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Abstract. The growing popularity of short videos on social media has introduced 

new challenges for content moderation, particularly in detecting abnormal emo-

tions like hate and sarcasm. These emotions usually exhibit higher concealment 

and multimodal inconsistency compared to conventional ones. While prior stud-

ies have primarily focused on conventional emotion recognition, research on ab-

normal emotions remains limited. Moreover, existing models often fail to lever-

age the complementary nature of multimodal data fully and lack robust inter-

modal interactions. This study proposes MMCFusionNet, a novel multimodal fu-

sion framework designed for abnormal emotion recognition in short videos. The 

model extracts and aligns features from four modalities (text, visual, audio, and 

facial) through a dedicated feature encoder and alignment module to improve the 

ability of hate and sarcasm emotion recognition. At its core, the model integrates 

two key mechanisms: 1) Mixture of Experts (MoE) modules to enhance in-

tramodal representations across temporal frames for identifying concealed emo-

tional cues; 2) Dual-channel collaborative attention (Co-Attention) modules to 

facilitate intermodal complementarity for resolving multimodal contradictions. 

Experimental results on the HateMM and MUStARD datasets show that 

MMCFusionNet outperforms baseline models across various evaluation metrics, 

with ablation studies confirming the effectiveness and robustness of each module. 

Keywords: Emotion recognition; Multi-modal learning; Multi-modal fusion; 

Mixture of Experts; Collaborative Attention 

1 Introduction 

Short videos have become a pivotal medium for emotional expression and information 

dissemination [1]. The exponential growth of platforms like YouTube and TikTok has 

increased the scope and impact of emotional communication. Traditional manual con-

tent moderation mechanisms for short videos are criticized for labour concerns, lack of 

transparency, perpetuating biases, and potential harm to marginalized communities, 

making them inadequate for handling the sheer volume of content [2]. To address this 

challenge, the development of automated emotion analysis tools is necessary. 



Multimodal technology, through the integration of text, images, audio, and other mo-

dalities, can deeply analyze complex emotional signals in videos. It surpasses the limi-

tations of single-modal methods and has become a hotspot in emotion recognition [3].  

In emotion recognition tasks, identifying abnormal emotions (e.g., hate, sarcasm, 

violence) is more urgent than detecting conventional emotions (e.g., happiness, sad-

ness, neutrality). This is due to their potential threats to individual cognition and social 

order [4]. Abnormal emotions are often conveyed through incendiary language, sym-

bolic images, manipulative audio, and contradictory facial expressions. They subtly ex-

acerbate social fragmentation and group antagonism. For instance, a shooter once ex-

ploited the contradictory combination of a gentle narration and violent imagery to dis-

seminate hate, triggering over a dozen copycat crimes worldwide. Similarly, a short 

video used a “praising” tone coupled with eye-rolling expressions to spread false infor-

mation about epidemic prevention and mislead the public. This ironic sentiment, char-

acterized by a disconnect between surface semantics and underlying intent, resulted in 

decreased government credibility and increased resistance to policies. These examples 

illustrate that, unlike traditional emotions, abnormal emotions are highly concealed and 

multimodally contradictory, making their recognition particularly challenging [5]. 

Therefore, the core of the abnormal emotion detection tasks lies in the dual perception 

mechanism of modality features and cross-modal interactions [6]. 

Recent research has made some progress. Hu et al. [7] proposed a joint network for 

speech emotion recognition that combines a pre-trained model and a spectral model. 

By designing different interaction attention modules to fuse the intermediate features 

and optimizing the joint network with a multi-branch training strategy, this method ac-

curately recognizes emotions such as anger, happiness, sadness, and neutrality on the 

IEMOCAP dataset [8]. Liu et al. [9] proposed the TMSON model, which estimates the 

uncertainty distribution of each modality to address issues such as noise, semantic am-

biguity, and missing modalities in multimodal data. This method employs Bayesian 

rules to fuse single-modality distributions, accurately recognizing positive and negative 

emotions on datasets such as CMU-MOSI [10]. Rana et al. [11] proposed a multimodal 

deep learning framework to combine the acoustic features representing emotion and the 

textual features to detect hateful content. Waligora et al. [12] extracted spatiotemporal 

features from facial, voice, or biosensors modalities for emotion recognition and pain 

estimation respectively. It relies on a joint multimodal transformer for fusion with key-

based cross-attention to dynamically learn information between modalities.  

However, these studies still have limitations: 1) They mostly focus on conventional 

emotion recognition, with relatively scarce attention to abnormal emotions like hate, 

sarcasm, and violence. 2) Most existing methods primarily utilize video, audio, and text 

modalities, seldom incorporating a comprehensive set of modalities, including facial 

expressions. Facial expressions, such as furrowed brows, glaring eyes, and clenched 

teeth, can also provide crucial cues for detecting emotions in videos. 3) Previous meth-

ods often tend to connect different modalities directly during modal fusion without con-

sidering the interaction between modalities. An effective combination of different mo-

dalities can boost performance by fully exploiting complementary information. 

To address these issues, this study proposes a model for recognizing hate and sar-

casm. Our model leverages four modalities: visual, audio, textual, and facial. It 
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preprocesses and extracts multimodal features, aligns features within the spatial do-

main, enhances intramodal features using multimodal mixture of experts (MoE) mod-

ules, and strengthens intermodal interactions through dual-channel collaborative atten-

tion (Co-Attention) modules. The main contributions of this work are as follows: 

• We propose a model MMCFusionNet, designed for recognizing abnormal emotions, 

effectively integrating features from text, visual, audio, and facial modalities. It sig-

nificantly improves the accuracy of abnormal emotion recognition and demonstrates 

good generalization ability. 

• We introduce a multimodal feature fusion method that combines MoE modules and 

Co-Attention mechanisms, enhancing both intramodal feature representation and in-

termodal complementarity, improving the model's effectiveness and robustness. 

• Experimental evaluations on the HateMM [13] and MUStARD [14] datasets demon-

strate that our model outperforms existing baseline methods. A series of ablation 

experiments further validate the rationality of the module design and confirm the 

individual contributions of each component. 

2 Method 

2.1 Task Definition 

Given a video, the abnormal emotion recognition task aims to classify it as either ab-

normal emotion (𝑦 = 1) or non-abnormal emotion (𝑦 = 0). The visual modality of the 

video can be represented as a sequence of video frames 𝐹 = {𝑓𝑟𝑎𝑚𝑒1, 𝑓𝑟𝑎𝑚𝑒2, . . .,
𝑓𝑟𝑎𝑚𝑒𝑛}, the associated audio 𝐴 = {𝛼𝑢𝑑𝑖𝑜1, 𝛼𝑢𝑑𝑖𝑜2, . . ., 𝛼𝑢𝑑𝑖𝑜𝑛}, the transcribed 

text of the audio 𝑇 = {𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2, . . ., 𝑤𝑜𝑟𝑑𝑚}, and the sequence of faces ex-

tracted from the video frames 𝐹𝑎𝑐𝑒 = {𝑓𝑎𝑐𝑒1, 𝑓𝑎𝑐𝑒2, . . ., 𝑓𝑎𝑐𝑒𝑘}. The classifier is de-

fined as (𝐹; 𝐴; 𝑇; 𝐹𝑎𝑐𝑒)→𝑦, where 𝑦 ∈ {0, 1} represents the video label. 

2.2 Overview 

The MMCFusionNet model comprises three main components, as shown in Fig. 1. The 

multimodal feature encoder extracts features from four modalities: text (using fine-

tuned BERT [15]), visual (using ViT [16]), audio (using MFCC [17]), and facial (using 

InsightFace [18]). The Alignment Module aligns these features using LSTM and MLP. 

The Fusion Module interacts and fuses features using MoE and Co-Attention modules. 

2.3 Multimodal Feature Encoder Module 

The video is sampled at a rate of one frame per second to obtain 100 frames for each 

video segment. For videos with fewer than 100 frames, we add an image with a white 

background as padding. For videos with more than 100 frames, 100 frames are uni-

formly sampled from the total available frames. After obtaining video frames, ViT is 

used to learn the features of each frame, resulting in visual features 𝑋𝑣 ∈  ℝ𝑛 × 768. 



 

Fig. 1.  Framework of MMCFusionNet. The video data is divided into video frames, audio, text 

extraction, and facial recognition. Each modality is encoded using specialized deep-learning 

models (ViT, MFCC, BERT, and InsightFace). Features are aligned using LSTM and MLP. The 

fusion module employs MoE and dual-channel Co-Attention, followed by classification. 

The audio modality is processed by dividing the audio into 100 segments. Mel-fre-

quency cepstral Coefficients (MFCCs) are extracted from each segment to capture the 

prosodic and phonetic characteristics. The resulting acoustic feature sequence is de-

noted as 𝑋𝑎 ∈  ℝ𝑛 × 128. 
For the textual modality, the content is transcribed from audio using Automatic 

Speech Recognition (ASR) technology [19]. We truncate and pad the text information 

to align sequence lengths. Through systematic analysis of the dialogue text length dis-

tributions, we use truncation thresholds: a fixed sequence length of 200 tokens for 

HateMM and 100 tokens for MUStARD. Features are then extracted using a fine-tuned 

BERT model. The text feature sequence is denoted as 𝑋𝑡 ∈   ℝ𝑛 × 768.  

Facial features are extracted using InsightFace, an open-source tool, to detect and 

capture facial expressions from each sampled frame. InsightFace utilizes deep learning 

methods to detect and localize human faces accurately, producing bounding box coor-

dinates, facial key points, and discriminative facial features. The facial feature sequence 

is represented as  𝑋𝑓 ∈ ℝ𝑛 × 512 . 

2.4 Multimodal Feature Alignment Module 

The dimensions of features extracted by each modality encoder differ. To refine and 

align these features while considering their interdependencies, we employ Long Short-

Term Memory (LSTM) [20]and Multilayer Perceptron (MLP). These methods not only 

achieve dimensionality reduction and alignment of multimodal features but also signif-

icantly enhance their representational power.  
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LSTM is primarily used to capture and store temporal dependencies within each mo-

dality. By applying LSTM to the feature sequences of all four modalities, we enhance 

the representations while simultaneously reducing the dimensionality of each modali-

ty's features. MLP is then used to further process the features output by LSTM. It is 

capable of learning more complex feature representations. By adjusting the number of 

layers and neurons per layer, MLP provides flexibility in controlling the model’s ca-

pacity. Each layer of the MLP uses the ReLU activation function to introduce non-

linearity, further strengthening the model’s ability to express intricate feature relation-

ships. The specific formulas are shown as follows. 

ℎ𝑚 = 𝑊𝑚
2 ( 𝑅𝑒𝑙𝑢 ( 𝑊𝑚

1 𝐿𝑆𝑇𝑀 ( 𝑋𝑚 ) + 𝑏𝑚
1 ) +  𝑏𝑚

2     , 𝑚 ∈ {𝑣, 𝑎, 𝑡, 𝑓} (1) 

In these equations, ℎ𝑚 denotes the aligned feature for modality m,  𝑣, 𝑎, 𝑡, 𝑓 represent 

four modalities respectively. 𝑊𝑚
1 and 𝑏𝑚

1  represent the weight matrices and biases for 

the first fully connected layer acting on each modality. Similarly, the second fully con-

nected layer weights 𝑊𝑚
2 and biases 𝑏𝑚

2  follow the same notation. 

2.5 Multimodal Fusion Module 

The multimodal fusion module is central to our model. Each video frame has unique 

information, requiring specialized enhancement. Previous methods often ignored the 

distinct sequential characteristics and complementary natures between modalities.  To 

address this, we employ multimodal MoE modules [21] to strengthen features from 

different frames within a modality. In addition, we use dual-channel Co-Attention [22] 

to facilitate effective intermodal interactions and capture complementary information 

between modalities. This mechanism allows the model to prioritize crucial information 

within each modality while filtering out irrelevant details.  

Mixture of Experts. The MoE module accelerates convergence and improves perfor-

mance without adding significant complexity. It computes the weights of various ex-

perts via routing, multiplies them with corresponding features, and sums the top-k fea-

tures. More specifically, this process begins with the computation of logits for each 

expert through the gating network, which assesses the input features ℎ𝑚 and outputs a 

set of logits ℓ𝑚. A Top-K selection mechanism is then applied to introduce sparsity by 

retaining the K highest-scoring experts. These selected logits are normalized using the 

softmax function to form a probability distribution. Finally, the top-K features, 

weighted by these probabilities, are summed to produce the final output 𝑀𝑚 for each 

modality. The feature enhancement process is formalized as follows: 

ℓ𝑚 = ℎ𝑚 ∗ W𝑚 + b𝑚     , 𝑚 ∈ {𝑣, 𝑎, 𝑡, 𝑓} (2) 

𝑇𝑜𝑝𝐾(ℓ𝑚)𝑖 = {
ℓ𝑚𝑖

, 𝑖𝑓 ℓ𝑚𝑖
 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑝𝐾 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.

−∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                   
(3) 

𝐺(ℎ𝑚) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑇𝑜𝑝𝐾(ℓ𝑚)) (4) 



𝑀𝑚 =  𝐾𝑒𝑒𝑝𝑇𝑜𝑝 ( 𝐺(ℎ𝑚) ∗ ℎ𝑚  , 𝑘) (5) 

where 𝐺(ℎ𝑚) represents the weights of different expert modules for the modality m, 

and 𝐾𝑒𝑒𝑝𝑇𝑜𝑝 represents the enhanced feature obtained by summing the top-k features. 

Dual-channel Co-Attention. In the context of abnormal emotion recognition in short 

videos, the visual modality primarily provides contextual background through captur-

ing scene and action information, while the facial modality offers emotional cues 

through recognizing facial expressions. The same action paired with different facial 

expressions can convey different emotions. Likewise, the acoustic modality primarily 

captures vocal intonation and background music, while the textual modality offers se-

mantic insights through transcribing spoken words. The same text combined with var-

ying intonations can express different emotions. Thus, considering computational com-

plexity and correlation degrees between modalities for the specific task, we use a dual-

channel collaborative attention mechanism, focusing on 𝑀𝑣 − 𝑀𝑓 and 𝑀𝑡 − 𝑀𝑎 pairs. 

The processes are shown in the following equations: 

𝑚𝑡 , 𝑚𝑎 =  𝐶𝑜𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑀𝑡; 𝑀𝑎) (6) 

𝑚𝑣, 𝑚𝑓 =  𝐶𝑜𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑀𝑣; 𝑀𝑓) (7) 

𝑚𝑡 , 𝑚𝑎 represent the features obtained through collaborative attention between textual 

and acoustic modalities. 𝑚𝑣 , 𝑚𝑓 represent the features obtained through collaborative 

attention between visual and facial modalities.  

Finally, the features from all four modalities are concatenated and passed through a 

classifier for emotion recognition. The process is described as: 

𝑍 = [𝑚𝑡; 𝑚𝑎; 𝑚𝑣; 𝑚𝑓] (8) 

𝑦̂ = 𝑊𝑧𝑍 +  𝑏𝑧 (9) 

where 𝑍  is the concatenated multimodal fusion feature, 𝑊𝑧 ∈  ℝ4𝑑∗m  represents the 

weight matrix, and 𝑏𝑧 ∈  ℝ1∗m is the bias. [; ] indicates the vector concatenation. 

 To obtain the optimized parameters, we minimize cross-entropy loss between a pre-

dicted probability and a ground-truth label, which is computed as follows: 

ℒ = −(𝑦𝑙𝑜𝑔(𝑦̂) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦̂)) (10) 

3 Experiments 

3.1 Implementation Details 

The experiments are conducted on a Mac with an M1 chip, running the Sequoia oper-

ating system. We use the PyTorch 1.13.1 deep learning framework with Python 3.9 as 

the interpreter. We select Adam optimizer for weight updates and adopt five-fold cross- 

validation to validate performance. The dataset is split into training, validation, and test 

sets with a ratio of 7:1:2. Detailed experimental parameters are shown in Table 1. 
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Table 1.  The experimental parameters used for the two datasets. 

Dataset HateMM MUStARD 

Batch Size 32 32 

Learning Rate 0.0001 0.0001 

Number of 

Experts 

Total 8 8 

Text 3 3 

Visual 5 3 

Audio 3 3 

Facial 5 3 

3.2 Datasets and Baselines 

Two publicly available datasets are used: HateMM and MUStARD. Based on these 

datasets, we focus on two types of abnormal emotions: hate and sarcasm. 

The HateMM dataset, introduced by a research team at the Indian Institute of Tech-

nology in 2023, consists of 1083 video clips. Sourced from the real social media plat-

form BitChute, this dataset was curated through manual annotation and filtering. The 

dataset contains two emotion labels: hate and non-hate. The ratio of hate to non-hate 

samples is approximately 4:6. The MUStARD dataset is specifically designed for de-

tecting sarcastic emotions. Sarcasm is a complex linguistic phenomenon that involves 

a discrepancy between literal meaning and underlying intent. It comprises 690 videos 

sourced from popular TV shows such as The Big Bang Theory and Friends, with a 

nearly 1:1 ratio of sarcastic to non-sarcastic samples.  

To validate the performance of the proposed MMCFusionNet model, we compare it 

with the following baseline methods: 

• FEF-Net [23]: A multimodal humor prediction model designed to improve accuracy 

by reducing redundancy in auxiliary modalities (e.g., audio and video). It uses cross-

modal attention to enrich these modalities with knowledge from the text modality 

and assigns appropriate weights to redundant features across time slices, minimizing 

the impact of irrelevant information. 

• MCER [24]: A method that introduces a gated joint multimodal fusion mechanism. 

The model integrates features from text, speech, and video modalities, considering 

contextual and speaker information to enhance performance. It recognizes emotions 

in sarcastic statements and is evaluated using the MUStARD dataset. 

• PriSA [25]: A model that combines preference fusion with distance-aware contras-

tive learning. By employing self-attention modules, it efficiently extracts emotional 

information from the combined modality-relatedness and unique intramodal features 

of visual and audio modalities. 

3.3 Results Analysis 

To evaluate the effectiveness of the MMCFusionNet model, five commonly used eval-

uation metrics in multimodal emotion analysis tasks are used: Accuracy (Acc), F1 



Score (F1), Macro-average F1 Score (M-F1), Precision (P), and Recall (R) [26]. We 

assess models using Text (T), Visual (V), Audio (A), and Facial (F) modalities in single, 

three, and four-modal configurations. Single-modal uses MLP classifiers. The three-

modal group (T+V+A) includes FEF-Net, MCER, and PriSA. The four-modal group 

(T+V+A+F) includes a naive concatenation baseline (ConcatFusion) and our proposed 

MMCFusionNet. Table 2 presents experimental results on two datasets.  

 The results show that MMCFusionNet consistently outperforms baseline models 

across most evaluation metrics. Single-modal models exhibit relatively poor perfor-

mance, while three-modal models show significant improvements, highlighting the 

complementary nature of multimodal information and the benefits of combining them. 

Notably, our model still surpasses these models. The simple concatenation of features 

in the ConcatFusion model performs worse than our advanced multimodal fusion ap-

proach, emphasizing the importance of mechanisms like MoE and Co-Attention. 

Table 2.  Comparison of experimental results.  

Dataset HateMM MUStARD 

Modality&Model Acc M-F1 F1 P R Acc M-F1 F1 P R 

Single           

   Text (T) 74.8  71.7  62.4  78.8  51.8  70.6  70.3  69.8  70.1  70.6  

   Visual (V) 72.5  69.8  60.8  72.5  52.7  67.4  67.1  68.0  66.9  70.0  

   Audio (A) 71.7  68.2  57.8  73.2  47.7  63.2  62.7  59.8  64.8  56.5  

   Facial (F) 67.0  58.5  56.8  76.5  45.3  67.0  66.7  65.2  67.8  63.5  

Three (T+V+A)           

   FEF-Net 78.5  76.3  68.2  79.4  59.6  71.2  71.0  69.5  72.4  67.1  

   MCER 81.8  80.6  76.2  76.9  76.6  70.9  70.8  70.5  70.6  70.9  

   PriSA 80.0  78.8  73.9  74.6  74.2  71.6  71.2  68.7  73.9  65.3  

Four (T+V+A+F)           

   ConcatFusion 80.9  79.5  74.2  82.2  67.8  73.3  73.1  71.5  75.6  68.2  

   MMCFusionNet 83.4  82.1  74.6  83.1  67.5  76.4  76.3  76.1  76.0  76.8  

 

Additionally, the performance of almost all models on the MUStARD dataset is lower 

than that on the HateMM dataset. This is largely due to the smaller size of the MUS-

tARD dataset, which makes it more challenging for the model to learn effectively. In 

conclusion, our model's advanced multimodal alignment and fusion strategies signifi-

cantly outperform traditional unimodal and simple multimodal models, highlighting the 

value of advanced fusion techniques in improving emotion recognition tasks. 

3.4 Ablation Study 

To verify the contributions of facial features and different modules to the model, we 

conduct three ablation experiments on both datasets. Specifically, "w/o Co-Attention" 

indicates the removal of the dual-channel collaborative attention module, "w/o MoE" 
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represents the removal of the MoE module, and "w/o F" denotes the exclusion of the 

facial modality. Table 3 shows the results of ablation experiments. 

The results reveal that MMCFusionNet consistently outperforms other models 

across most evaluation metrics on both datasets. Each module—facial information, the 

MoE module, and the co-attention mechanism—contributes significantly to the model's 

performance. The integration of these components collectively enhances the model's 

ability to recognize abnormal emotions. Specifically, the facial information provides 

critical visual cues, the MoE module effectively integrates multimodal data, and the co-

attention mechanism ensures robust feature fusion. Together, these elements synergis-

tically improve the overall efficacy of the model. 

Notably, both the "w/o MoE" and "w/o Co-Attention" models perform better than 

the "w/o F" model, underscoring the critical role of the facial modality in hate and sar-

casm detection from videos. This performance disparity highlights that while the co-

attention mechanism and the MoE module are pivotal, integrating facial modality 

among other modalities is indispensable for achieving optimal detection accuracy.  

Table 3.  Ablation experiment results. 

Dataset HateMM MUStARD 

Model Acc M-F1 F1 P R Acc M-F1 F1 P R 

w/o Co-Attention 82.4 80.1 72.2 78.9 66.5 73.5  73.3  75.0  70.4  80.6  

w/o MoE 81.3 81.3 73.1 80.4 66.9 75.5  75.4  74.5  76.5  72.9  

w/o F 77.6 75.4 68.0 80.7 58.9 72.3  71.4  68.7  69.9  67.7  

MMCFusionNet 83.4 82.1 74.6 83.1 67.5 76.4  76.3  76.1  76.0  76.8  

3.5 Case-driven Analysis 

Four typical cases are shown to analyze the performance in Fig. 2. For case A, we select 

a sarcastic video from MUStARD. This case represents one of the primary types in both 

datasets, containing all modalities with clear video frames and complete audio. In this 

video, several people engage in a conversation, using exaggerated and self-deprecating 

humor to mock the government's overreaction to minor issues and people's excessive 

attention to trivial matters. Our model accurately identified the emotional category of 

this video as sarcasm. 

For Cases B and C, we select hate videos from HateMM, while Case D is a non-hate 

video from the same dataset. In Case B, the facial modality is missing, but the other 

modalities capture the use of the racial slur "coon" to demean and insult Black people. 

Case C lacks both visual and facial modalities, containing only audio and text that ref-

erence negative stereotypes about Jewish people.  Case D contains only the video track, 

thus missing both text and audio modalities. From the perspective of video content 

moderation processes, recognizing abnormal emotions in videos with missing modali-

ties is challenging. However, our model's predictions in these three cases are accurate 

and outperform the baseline models. 



These cases illustrate that MMCFusionNet's multimodal fusion strategy is effective 

and stable even when the modalities are incomplete. This approach enables accurate 

recognition and complementary integration of modality information. 

 

Fig. 2. Comparison of prediction cases between MMCFusionNet and baseline models. The pre-

diction results marked in green font are incorrect, while those in red font are correct. 

3.6 Discussion: MoE Mechanism for Fast Convergence 

This section evaluates the MoE module's impact on training convergence speed. We 

compare loss trends between MMCFusionNet and the variant without MoE (w/o MoE) 

over 20 epochs, using five-fold cross-validation.  

 

Fig. 3.  Loss Trend Comparison: (a) results on HateMM, and (b) results on MUStARD.  
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Fig. 3 illustrates the loss trajectories of both models on the two datasets. As shown, 

MMCFusionNet results in significantly lower loss values and a more rapid convergence 

rate on both datasets. This improvement is attributed to the dynamic weight allocation 

mechanism of the MoE module, which enhances early optimization efficiency by mit-

igating gradient conflicts between modalities. Our model's rapid convergence is a cru-

cial advantage for practical applications, as it substantially reduces training time and 

the need for extensive computational resources. The cross-dataset experiments also in-

dicate that it is effective for both hate and sarcasm recognition tasks.  

4 Conclusion 

This study proposes MMCFusionNet, a novel framework for detecting abnormal emo-

tions, particularly hate and sarcasm. The model consists of three modules: a multimodal 

feature encoder module, an alignment module, and a fusion module. The encoders ex-

tract features from text, visual, audio, and facial modalities. The alignment module uti-

lizes LSTM and MLP to reduce dimensionality and align features. The fusion module 

leverages MoE to strengthen intramodal representations by capturing concealed cues 

missed by conventional methods, while the dual-channel Co-Attention mechanism re-

solves intermodal conflicts by promoting complementary interactions.  

Extensive experiments on the HateMM and MUStARD datasets have demonstrated 

MMCFusionNet's superior performance and reliability, even when some modalities are 

incomplete. Beyond technical merits, its MoE architecture offers practical advantages 

by accelerating training and reducing computational costs. This is a critical advantage 

for content moderation systems operating under dynamic update requirements and re-

source constraints.  
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