling with actions sampled

from the trained policy. The performance of the agent was then evaluated using

achievement scores. In the UGV street-keeping scenario, we utilize the cumulative re-

wards from the environment as the evaluation metric, which does not include the sparse

rewards provided by PRLL, and safe driving is the human preference. In this experi-

ment, we employ the authors' implementation of ELLM in the Crafter environment,

along with our own re-implementation of ELLM in the UGV street-keeping environ-

ment, using the recommended hyperparameters reported in their paper.

Table 2. Average results of the final 10 evaluations.

algorithms Crafter deforestation make wood sword UGV street-keeping

ELLM 7.5 2.3 0.7 39.2

SAC \ \ \ 24.6

DQN 4.8 0.2 0.1 \

PRLL(Ours) 7.9±0.6 2.9±0.2 1.3±0.1 51.3±2.4

Fig. 5. PRLL and the baselines' learning curves in the Crafter environment (top left, bottom left,

bottom right) and the UGV street-keeping environment (top right).

The results of our algorithm, along with all the considered baseline methods, are sum-

marized in Table 2. Additionally, as shown in Fig. 5, we plot the learning curves of

PRLL, DQN, SAC, and ELLM in the Crafter environment and the UGV street-keeping

environment. Obviously, PRLL demonstrates superior final performance with en-

hanced training stability, as evidenced by higher convergence trajectories and attenu-

ated oscillation patterns compared to baseline methods. Overall, our method performs

best in terms of average scores, regardless of whether the environment has discrete or

continuous action spaces. Moreover, our method requires fewer time steps to achieve

comparable scores compared to the other approaches.

5.3 Ablation

As shown in Fig. 6, we evaluate the impact of using or not using policy regularization

and reward reshaping on the performance of the PRLL algorithm. "PRLL without PR"

refers to PRLL without policy regularization, relying solely on the actor loss of the RL

algorithm for training. Meanwhile, "PRLL without RS" indicates that PRLL does not

use reward reshaping, depending instead on the original rewards from the environment

and a manually defined preference reward function to learn specific preferences.

We record the scores of these three algorithms after training for 2 million steps and

60,000 steps in the two environments, respectively. The results indicate that using

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

policy regularization can better constrain the policy to select actions that align with

human common sense and are capable of completing tasks, leading to higher scores.

Additionally, although "PRLL" and "PRLL without RS" exhibit similar policy con-

straint capabilities, "PRLL" achieves a higher score, possibly because it is difficult to

design a reward function that describes abstract human preferences. Overall, relying

solely on policy regularization or reward reshaping is insufficient. It is also necessary

to leverage the common sense embedded within LLMs.

Fig. 6. The performance of PRLL, both with and without policy regularization (PR) and reward

reshaping (RS), is evaluated in the Crafter environment (left) and the UGV street-keeping envi-

ronment (right).

6 Conclusion

We propose the policy regularization and reward shaping assisted by large language

models (PRLL), aimed at addressing the challenges of large solution spaces and low

learning efficiency in traditional deep reinforcement learning. By computing the simi-

larity between the "suggestions" from large language models (LLMs) and the "actions"

of the agent, we form a regularization term to help policy get task-solving solution

spaces. Additionally, we introduce the use of LLMs to evaluate whether the policy's

output actions align with human preferences, providing corresponding intrinsic rewards

to assist policy learning towards solution spaces with human preferences. Our experi-

ments demonstrate that at the same time steps, our algorithm outperforms most base-

lines, significantly enhancing the learning efficiency of RL agents. Our method's out-

standing performance in intelligent unmanned ground vehicle (UGV) systems provides

a potential option for the widespread application of unmanned systems in the real world.

In the future, we will conduct further research on this.

Acknowledgments. This study was funded by National Natural Science Foundation of China

(grant number 62421004).

Disclosure of Interests. The authors have no competing interests to declare that are relevant to

the content of this article.

References

1. Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B.,Finn, C., Fu, C., Go-

palakrishnan, K., Hausman, K., et al.: Do as i can, not as i say: Grounding language in robotic

affordances. arXiv preprint arXiv:2204.01691 (2022)

2. Bian, H., Lu, Q.: Hlrs: A deep reinforcement learning-based hero recommendation system

for moba games. In: 2023 IEEE International Conference on Systems, Man, and Cybernetics

(SMC). pp. 2040–2047. IEEE (2023)

3. Bui, V.H., Mohammadi, S., Das, S., Hussain, A., Hollweg, G.V., Su, W.: A critical review

of safe reinforcement learning strategies in power and energy systems. Engineering Appli-

cations of Artificial Intelligence 143, 110091 (2025)

4. Chen, D., Huang, Y.: Integrating reinforcement learning and large language models for crop

production process management optimization and control through a new knowledge-based

deep learning paradigm. Computers and Electronics in Agriculture 232, 110028 (2025)

5. Di Palo, N., Byravan, A., Hasenclever, L., Wulfmeier, M., Heess, N., Riedmiller, M.: To-

wards a unified agent with foundation models. In: Workshop on Reincarnating Reinforce-

ment Learning at ICLR 2023 (2023)

6. Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T., Abbeel, P., Gupta, A., Andreas, J.:

Guiding pretraining in reinforcement learning with large language models. arXiv preprint

arXiv:2302.06692 (2023)

7. Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schel-

ten, A., Yang, A., Fan, A., et al.: The llama 3 herd of models. arXiv preprint

arXiv:2407.21783 (2024)

8. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in actor-critic

methods. In: International conference on machine learning. pp. 1587–1596. PMLR (2018)

9. Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J., Knoll, A.: A review of safe rein-

forcement learning: Methods, theories and applications. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (2024)

10. Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi,

X., et al.: Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-

ing. arXiv preprint arXiv:2501.12948 (2025)

11. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum en-

tropy deep reinforcement learning with a stochastic actor. In: International conference on

machine learning. pp. 1861–1870. PMLR (2018)

12. Hao, J., Yang, T., Tang, H., Bai, C., Liu, J., Meng, Z., Liu, P., Wang, Z.: Exploration in deep

reinforcement learning: From single-agent to multiagent domain. IEEE Transactions on

Neural Networks and Learning Systems (2023)

13. Heess, N., Tb, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang,

Z., Eslami, S., et al.: Emergence of locomotion behaviours in rich environments. arXiv pre-

print arXiv:1707.02286 (2017)

14. Le Mero, L., Yi, D., Dianati, M., Mouzakitis, A.: A survey on imitation learning techniques

for end-to-end autonomous vehicles. IEEE Transactions on Intelligent Transportation Sys-

tems 23(9), 14128–14147 (2022)

15. Li, S.E.: Deep reinforcement learning. In: Reinforcement Learning for Sequential Decision

and Optimal Control, pp. 365–402. Springer (2023)

16. Li, Y., Ma, W., Li, Y., Li, S., Chen, Z., Shahidehpour, M.: Enhancing cyber-resilience in

integrated energy system scheduling with demand response using deep reinforcement learn-

ing. Applied Energy 379, 124831 (2025)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

17. Liu, S., Yao, Y., Jia, J., Casper, S., Baracaldo, N., Hase, P., Yao, Y., Liu, C.Y., Xu, X., Li,

H., et al.: Rethinking machine unlearning for large language models. Nature Machine Intel-

ligence pp. 1–14 (2025)

18. Liu, W., Yao, P., Wu, Y., Duan, L., Li, H., Peng, J.: Imitation reinforcement learning energy

management for electric vehicles with hybrid energy storage system. Applied Energy 378,

124832 (2025)

19. Ma, C., Li, A., Du, Y., Dong, H., Yang, Y.: Efficient and scalable reinforcement learning

for large-scale network control. Nature Machine Intelligence 6(9), 1006–1020 (2024)

20. Ma, Y.J., Liang, W., Wang, G., Huang, D.A., Bastani, O., Jayaraman, D., Zhu, Y., Fan, L.,

Anandkumar, A.: Eureka: Human-level reward design via coding large language models.

arXiv preprint arXiv:2310.12931 (2023)

21. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller,

M.: Playing atari with deep reinforcement learning (2020)

22. Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M., et al.: Model-based reinforcement

learning: A survey. Foundations and Trends® in Machine Learning 16(1), 1–118 (2023)

23. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,

Agarwal, S., Slama, K., Ray, A., et al.: Training language models to follow instructions with

human feedback. Advances in Neural Information Processing Systems 35, 27730–27744

(2022)

24. Paglieri, D., Cupiał, B., Coward, S., Piterbarg, U., Wolczyk, M., Khan, A., Pignatelli, E.,

Kuci´nski, Ł., Pinto, L., Fergus, R., et al.: Balrog: Benchmarking agentic llm and vlm rea-

soning on games. arXiv preprint arXiv:2411.13543 (2024)

25. Pitis, S., Chan, H., Zhao, S., Stadie, B., Ba, J.: Maximum entropy gain exploration for long

horizon multi-goal reinforcement learning. In: International Conference on Machine Learn-

ing. pp. 7750–7761. PMLR (2020)

26. Prudencio, R.F., Maximo, M.R., Colombini, E.L.: A survey on offline reinforcement learn-

ing: Taxonomy, review, and open problems. IEEE Transactions on Neural Networks and

Learning Systems (2023)

27. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-net-

works. arXiv preprint arXiv:1908.10084 (2019)

28. Rolf, B., Jackson, I., M üller, M., Lang, S., Reggelin, T., Ivanov, D.: A review on reinforce-

ment learning algorithms and applications in supply chain management. International Jour-

nal of Production Research 61(20), 7151–7179 (2023)

29. Tang, C., Abbatematteo, B., Hu, J., Chandra, R., Mart´ın-Mart´ın, R., Stone, P.: Deep rein-

forcement learning for robotics: A survey of real-world successes. Annual Review of Con-

trol, Robotics, and Autonomous Systems 8 (2024)

30. Tang, X., Liu, F., Xu, D., Jiang, J., Tang, Q., Wang, B., Wu, Q., Chen, C.P.: Llm-assisted

reinforcement learning: Leveraging lightweight large language model capabilities for effi-

cient task scheduling in multi-cloud environment. IEEE Transactions on Consumer Elec-

tronics (2025)

31. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozi`ere, B.,

Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient foundation language

models. arXiv preprint arXiv:2302.13971 (2023)

32. Wang, N., Li, Z., Liang, X., Hou, Y., Yang, A., et al.: A review of deep reinforcement learn-

ing methods and military application research. Mathematical Problems in Engineering 2023

(2023)

33. Xiao, Y., Tan, W., Hoffman, J., Xia, T., Amato, C.: Asynchronous multi-agent deep rein-

forcement learning under partial observability. The International Journal of Robotics Re-

search p. 02783649241306124 (2025)

