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Abstract. Electrocardiogram (ECG) serves as a crucial non-invasive diagnostic 

tool for monitoring clinical cardiac conditions. Remarkable progress has been 

achieved in deep learning-based ECG classification research. Generally, its over-

all architecture can be divided into three parts: the feature extraction layer, the 

feature fusion methods (typically concatenation and summation), and the multi-

layer perceptron (MLP) classification layer. In this paper, we propose a plugin 

Global Feature Refinement (GFR) module to enhance the performance of multi-

branch models for ECG classification. The GFR plugin assigns weights to differ-

ent branching features in a dynamic disease-aware manner to capture critical 

global information while emphasizing important features. Specifically, these dy-

namic weights are obtained through the integration, mapping, and scaling of 

global features. Finally, the weighted features are summed for ECG classifica-

tion. Extensive experiments on three large-scale imbalanced datasets demonstrate 

that the GFR plugin, with less 6.2k additional parameters, improves the perfor-

mance of eight models of different sizes to varying degrees. Specifically, the 

maximum improvement in F1 score and accuracy was 8.27% and 6.41%, respec-

tively. 

Keywords: electrocardiogram (ECG) classification,  feature refinement, multi-

branch networks. 

1 Introduction 

Electrocardiogram (ECG), as a non-invasive technique for monitoring the electrical ac-

tivity of the heart, has been playing an indispensable role in clinical cardiological diag-

nosis. With the incidence of cardiovascular diseases increasing year by year, accurate 

analysis and classification of ECG signals is particularly important. In recent years, 

deep learning techniques have achieved remarkable results in the field of medical image 



 

processing and signal analysis, providing a new research direction for automatic ECG 

classification. 

Currently, the multi-branch model stands out as the most prevalently utilized model 

in ECG classification research. It principally encompasses the following three compo-

nents: a multi-branch extraction layer for extracting temporal features, a fusion layer 

(either concatenating or adding features) for feature integration, and a fully-connected 

layer for classification. 

However, existing multi-branch models typically fuse the extracted features 

through concatenation or summation. This approach may fail to achieve a sufficiently 

effective integration of features from different branches, consequently impinging on 

the model's performance. Moreover, as the depth of the model continues to increase, its 

complexity also rises significantly. Although a deeper model can enhance performance 

to a certain extent, effectively controlling the model's complexity to avoid overfitting 

and reduce the computational burden has emerged as a pressing issue that demands 

attention in current research.  

For the above problems, the emergence of plugin modules provides a new solution. 

In this way, specific functional modules can be added flexibly without changing the 

original model architecture. This approach not only helps to simplify the design process 

of the model, but also enables the model configuration to be dynamically adjusted ac-

cording to the needs of specific application scenarios, thus achieving higher adaptabil-

ity and flexibility. 

In the field of image processing, the application of plugin modules has achieved 

remarkable results. For example, the use of plugin modules such as Squeeze-and-Exci-

tation Network (SEnet) [10], Convolutional Block Attention Module (CBAM) [25], 

and Channel Attention (CA) [8] has improved the accuracy of image classification. 

Inspired by this and considering that most of the ECG studies are multi-branch 

networks, in this paper we propose the GFR plugin to capture key global information 

and enhance important branching features  

by assigning weights to different branching features in a dynamic disease-aware man-

ner. 

The main contributions of this paper are summarized as follows: 

1. This paper presents an effective plugin, GFR, designed to improve the perfor-

mance of widely used multi-branch networks for ECG classification tasks. 

2. GFR can be seamlessly integrated into multi-branch networks as a practical plug-

and-play solution for improving ECG classification performance. Notably, this 

integration requires very few additional parameters. 

3. Extensive experiments on three large unbalanced datasets, PTB-XL, CPSC2018 

and Chapman, as well as on different multi-branch network models, have shown 

that GFR is effective. 

The rest of the paper is organized as follows: In Section 2, we review related re-

search work. Section 3 elucidates the proposed methodology in detail. In Section 4, we 

present the experimental procedures and in Section 5 we present the corresponding re-

sults. In Section 6, an elaborate discussion is provided. Finally, we conclude our find-

ings in Section 7. 
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2 Related Work 

2.1 Deep model architectures for ECG classification 

In recent years, deep learning models for 12-lead ECG analysis have demonstrated sig-

nificant technological evolution. Early studies primarily adopted single-branch network 

architectures, processing the 12-lead ECG as an integrated input for feature learning. 

For instance, Su et al. [23], Hao et al. [5], and Sakli et al. [21] achieved end-to-end 

classification by modifying classical networks such as Resnet and VGG. Deng et al. [2] 

innovatively combined time-frequency representations with Resnet152 to enhance tem-

poral feature extraction, while Yao et al. [27] developed an attention-based time-incre-

mental convolutional neural network, enhancing arrhythmia detection accuracy through 

dynamic modeling. Although these methods benefit from structural simplicity, they 

struggle to fully exploit the local discriminative features inherent in multi-lead signals. 

To address the limitations of single-branch architectures, researchers proposed 

multi-branch network architectures that process individual leads through independent 

branches. Han et al. [4] pioneered a multi-lead residual network that synergizes local 

features with global representations. Pan et al. [17] advanced this approach by intro-

ducing a multi-task channel attention network, which incorporates cross-lead interac-

tion mechanisms where attention modules adaptively calibrate branch contributions. 

He et al. [7] further enhanced robustness by applying residual shrinkage networks to 

myocardial infarction localization, effectively suppressing noise interference through 

soft thresholding. These studies demonstrated that multi-branch architectures can more 

precisely capture lead-specific characteristics. 

With advancements in multi-view learning theory, researchers have partitioned the 

12 leads into distinct views to construct multi-view multi-branch networks. Qiang et al. 

[18] divided the 12-lead into 5 views based on position, and achieved feature comple-

mentarity through multicore CNNs.  Ma et al. [16] extended this framework by estab-

lishing cross-modal views between temporal signals and 2D spectrograms, leveraging 

cross-modal attention to enhance morphological feature extraction. Guan et al. [3] de-

veloped a multi-path fusion network that integrates 3D spatial and spectral views of 

ECG signals through bidirectional feature pyramids. These methods, empowered by 

multi-view feature interaction mechanisms, are propelling ECG classification from sin-

gle-signal analysis toward a paradigm of multidimensional information synergy. 

2.2 Plugins utilized in ECG classification 

The attention module as a plugin has proved to be helpful for a variety of computer 

vision tasks such as image classification and image segmentation. One of the successful 

examples is Senet[10], which simply squeezes each 2D feature map to efficiently build 

inter-dependencies among channels. CBAM [25] further advances this idea by intro-

ducing spatial information encoding via convolutions with large-size kernels. In addi-

tion, CA [8] considers a more efficient way of capturing positional information and 

channel-wise relationships to augment the feature representations for mobile networks.  

In recent years, inspired by their computer vision counterparts, attention plugins are 

increasingly integrated into ECG classification frameworks [1, 12, 15, 18, 20, 26, 29]. 

For example, Liu et al. [15] innovatively fused a two-channel squeezed-excited residual 



 

neural network with expert features to propose a classification method for inter-patient 

heartbeats. In addition, Zhou et al. [29] designed an ECG data enhancement method 

based on Generative Adversarial Networks, which combines bidirectional long short-

term memory networks and CBAM to further enhance the overall performance of ECG 

classification models. Jiang et al. [12] proposed a new CA-based two-branch convolu-

tional neural network to efficiently capture features in the ECG domain by coordinating 

attention to adaptively assign attentional weights to key segments. 

Different from these approaches that leverage expensive and heavy attention 

blocks, the GFR plugin proposed in this paper considers a more efficient way of assign-

ing weights to different ECG branch features by means of dynamic disease-aware, 

which not only captures key global information but also significantly emphasizes im-

portant features. 

3 Method 

In the ECG classification task, a commonly utilized approach among researchers is the 

implementation of the 12-branch network (12BN) for classification, as depicted in Fig. 

1. In this architecture, each ECG lead is individually fed into a specific branch of the 

model. After features are extracted in the backbone network, these features are passed 

to the feature fusion layer (typically using concatenation and summation operations) to 

form a comprehensive feature representation. Subsequently, the fused features are fed 

into the multi-layer perceptron (MLP) layer to perform classification tasks. Addition-

ally, with the application of multi-view learning in the ECG field, new multi-view net-

work (MVN) architectures are introduced. The general structure of this architecture is 

shown in Fig. 2. In contrast to the original multi-branch network, the input of every 

branch network in the MVN is no longer solely from a single lead. Instead, the 12-lead 

ECGs are divided into different views, with the signals of multiple leads corresponding 

to each view taken as inputs to the network branches. As explained in [7, 18], the study 

divides the 12-lead ECGs into five views, as illustrated in Fig. 3.  

The two generic multi-branch network structures mentioned above consist of two 

crucial components: the feature extraction layer and the feature fusion layer (also re-

ferred to as the feature fusion method). Extensive research has been conducted on the 

feature extraction layer [4, 7, 13, 17, 19, 20, 27]. Typically, the feature extraction layer 

produces local features, higher-order features and abstract features. After the feature 

fusion method the features extracted from different branches of the network are fused 

and fed into the classification layer for classification. However, we believe that for 

multi-branch networks, the fusion method should be preceded by enhancing the global 

features of important branches. Therefore, it is crucial to “re-assign” these branch fea-

tures prior to the fusion layer. In view of this, we propose an effective and practical 

global feature refinement plugin named GFR for multi-branch networks used in ECG 

classification. Its overall structure is depicted in Fig. 4. By further assigning weights to 

these branching features in a dynamic disease-aware manner before the fusion layer, 

important branching features can be enhanced and key global information can be 
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captured. This approach has the potential to significantly improve the classification 

ability of the classification layer. 

 

Fig. 1. Overall structure of 12BN framework. 

 

Fig. 2. Overall structure of MVN framework. 



 

 

Fig. 3. Division of the 5 views of the 12-lead ECGs according to the correspondence of the dif-

ferent leads with different regions of the heart. 

 

Fig. 4. Overall Structure of GFR. 

To address the issue of channel dependency, we first consider the signals for each 

channel within the output features following the backbone. Within the backbone, each 

learnable convolutional layer operates on the original input signal using a local recep-

tive field. Consequently, each unit of the output  (features obtained after the back-

bone of each branch, where  represents the -th branch) is unable to exploit contex-

tual information outside of its own region. This limitation becomes more pronounced 

in the lower layers of the network, where the receptive field size is comparatively small. 
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To address this problem, we propose a method that enhances each channel by inte-

grating global temporal context from the entire sequence. This is achieved by applying 

Global Average Pooling (GAP) along the temporal dimension to compute a summa-

rized representation for each channel. Specifically, we derive channel-wise statistics  

 by compressing  along the temporal dimension. The expression for 

 is defined as follows: 

  

where  represents the operation of GAP. Subsequently, to utilize the information 

extracted from the above processing, we perform a process of global channel embed-

ding, which aims at learning channel information. In this paper, we employ a convolu-

tion operation to generate the global channel information. The vector  is 

generated by shrinking  along the channel dimension, and is computed using the 

following expression: 

  

where  represents the operation of convolution. 

To leverage fully the information aggregated from previously performed opera-

tions, we reconstruct the features. The objective is to select an appropriate function to 

properly dynamically adjust the weights of the features in each branch. This function 

should satisfies the requirement of constraining the output within the range of 0 and 1, 

which helps avoid the problem of imbalanced weights (where one weight may exces-

sively large or small). To fulfill this requirement, we employ a simple yet effective 

gating mechanism with a sigmoid function. More precisely, we apply a sigma activation 

function ( ) to the global channel information ( ) for disease-aware dynamic learn-

ing of weights. Subsequently, we use the Scale operation to re-scale the reshaped 

branch feature ( ), thereby obtaining the weighted features  for each 

branch. The entire process can be mathematically expressed as follows: 

  

  

Finally, the enhanced features of each branch are fed into the subsequent fusion layer 

for feature fusion. 

4 Experiments 

4.1 Basic Setting 

All the code used in this paper is implemented using PyTorch framework. The experi-

ments were conducted on an Inter I7-13700K server equipped with NVIDIA RTX 4090 

24GB GPU. To ensure comparability of the experimental results, the following param-

eters were set uniformly across all networks, with a batch size of 64, a fixed learning 

rate of 0.001 for 200 epochs, an Adam optimizer, and an early stop strategy. The other 

parameters remain the same as those used in the original papers. 



 

4.2 Backbones 

To assess the effectiveness of GFR, we employ two network frameworks: the 12BN 

and the MVN. We selectively utilized nine models (including backbones, fusion meth-

ods, and MLP layer) with distinct sizes, with the aim of ensuring both diversity and 

comprehensiveness in our experiments. The selected models encompassed Inception1d 

[11], Resnet50/101/152 [6], MCA-net [17], ATI-CNN [27], MobileNetV3 [9], VGG16 

[22] and ECGMamba [19]. 

4.3 Datasets and Tasks 

We performed a large number of inter-patient ECG classification experiments to vali-

date whether GFR improves the overall model performance using three large unbal-

anced datasets, namely PTB-XL [24], CPSC2018 [14] and Chapman [28]. We con-

ducted two multi-class classification experiments of the PTB-XL dataset: super-diag 

(5-class classification task) and MI localization (6-class classification task). A 9-class 

classification task was performed on the CPSC2018 dataset [14]. Two classification 

tasks were performed on the Chapman dataset [28]: a 4-class classification task and an 

8-class classification task. 

5 Results 

In this paper, we employ the following metrics to assess the performance of models: 

accuracy ( ), Area Under the Curve ( ), and F1-score ( ). For the sake of 

clarity and simplicity in representation, we use the notation “Model-GFR” to indicate 

that the GFR is employed after the feature extraction process of the Model. For instance, 

“Inception1d-GFR” signifies that Inception1d serves as the model, and the GFR is uti-

lized subsequently. Tables 1 to 3 present the experimental results on the PTB-XL, 

Chapman, and CPSC2018 databases. As shown in these Tables, the models of GFR 

used in this study have excellent overall performance. The following subsections ana-

lyze in detail the results obtained on each dataset using GFR as a feature refinement 

method in the multi-classification task scenario. 

5.1 Experimental Results on the PTB-XL dataset 

Table 1 clearly illustrates the performance metrics of different models in the experi-

ments conducted for the multi-classification task on the PTB-XL dataset. Considering 

the performance metrics and the number of parameters of the various models, it is clear 

that the models using the GFR plugin exhibit superior overall performance. 

As a case study for detailed explanation, we take the MI localization task as an 

example. Table 1 show that the introduction of the GFR plugin significantly improves 

the performance of multiple models in the task of MI localization. For example, on the 

MVN framework, the improved versions of GFR for all baseline models achieve im-

provements in the three metrics of AUC, F1 and Acc. Among them, Resnet50-GFR 

exhibits the most significant improvement, with its F1 increasing from 56.60% to 

64.87% (+8.27% absolute improvement) and AUC increasing from 73.72% to 76.86% 

(+3.14%). Deep networks (e.g., the Resnet family) generally benefit from the GFR 
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plugin, with the AUC of Resnet101 and Resnet152 improving by 2.49% and 3.50%, 

respectively, on the MVN framework, and the number of parameters remaining essen-

tially unchanged. On the 12BN framework, the GFR plugin remains effective. For ex-

ample, the incorporation of GFR in Inception1d achieves a 3.06% AUC improvement 

and 2.26% F1 improvement. 

Table1: Performance comparison on PTB-XL dataset for MI localization and super-diag tasks. 

MI localization task 

Model 
MVN 12BN 

AUC(%) F1(%) Acc(%) Param. AUC(%) F1(%) Acc(%) Param. 

Inception1d 77.44 60.72 82.21 2.84M 75.42 58.50 82.61 5.67M 

Inception1d-GFR 79.42 64.99 84.31 2.84M 78.48 60.76 83.11 5.67M 

Resnet50 73.72 56.60 80.88 43.35M 75.77 57.36 81.45 86.66M 

Resnet50-GFR 76.86 64.87 83.35 43.35M 77.26 60.17 81.83 86.66M 

Resnet101 76.25 60.49 82.66 83.56M 77.36 60.45 81.51 167.09M 
Resnet101-GFR 78.74 62.85 83.04 83.56M 77.86 61.94 83.35 167.09M 

MCA-net 75.86 57.84 81.39 81.77k 78.19 62.62 82.08 164.26k 
MCA-net-GFR 77.46 59.36 81.57 82.12k 78.77 62.80 82.45 165.04k 

Resnet152 74.03 56.32 82.15 116.67M 77.89 61.53 82.59 233.33M 

Resnet152-GFR 77.53 60.19 82.61 116.67M 78.26 62.49 82.74 233.33M 

ATI-CNN 74.86 59.01 82.91 30.00M 75.86 59.15 81.70 59.99M 

ATI-CNN-GFR 78.72 62.61 83.04 30.00M 76.56 60.23 81.83 59.99M 

MobileNetV3 74.40 56.92 81.00 24.83M 72.35 52.40 79.99 49.60M 

MobileNetV3-

GFR 
75.23 57.03 82.00 24.83M 73.24 54.92 82.47 49.60M 

VGG16 75.66 57.68 80.50 31.89M 76.09 59.47 82.15 63.74M 

VGG16-GFR 78.01 62.36 83.38 31.89M 76.12 59.48 82.37 63.74M 

ECMamba 75.71 57.81 80.69 20.15M 76.29 59.61 82.32 48.40M 

ECMamba-GFR 75.87 58.02 81.02 20.15M 76.35 59.69 82.41 48.40M 

super-diag task 

Inception1d 92.73 73.96 59.45 2.84M 92.38 73.00 59.36 5.67M 

Inception1d-GFR 92.81 74.39 61.58 2.84M 92.68 74.27 62.70 5.67M 

Resnet50 90.31 72.04 58.08 43.35M 89.78 71.47 56.35 86.66M 

Resnet50-GFR 90.85 72.20 58.57 43.35M 92.48 72.73 62.42 86.66M 

Resnet101 90.87 71.68 56.77 83.56M 90.73 71.48 60.43 167.09M 

Resnet101-GFR 91.90 72.98 60.80 83.56M 92.02 72.89 61.43 167.09M 

MCA-net 91.84 73.06 59.13 81.77K 92.04 73.61 59.96 164.26k 
MCA-net-GFR 92.26 74.24 61.72 82.12K 92.29 73.95 60.10 165.04k 

Resnet152 90.58 72.64 58.24 116.67M 89.93 71.06 56.81 233.33M 

Resnet152-GFR 91.95 73.72 61.31 116.67M 92.00 73.83 61.08 233.33M 

ATI-CNN 91.37 72.32 61.42 30.00M 91.48 72.17 58.31 59.99M 

ATI-CNN-GFR 91.71 73.19 61.28 30.00M 91.82 73.79 58.76 59.99M 

MobileNetV3 90.97 72.02 58.43 24.83M 90.06 71.33 60.29 49.60M 

MobileNetV3-

GFR 
91.26 72.15 59.13 24.83M 90.57 71.43 61.39 49.60M 

VGG16 92.49 74.07 62.23 31.89M 91.78 72.88 62.09 63.74M 

VGG16-GFR 92.63 74.86 63.67 31.89M 92.14 73.91 62.24 63.74M 

ECGMamba 92.59 74.24 62.34 20.15M 91.86 72.96 62.16 48.40M 

ECMamba-GFR 92.68 74.36 62.41 20.15M 91.99 73.15 62.24 48.40M 

5.2 Experimental results on the Chapman dataset 

Table 2  clearly illustrate the results in the eight-class and four-class classification tasks 

conducted on the Chapman dataset. From the observation of Table 2, it is evident that 

the models using the GFR plugin achieve the best overall performance in both ECG 

classification tasks on the Chapman dataset. 



 

Table2: Performance comparison on Chapman dataset for eight-class and four-class classification 

tasks. 

eight-class classification task 

Model MVN 12BN 

AUC(%) F1(%) Acc(%) Param. AUC(%) F1(%) Acc(%) Param. 

Inception1d 88.46 77.66 90.68 2.84M 87.74 77.02 90.49 5.67M 

Inception1d-GFR 90.19 82.65 92.66 2.84M 90.83 82.91 93.88 5.67M 

Resnet50 88.70 79.98 92.56 43.35M 88.81 79.96 93.13 86.66M 

Resnet50-GFR 89.46 80.46 93.90 43.35M 92.09 84.39 93.69 86.66M 

Resnet101 88.17 79.63 92.84 83.56M 86.75 73.87 90.11 167.09M 

Resnet101-GFR 88.37 79.59 92.84 83.56M 89.84 80.25 93.13 167.09M 

MCA-net 84.51 71.00 88.14 81.77K 85.52 71.37 87.29 164.26k 

MCA-net-GFR 84.60 71.26 90.58 82.12K 85.24 71.20 89.28 165.04k 

Resnet152 85.90 73.65 90.77 116.67M 87.41 76.18 91.53 233.33M 

Resnet152-GFR 89.04 79.88 91.71 116.67M 90.39 81.72 92.75 233.33M 

ATI-CNN 88.77 79.67 92.47 30.00M 88.71 80.18 92.47 59.99M 

ATI-CNN-GFR 88.93 79.86 92.80 30.00M 89.69 80.25 93.34 59.99M 

MobileNetV3 87.30 76.69 92.28 24.83M 87.18 77.51 90.87 49.60M 
MobileNetV3-

GFR 

87.29 76.46 92.53 24.83M 87.90 78.24 92.00 49.60M 

VGG16 89.16 79.68 90.96 31.89M 86.92 76.35 91.81 63.74M 

VGG16-GFR 89.44 81.47 92.84 31.89M 88.39 79.33 92.28 63.74M 

ECGMamba 88.89 79.54 90.46 20.15M 86.76 76.26 90.87 48.40M 

ECMamba-GFR 88.97 79.68 90.78 20.15M 86.85 76.49 91.12 48.40M 

four-class classification task 

Inception1d 97.79 96.67 97.05 2.84M 97.98 96.86 97.24 5.67M 

Inception1d-GFR 97.93 96.76 97.05 2.84M 98.13 97.13 97.43 5.67M 

Resnet50 97.82 96.14 97.05 43.35M 97.93 96.75 97.14 86.66M 

Resnet50-GFR 97.85 96.75 97.05 43.35M 97.98 96.82 96.76 86.66M 

Resnet101 97.59 96.31 96.67 83.56M 98.19 97.25 97.52 167.09M 

Resnet101-GFR 97.78 96.63 97.19 83.56M 98.25 97.31 97.53 167.09M 

MCA-net 96.67 94.96 95.43 81.77K 96.77 95.03 95.52 164.26k 

MCA-net-GFR 97.39 95.94 95.90 82.12k 97.25 95.86 96.29 165.04k 

Resnet152 97.38 96.05 97.33 116.67M 97.43 95.98 96.38 233.33M 

Resnet152-GFR 97.82 96.64 97.85 116.67M 98.04 97.08 97.33 233.33M 

ATI-CNN 97.42 95.93 96.29 30.00M 97.66 96.28 96.67 59.99M 

ATI-CNN-GFR 98.65 97.51 97.71 30.00M 98.57 97.44 97.71 59.99M 

MobileNetV3 97.46 96.05 96.48 24.83M 97.08 95.45 95.90 49.60M 
MobileNetV3-

GFR 

97.91 96.83 97.14 24.83M 98.23 97.21 97.52 49.60M 

VGG16 97.58 96.93 97.24 31.89M 97.72 96.54 96.86 63.74M 

VGG16-GFR 98.07 97.05 97.33 31.89M 98.10 96.96 97.45 63.74M 

ECGMamba 97.54 96.87 97.15 20.15M 97.64 96.49 96.79 48.40M 

ECMamba-GFR 97.89 97.01 97.34 20.15M 97.89 96.81 97.12 48.40M 

As a case study for detailed explanation, we take the eight-classification task as an 

example. In the eight-classification task, the GFR plug-in demonstrates significant per-

formance gains. For example, Inception1d-GFR achieves a comprehensive break-

through on the 12BN framework: a 5.89% (77.02% to 82.91%) improvement in F1, a 

3.09% improvement in AUC, and a 3.39% improvement in accuracy with a negligible 

increase in the number of parameters. The deep network improvement is particularly 

prominent, with Resnet152-GFR improving F1 score by 6.23% (73.65% to 79.88%) 

and AUC by 3.14% on the MVN framework, which validates GFR's ability to feature 

refinement for complex classification tasks. GFR also exhibits strong potential for im-

provement on the 12BN framework. For example, Resnet50-GFR improves F1 by 
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4.43% and AUC by 3.28%. In particular, Resnet101-GFR had an F1 improvement of 

6.38% (73.87% to 80.25%) at 12BN framework. 

5.3 Experimental results on the CPSC2018 dataset 

Table 3 clearly demonstrates the model performance in the 9-class classification task 

experiments on the CPSC2018 dataset.  As shown in Table 3, the models using the GFR 

plugin achieve the best overall performance.  

In the nine-classification task, the GFR plugin significantly improves the ability of 

the multi-model to discriminate between fine-grained ECG features. Inception1d-GFR 

achieves a cross-metric breakthrough in the 12BN framework: a 6.23% improvement 

in F1 (74.80% to 81.03%) and a 6.26% increase in accuracy (69.10% to 75.36%) while 

the number of covariates is maintained at 5.67M unchanged. The improvement of Res-

net50-GFR on the same dataset is particularly impressive, with a 5.74% (74.55% to 

80.29%) F1 improvement along with a 6.41% (70.70% to 77.11%) accuracy growth, 

validating the feature aggregation advantage of GFR for mid-layer convolutional net-

works. The deep network Resnet152-GFR showed an F1 improvement of 1.77% in the 

12BN framework, but the MVN framework showed a slight decrease in accuracy of 

0.37%. 

Table3: Performance of various models on the 9-class classification task of the CPSC2018 da-

taset. 

Model 
MVN 12BN 

AUC(%) F1(%) Acc(%) Param. AUC(%) F1(%) Acc(%) Param. 

Inception1d 95.30 77.36 74.20 2.84M 94.50 74.80 69.10 5.67M 

Inception1d-GFR 95.59 80.55 75.51 2.84M 95.63 81.03 75.36 5.67M 

Resnet50 96.07 78.59 75.53 43.35M 95.09 74.55 70.70 86.66M 

Resnet50-GFR 96.23 78.95 75.50 43.35M 96.57 80.29 77.11 86.66M 

Resnet101 96.04 79.27 77.73 83.56M 94.34 72.51 69.39 167.09M 
Resnet101-GFR 96.51 80.09 77.55 83.56M 96.15 78.93 77.41 167.09M 

MCA-net 92.99 71.51 64.72 81.77K 93.23 72.08 66.47 164.26k 

MCA-net-GFR 93.76 73.71 67.06 82.12K 93.74 72.62 66.76 165.04k 

Resnet152 95.81 78.89 76.68 116.67M 95.49 78.50 74.20 233.33M 

Resnet152-GFR 95.90 78.91 76.31 116.67M 96.06 80.27 78.86 233.33M 

ATI-CNN 95.73 79.11 77.70 30.00M 95.45 77.70 73.91 59.99M 

ATI-CNN-GFR 96.32 79.61 79.15 30.00M 96.20 82.21 79.45 59.99M 

MobileNetV3 95.98 75.66 73.34 24.83M 94.66 75.97 70.99 49.60M 

MobileNetV3-

GFR 
96.06 75.71 73.47 24.83M 96.19 78.94 76.23 49.60M 

VGG16 96.35 78.83 76.53 31.89M 95.36 77.55 72.89 63.74M 

VGG16-GFR 96.54 80.46 78.78 31.89M 96.51 81.22 78.57 63.74M 

ECGMamba 92.01 73.86 61.98 20.15M 94.97 76.59 71.36 48.40M 

ECMamba-GFR 92.32 73.98 62.13 20.15M 95.12 76.87 71.81 48.40M 

In the 12BN framework, GFR shows stronger optimization potential: the F1 im-

provement of ATI-CNN-GFR is 4.51% (77.70% to 82.21%) and the accuracy improve-

ment is 5.54% (73.91% to 79.45%), which are both significantly higher than its gains 

in MVN (F1:+0.50%, Acc:+1.45%). The lightweight model MCA-net-GFR has an F1 

gain of 2.20% and an accuracy gain of 2.34% in MVN, proving that GFR is still adapt-

able to small-scale networks. VGG16-GFR has an F1 gain of 1.63% and 3.67% respec-

tively in the two frameworks (MVN and 12BN), showing its stable improvement ability 

for different multi-branch frameworks.  In addition, MobileNetV3-GFR has only a 



 

slight F1 increase of 0.05% in MVN, but achieves a F1 improvement of 2.97% in 12BN, 

suggesting that the model branching complexity affects the plugin utility to some ex-

tent. 

 

Experiments demonstrate that the GFR plugin significantly enhances the model's 

capability to capture global discriminative features across diverse network frameworks. 

Notably, it introduces only marginal parameter increments (less than 0.8k) while main-

taining computational efficiency, thereby avoiding substantial overhead to the baseline 

models. 

6 Discussion 

6.1 The impact of different plugin 

In this section, we provide an in-depth discussion on the performance of the proposed 

GFR plugin in comparison with three popular plugins, namely, SEnet, CBAM, and CA, 

in multi-branch ECG classification models. The GFR plugin captures the key global 

information through GAP and convolutional layers to capture key global information 

and enhance important branching features through a weighting mechanism, whereas 

SEnet, CBAM, and CA focus on modelling inter-channel relationships, considering 

both channel and spatial information, and enhancing the attention mechanism using 

coordinate information, respectively. 

Analyses based on experimental results showing in Table 4 demonstrate that the 

GFR plug-in exhibits significant performance advantages in the myocardial infarction 

localization task. Taking the Inception1d model as an example, under the MVN frame-

work, compared with the three mainstream attentional mechanisms of SEnet, CBAM, 

and CA, GFR achieves a comprehensive breakthrough in key indicators: the AUC is 

improved by 1.12%, 1.42%, and 1.22%, and the F1 is improved by amounted to 3.59%, 

3.79%, and 3.99%, and accuracy improved by 0.75%, 1.86%, and 0.86%, respectively. 

In the 12BN framework, the advantages of GFR are further highlighted: the AUC im-

provement extends to 2.13%, 2.38%, and 2.23%, and the F1 scores improve by 1.56%, 

1.86%, and 1.76%, and a steady increase in accuracy. It is worth noting that GFR 

achieves the above performance breakthroughs while the number of parameters is only 

equivalent to 1/15 of the traditional attention mechanism (0.65k under the MVN frame-

work vs. 10k in SEnet), showing excellent parameter efficiency, a feature that has im-

portant application value in model lightweight deployment scenarios. 

In addition, we analyze the adaptations and limitations of each plugin in different 

application scenarios. the GFR plugin is particularly suitable for multi-branch models 

that require global feature refinement, and it especially excels in sequence data tasks 

such as ECG classification. While SEnet, CBAM and CA are more advantageous in 

tasks such as image processing, they may be insufficient in ECG classification which 

has complex temporal information. 
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Table 4: Comparison of model performance using different plugins in the MI localization task 

on the PTB-XL dataset. `+' represents the addition of different plugins to the base model, and `↑' 

represents the number of parameters added to the base model by adding different plugins. 

Model 
MVN 12BN 

AUC(%) F1(%) Acc(%) Param. AUC(%) F1(%) Acc(%) Param. 

Inception1d 77.44 60.72 82.21 2.84M 75.42 58.50 82.61 5.67M 

+SEnet 78.30 61.40 83.56 ↑10k 76.35 59.20 82.78 ↑30k 

+CBAM 78.00 61.20 82.45 ↑10k 76.10 58.90 82.76 ↑20k 
+CA 78.20 61.00 83.45 ↑20k 76.25 59.00 82.98 ↑40k 

+GFR 79.42 64.99 84.31 ↑0.65k 78.48 60.76 83.11 ↑1.55k 

MCA-net 75.86 57.84 81.39 81.77K 78.19 62.62 82.08 164.26K 

+SEnet 76.50 58.10 81.13 ↑2.90K 78.20 62.40 82.16 ↑6.96K 

+CBAM 76.40 58.30 81.27 ↑2.57K 78.15 62.15 82.06 ↑6.17K 

+CA 76.70 58.50 81.67 ↑8.40K 78.35 62.50 82.12 ↑2.02K 

+GFR 77.46 59.36 81.57 ↑0.35k 78.77 62.80 82.45 ↑0.78k 

Resnet152 74.03 56.32 82.15 116.67M 77.89 61.53 82.59 233.33M 

+SEnet 75.10 57.20 82.26 ↑170k 78.15 61.90 82.68 ↑400k 

+CBAM 74.80 56.90 81.96 ↑160k 78.02 61.55 82.26 ↑400k 
+CA 74.95 57.00 82.18 ↑250k 78.12 61.60 82.62 ↑600k 

+GFR 77.53 60.19 82.61 ↑2.57k 78.26 62.49 82.74 ↑6.16k 

ATI-CNN 74.86 59.01 82.91 30.00M 75.86 59.15 81.70 59.99M 

+SEnet 75.74 59.31 82.78 ↑170k 76.40 59.65 81.53 ↑400k 

+CBAM 75.61 59.52 82.46 ↑160k 76.20 59.40 81.42 ↑400k 

+CA 75.82 59.87 82.93 ↑250k 76.65 59.75 81.31 ↑600k 

+GFR 78.72 62.61 83.04 ↑2.57k 76.56 60.23 81.83 ↑6.16k 

6.2 The impact of different components of GFR 

To verify the rationality of the GFR design, we carried out ablation experiments to 

analyze the effects of the core size and activation function on the GFR performance. 

The experimental results are shown in Table 5. Our experimental results show that: 

when changing the kernel size in the convolution operation (e.g., using kernel sizes of 

1, 3, and 5, which are denoted as w/k1, w/k3 and w/k5 in the Table 5), the model per-

formance shows a decreasing trend, and the model achieves the optimal accuracy, F1 

score, and other metrics on the ECG classification task when the kernel size is 1, which 

suggests that simple kernel sizes are able to achieve information retention, and too large 

is prone to cause model complexity to be increased; replacing the Sigmoid activation 

After replacing the Sigmoid activation function with common activation functions such 

as ReLU and Tanh (denoted as w/Relu and w/Tanh in the Table 5), the performance of 

the model decreases to different degrees, which verifies the importance and advantage 

of the Sigmoid activation function in generating reasonable weights. 

 

 

 

 

 

 

 

 



 

Table 5: The impact of different components of GFR on model performance in the MI localiza-

tion task on the PTB-XL dataset. 

Model 
MVN 12BN 

AUC(%) F1(%) Acc(%) AUC(%) F1(%) Acc(%) 

Inception1d 77.44 60.72 82.21 75.42 58.50 82.61 

w/k1 79.42 64.99 84.31 78.48 60.76 83.11 

w/k3 76.85 59.12 81.93 74.60 57.32 81.45 
w/k5 76.20 58.45 81.25 74.15 56.80 80.97 

w/Relu 75.62 58.42 80.89 73.95 56.25 80.13 

w/Tanh 75.30 57.91 80.45 73.60 55.80 79.85 

MCA-Net 75.86 57.84 81.39 78.19 62.62 82.08 

w/k1 77.46 59.36 81.57 78.77 62.80 82.45 

w/k3 76.40 58.90 81.20 75.80 59.45 81.62 

w/k5 75.75 58.10 80.55 75.25 58.90 81.03 

w/Relu 75.10 57.85 80.10 74.85 58.30 80.45 
w/Tanh 74.65 57.20 79.75 74.40 57.85 79.90 

Resnet152 74.03 56.32 82.15 77.89 61.53 82.59 
w/k1 77.53 60.19 82.61 78.26 62.49 82.74 

w/k3 75.35 57.80 82.05 76.90 60.45 82.10 

w/k5 74.70 56.95 81.30 76.25 59.80 81.55 

w/Relu 74.15 56.40 80.85 75.80 59.25 81.10 

w/Tanh 73.80 55.90 80.40 75.35 58.70 80.65 

ATI-CNN 74.86 59.01 82.91 75.86 59.15 81.70 

w/k1 78.72 62.61 83.04 76.56 60.23 81.83 

w/k3 75.20 59.12 82.30 75.60 58.90 81.45 

w/k5 74.55 58.25 81.65 75.05 58.15 80.90 
w/Relu 74.00 57.80 81.10 74.60 57.60 80.35 

w/Tanh 73.65 57.25 80.75 74.25 57.10 79.95 

7 Conclusion 

In this paper, we propose a plugin GFR to enhance the performance of multi-branch 

models for ECG classification. The GFR plugin assigns weights to different branching 

features in a dynamic disease-aware manner to capture critical global information while 

emphasizing important features. Specifically, these dynamic weights are obtained 

through the integration, mapping, and scaling of global features. Finally, the weighted 

features are summed for ECG classification. Extensive experiments on three large-scale 

imbalanced datasets demonstrate that the GFR plugin, with less 6.2k additional param-

eters, improves the performance of eight models of different sizes to varying degrees. 

Although GFR has produced favorable results, certain limitations should be 

acknowledged. Firstly, there may be potential discrepancies between the experimental 

results and the real clinical setting due to the influence of accurate annotations by car-

diologists. Therefore, further validation and testing of the method's practical utility in 

real clinical settings is necessary. Secondly, this paper focuses on inter-patient classifi-

cation of three publicly available ECG datasets. It is important to note that the method 

may have limitations when dealing with other types of ECG analyses. Additionally, the 

method may face challenges in terms of interpretability, as it may be difficult to explain 

decisions to clinicians. 
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