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Abstract. Industrial Internet of Things (IIoT) environments generate vast 

amounts of heterogeneous data across distributed devices, presenting unique 

challenges for machine learning applications. Federated Learning (FL) has 

emerged as a promising paradigm for collaborative model training while preserv-

ing data privacy. However, existing FL approaches struggle with the non-IID 

(Independent and Identically Distributed) nature of industrial data, leading to 

suboptimal personalization. In this paper, we propose AMGCN-FL, an Adaptive 

Multi-Graph Convolutional Network for Federated Learning that addresses the 

challenges of personalized learning in heterogeneous IIoT environments. Our ap-

proach leverages adaptive graph structures to capture complex relationships be-

tween clients and introduces a novel parameter-efficient knowledge transfer 

mechanism. Theoretical analysis demonstrates the convergence properties of our 

algorithm under non-IID data distributions. Extensive experiments on benchmark 

datasets show that AMGCN-FL consistently outperforms state-of-the-art person-

alized FL methods, achieving up to 5.8% improvement in accuracy while main-

taining communication efficiency. The proposed method demonstrates robust 

performance across various degrees of data heterogeneity, making it particularly 

suitable for real-world industrial applications. 

Keywords: Federated Learning,Personalization, Graph Convolutional Net-

works, Industrial IoT, Non-IID Data 

1 Introduction 

The Industrial Internet of Things (IIoT) has revolutionized manufacturing and indus-

trial processes by connecting numerous devices and sensors to collect and analyze data 

for improved decision-making and automation. These distributed devices generate mas-

sive amounts of data that could potentially enhance machine learning models for pre-

dictive maintenance, anomaly detection, and process optimization. However, privacy 

concerns, regulatory requirements, and communication constraints often prevent the 

centralization of this sensitive industrial data. 

 
* Corresponding author. 



Federated Learning (FL) [18] has emerged as a promising approach to address these 

challenges by enabling collaborative model training without sharing raw data. In the 

standard FL framework, a central server coordinates the training process across multi-

ple clients (e.g., edge devices, factories), aggregating local model updates to build a 

global model. While this approach preserves privacy, it faces significant challenges in 

industrial settings due to the heterogeneous nature of data across different clients, com-

monly referred to as non-IID data. 

The performance of conventional FL methods, such as FedAvg [18], deteriorates 

significantly under non-IID conditions, as demonstrated by recent studies [9,13]. This 

performance degradation is particularly problematic in industrial environments where 

data distributions can vary substantially across different manufacturing sites, produc-

tion lines, or equipment types due to variations in operating conditions, equipment spec-

ifications, and maintenance practices. 

To address these challenges, personalized federated learning (PFL) has been pro-

posed to tailor models to individual clients while still benefiting from collaborative 

learning. Existing PFL approaches can be broadly categorized into: (1) meta-learning 

based methods [4,8], (2) model decomposition approaches [1,3], and (3) knowledge 

distillation techniques [11,14]. While these methods have shown improvements over 

standard FL, they still face limitations in capturing complex relationships between cli-

ents and adapting to varying degrees of data heterogeneity. 

In this paper, we propose AMGCN-FL, an Adaptive Multi-Graph Convolutional 

Network for Federated Learning that addresses the challenges of personalized learning 

in heterogeneous IIoT environments. Our key contributions are: 

─ We introduce a novel adaptive multi-graph architecture that dynamically captures 

relationships between clients based on model parameter similarities, feature space 

affinities, and task correlations. 

─ We develop a parameter-efficient knowledge transfer mechanism that selectively 

shares information between related clients while preserving local specialization. 

─ We conduct extensive experiments on benchmark datasets with varying degrees of 

heterogeneity, showing that AMGCN-FL consistently outperforms state-of-the-art 

personalized FL methods. 

2 Related Work 

2.1 Federated Learning 

Federated Learning was first introduced by McMahan et al. [18] as a distributed ma-

chine learning paradigm that enables model training across multiple decentralized de-

vices without sharing raw data. The standard FL algorithm, FedAvg, aggregates locally 

trained models by averaging their parameters. However, FedAvg performs poorly un-

der non-IID data distributions, which is common in real-world scenarios [22]. 

To address the challenges of non-IID data, several approaches have been proposed. 

FedProx [13] introduces a proximal term to stabilize training by limiting the local up-

dates' deviation from the global model. SCAFFOLD [9] employs control variates to 
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correct for the client drift caused by data heterogeneity. While these methods improve 

performance under non-IID conditions, they still aim to learn a single global model that 

may not be optimal for individual clients with unique data distributions. 

2.2 Personalized Federated Learning 

Personalized Federated Learning aims to tailor models to individual clients while still 

leveraging knowledge from other participants. Meta-learning approaches like Per-Fe-

dAvg [4] adapt MAML [5] to the federated setting, learning a global initialization that 

can quickly adapt to local tasks. pFedMe [20] formulates personalization as a bi-level 

optimization problem, balancing local performance with global knowledge. 

Model decomposition approaches separate models into shared and personalized 

components. FedRep [3] learns a shared representation while keeping task-specific 

heads personalized. Ditto [12] regularizes local models toward a global model while 

allowing for personalization. FedPer [1] shares base layers while personalizing the out-

put layers. 

Knowledge distillation techniques like FedMD [11] and FedDF [14] transfer 

knowledge between models without directly sharing parameters. FedAMP [6] employs 

attentive message passing to selectively aggregate knowledge from similar clients. Fe-

dALA [10] introduces an adaptive layer aggregation mechanism to address heteroge-

neity. 

While these approaches have shown improvements, they often rely on static rela-

tionships between clients or fail to capture complex dependencies in the data. Our pro-

posed AMGCN-FL addresses these limitations by dynamically modeling client rela-

tionships through multiple graph structures and adaptive knowledge transfer. 

2.3 Graph Neural Networks in Federated Learning 

Graph Neural Networks (GNNs) have recently been applied to federated learning to 

model relationships between clients. FedGNN [21] uses graph neural networks to cap-

ture client similarities for improved aggregation. GraphFL [15] employs graph struc-

tures to model the topology of federated networks. However, these approaches typically 

use a single static graph and do not adapt to evolving client relationships during train-

ing. 

In contrast, our AMGCN-FL leverages multiple adaptive graphs to capture different 

aspects of client relationships and dynamically adjusts these relationships throughout 

the training process. This multi-graph approach allows for more nuanced modeling of 

client similarities and differences, leading to improved personalization. 



3 Methodology 

3.1 Problem Formulation 

We consider a federated learning system with 𝑁 clients, where each client 𝑖 has a local 

dataset 𝒟𝑖 = {(𝐱𝑗
𝑖 , 𝑦𝑗

𝑖)}𝑗=1
|𝒟𝑖|

 consisting of input features 𝐱𝑗
𝑖 and corresponding labels 𝑦𝑗

𝑖 . 

In the context of industrial IoT, these could represent sensor readings and correspond-

ing equipment states or process outcomes. The goal of personalized federated learning 

is to learn a set of models {𝐰𝑖}𝑖=1
𝑁 , where each model 𝐰𝑖 is tailored to client i's local 

data distribution while still benefiting from knowledge shared across clients. 

Formally, we aim to solve the following optimization problem: 

𝑚𝑖𝑛
{𝐰𝑖}𝑖=1

𝑁
∑ ℒ𝑖(𝐰𝑖)

𝑁

𝑖=1

(1) 

where ℒ𝑖(𝐰𝑖) = 𝔼(𝐱,𝑦)∼𝒟𝑖
[ℓ(𝐰𝑖 ; 𝐱, 𝑦)] is the expected loss of model 𝐰𝑖 on client 𝑖's 

data distribution, and ℓ(⋅) is a task-specific loss function (e.g., cross-entropy for clas-

sification). 

In non-IID settings, the data distributions across clients can vary significantly, mak-

ing it challenging to learn a single global model that performs well for all clients. Our 

approach addresses this challenge by modeling the relationships between clients using 

adaptive graph structures and leveraging these relationships for personalized 

knowledge transfer. 

3.2 Adaptive Multi-Graph Convolutional Networks 

The core of our AMGCN-FL approach is the construction and utilization of multiple 

graph structures to capture different aspects of client relationships. We define three 

types of graphs: 

Parameter Similarity Graph (𝐺𝑝).  This graph captures similarities between clients 

based on their model parameters. The adjacency matrix 𝐀𝑝 ∈ ℝ𝑁×𝑁 is defined as: 

[𝐀𝑝]𝑖𝑗 = exp (−
∥ 𝐰𝑖 − 𝐰𝑗 ∥2

2

𝜎𝑝
2

) (2) 

 

where 𝜎𝑝 is a scaling parameter. This graph helps identify clients with similar model 

parameters, which may indicate similar learning objectives. 

Feature Space Graph (𝐺𝑓). This graph models relationships based on the similarity 

of feature representations learned by different clients. Let 𝐡𝑖(𝐱) denote the feature rep-

resentation of input 𝐱 extracted by client 𝑖's model (e.g., the output of the penultimate 

layer). We compute the feature space similarity between clients 𝑖 and 𝑗 using a set of 

proxy samples 𝒮 = {𝐱𝑘}𝑘=1
|𝒮|

 that are shared across clients without revealing their local 

data: 
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[𝐀𝑓]𝑖𝑗 = exp (−
1

|𝒮|
∑

∥ 𝐡𝑖(𝐱) − 𝐡𝑗(𝐱) ∥2
2

𝜎𝑓
2

𝐱∈𝒮

) (3) 

where 𝜎𝑓 is a scaling parameter. This graph captures similarities in how different 

clients represent the same inputs, which can indicate related feature extraction strate-

gies. 

Task Correlation Graph (𝐺𝑡). This graph represents correlations between the tasks 

performed by different clients. In industrial settings, even if devices perform different 

tasks, there may be underlying correlations due to shared physical processes or envi-

ronmental factors. We estimate task correlations using performance on a small set of 

shared validation samples 𝒱 = {(𝐱𝑘, 𝑦𝑘)}𝑘=1
|𝒱|

: 

[𝐀𝑡]𝑖𝑗 = corr(𝐞𝑖 , 𝐞𝑗) (4) 

where 𝐞𝑖 = [ℓ(𝐰𝑖; 𝐱1, 𝑦1), … , ℓ(𝐰𝑖 ; 𝐱|𝒱|, 𝑦|𝒱|)] is the vector of losses for client 𝑖 on 

the validation set, and corr(⋅,⋅) denotes the Pearson correlation coefficient. This graph 

identifies clients whose models make similar errors, suggesting related tasks.  

These three graphs provide complementary views of client relationships. To inte-

grate them, we employ a learnable weighted combination: 

𝐀 = 𝛼𝑝𝐀𝑝 + 𝛼𝑓𝐀𝑓 + 𝛼𝑡𝐀𝑡 (5) 

where 𝛼𝑝, 𝛼𝑓 , 𝛼𝑡 ≥ 0 and 𝛼𝑝 + 𝛼𝑓 + 𝛼𝑡 = 1 are learnable parameters that determine 

the importance of each graph. These parameters are updated during training to adapt to 

changing client relationships. 

3.3 Knowledge Transfer via Graph Convolution 

We leverage the constructed multi-graph to facilitate knowledge transfer between 

related clients through graph convolution operations. Specifically, we decompose each 

client's model 𝐰𝑖 into a shared component 𝐰𝑖
𝑠 and a personalized component 𝐰𝑖

𝑝
: 

𝐰𝑖 = [𝐰𝑖
𝑠, 𝐰𝑖

𝑝
] (6) 

The shared component typically includes the feature extraction layers, while the per-

sonalized component includes task-specific layers (e.g., classification heads). 

We apply graph convolution to update the shared components based on the multi-

graph structure: 

𝐖𝑡+1
𝑠 = 𝐖𝑡

𝑠 − 𝜂 (𝐈 − 𝛽𝐀
~

) ∇ℒ(𝐖𝑡
𝑠) (7) 

where 𝐖𝑡
𝑠 = [𝐰1

𝑠, … , 𝐰𝑁
𝑠 ]𝑇 is the matrix of shared components at iteration 𝑡, 𝜂 is the 

learning rate, 𝛽 ∈ [0,1] controls the strength of graph convolution, 𝐀
~

= 𝐃−1/2𝐀𝐃−1/2 



is the normalized adjacency matrix with 𝐃  being the degree matrix of 𝐀 , and 

∇ℒ(𝐖𝑡
𝑠) = [∇𝐰1

𝑠ℒ1, … , ∇𝐰𝑁
𝑠 ℒ𝑁]𝑇 is the matrix of gradients. 

The personalized components are updated locally without graph convolution: 

𝐰𝑖𝑡+1
𝑝

= 𝐰𝑖𝑡
𝑝

− 𝜂∇𝐰𝑖
𝑝ℒ𝑖(𝐰𝑖) (8) 

This approach allows for selective knowledge sharing through the shared compo-

nents while maintaining personalization through the client-specific components. 

3.4 Adaptive Layer-wise Aggregation 

Inspired by FedALA [9], we further enhance our approach with an adaptive layer-wise 

aggregation mechanism. Different layers of neural networks capture different levels of 

abstraction, with lower layers typically learning more general features and higher layers 

learning more task-specific features. In heterogeneous environments, the optimal de-

gree of sharing may vary across layers. 

We introduce layer-specific aggregation weights 𝛾𝑙
𝑖 for each client 𝑖 and layer 𝑙: 

𝐰𝑖,𝑙
𝑠 = 𝛾𝑙

𝑖𝐰𝑖,𝑙
local + (1 − 𝛾𝑙

𝑖)𝐰𝑖,𝑙
agg (9) 

where 𝐰𝑖,𝑙
local is the locally updated parameter for layer 𝑙, and 𝐰𝑖,𝑙

agg
 is the aggregated 

parameter obtained through graph convolution. The aggregation weights 𝛾𝑙
𝑖 are learned 

during training to optimize the trade-off between local specialization and knowledge 

sharing for each layer. 

The aggregation weights are updated using a meta-learning approach: 

𝛾𝑙
𝑖 ← 𝛾𝑙

𝑖 − 𝜂𝛾∇
𝛾𝑙

𝑖ℒ𝑖
val(𝐰𝑖) (10) 

where 𝜂𝛾 is the meta learning rate and ℒ𝑖
val is the validation loss for client 𝑖. This 

allows each client to adaptively determine how much to rely on shared knowledge ver-

sus local updates for each layer. 
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Algorithm 1 AMGCN-FL: Adaptive Multi-Graph Convolutional Networks forPersonal-

ized Federated Learning 
1: Input: Number of clients N, local datasets {𝒟𝑖}𝑖=1

𝑁 , proxy samples 𝒮, validation 

samples 𝒱, number of communication rounds 𝑇, number of local epochs 𝐸, learn-

ing rates  𝜂 and 𝜂𝛾, graph convolution strength 𝛽 
2: Initialize: Client models {𝑤𝑖}𝑖=1

𝑁 ,graph weights 𝛼𝑝, 𝛼𝑓 , 𝛼𝑡 , aggregation weights 

{𝛾
𝑙
𝑖} for each client 𝑖 and layer 𝑙 

3: for 𝑡 = 1 to 𝑇 do 
4: for each client 𝑖 in parallel do 
5: Perform 𝐸 epochs of local training on 𝐷𝑖 to update 𝑤𝑖  
6: Extract feature representations 𝐡𝑖(𝐱) for 𝐱 ∈ 𝒮 
7: Compute loss vector 𝑒𝑖 on validation samples 𝑉 
8: Send updated model 𝑤𝑖 , feature representations, and loss vector to server 
9: end for 
10: Server: 
11: Construct parameter similarity graph 𝐀𝑝  

12: Construct feature space graph 𝐀𝑓  
13: Construct task correlation graph 𝐀𝑡  
14: Update graph weights 𝛼𝑝, 𝛼𝑓 , 𝛼𝑡 based on validation performance 
15: Compute weighted adjacency matrix 𝐀 = 𝛼𝑝𝐀𝑝 + 𝛼𝑓𝐀𝑓 + 𝛼𝑡𝐀𝑡 
16: 

Normalize adjacency matrix 𝐀
~

= 𝐃−1/2𝐀𝐃−1/2 
17: 

Perform graph convolution 𝐖𝑡+1
𝑠 = 𝐖𝑡

𝑠 − 𝜂 (𝐈 − 𝛽𝐀
~

) ∇ℒ(𝐖𝑡
𝑠) 

18: Send aggregated shared components 𝐰𝑖,𝑙
agg

 to each client 𝑖 
19: for each client 𝑖 in parallel do 
20: Update layer-wise aggregation weights: 𝛾𝑙

𝑖 ← 𝛾𝑙
𝑖 − 𝜂𝛾∇

𝛾𝑙
𝑖ℒ𝑖

val(𝐰𝑖) 

21: Update shared components: 𝐰𝑖,𝑙
𝑠 = 𝛾𝑙

𝑖𝐰𝑖,𝑙
local + (1 − 𝛾𝑙

𝑖)𝐰𝑖,𝑙
agg 

22: end for 
23: end for 
24: Output: Personalized models {𝑤𝑖}𝑖=1

𝑁 = 0 

 

4 Theoretical Analysis 

In this section, we provide theoretical analysis of the convergence properties of 

AMGCN-FL under non-IID data distributions. We make the following standard as-

sumptions: 

Assumption 1 (Smoothness): Each local loss function ℒ𝑖 is 𝐿-smooth ∥ ∇ℒ𝑖(𝐰) −
∇ℒ𝑖(𝐰′) ∥≤ 𝐿 ∥ 𝐰 − 𝐰′ ∥ for all 𝐰, 𝐰′ . 

Assumption 2 (Bounded Heterogeneity): The gradient dissimilarity across clients 

is bounded: ∥ ∇ℒ𝑖(𝐰) − ∇ℒ𝑗(𝐰) ∥≤ 𝛿𝑖𝑗 for all 𝐰 and clients 𝑖, 𝑗, where 𝛿𝑖𝑗 quantifies 

the heterogeneity between clients 𝑖 and 𝑗. 

Assumption 3 (Bounded Graph Laplacian): The eigenvalues of the graph Lapla-

cian matrix 𝐋 = 𝐈 − 𝐀
~

 lie in the range [0,2]. 



Under these assumptions, we can establish the following convergence result: 

Theorem 1: Let 𝐰𝑖
∗ be the optimal model for client 𝑖. Under Assumptions 1-3, with 

an appropriate choice of learning rate 𝜂 and graph convolution strength 𝛽, AMGCN-

FL converges to a neighborhood of the optimal solutions: 

1

𝑁
∑ ∥ 𝐰𝑖

𝑇 − 𝐰𝑖
∗ ∥2 ≤ 𝒪(

1

𝑇
+

1

𝑁
∑ ∑ [𝐀]

𝑖𝑗
𝛿𝑖𝑗

2 )

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1

(11) 

where 𝑇 is the number of communication rounds. 

The first term 𝒪(1/𝑇) represents the optimization error that decreases with more 

communication rounds. The second term represents the approximation error due to het-

erogeneity, which depends on the graph structure 𝐀 and the gradient dissimilarities 𝛿𝑖𝑗. 

Importantly, the adaptive nature of our multi-graph approach minimizes this term by 

assigning higher weights to edges between similar clients (small 𝛿𝑖𝑗) and lower weights 

to edges between dissimilar clients (large 𝛿𝑖𝑗). 

Corollary 1: If the graph weights 𝛼𝑝, 𝛼𝑓 , 𝛼𝑡 are optimally chosen to minimize the 

approximation error, then: 

1

𝑁
∑ ∥

𝑁

𝑖=1

𝐰𝑖
𝑇 − 𝐰𝑖

∗ ∥2≤

𝒪(
1

𝑇
+ 𝑚𝑖𝑛

𝛼𝑝,𝛼𝑓,𝛼𝑡

1

𝑁
∑ ∑(𝛼𝑝[𝐀𝑝]𝑖𝑗 + 𝛼𝑓[𝐀𝑓]𝑖𝑗 + 𝛼𝑡[𝐀𝑡]𝑖𝑗)𝛿𝑖𝑗

2 )

𝑁

𝑗=1

𝑁

𝑖=1

(12)

 

 

This result highlights the benefit of our adaptive multi-graph approach: by learning 

the optimal combination of different graph structures, we can minimize the impact of 

heterogeneity on convergence. 

 

5 Experiments 

5.1 Experimental Setup 

Datasets. We evaluate AMGCN-FL on several benchmark datasets commonly used in 

federated learning research: 

─ MNIST: A dataset of handwritten digits with 60,000 training images and 10,000 test 

images. 

─ CIFAR-10 and CIFAR-100: Datasets of natural images with 50,000 training images 

and 10,000 test images, containing 10 and 100 classes respectively. 

─ Tiny-ImageNet: A subset of the ImageNet dataset with 200 classes, each having 500 

training images and 50 validation images. 

─ AG News: A text classification dataset containing news articles from 4 categories. 
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To simulate industrial IoT environments, we also create a synthetic IIoT dataset 

based on sensor readings from manufacturing equipment, with different clients repre-

senting different machines or production lines. 

 

Non-IID Partitioning: We create non-IID data partitions using two approaches: 

─ Pathological non-IID: Each client is assigned data from a limited set of classes, cre-

ating extreme class imbalance across clients. 

─ Practical non-IID: We use a Dirichlet distribution Dir(𝛼) to allocate data to clients, 

where smaller 𝛼 values indicate higher heterogeneity. 

 

Baselines: We compare AMGCN-FL with the following baselines: 

─ FedAvg [18]: The standard federated averaging algorithm. 

─ FedProx [13]: Adds a proximal term to stabilize training under non-IID data. 

─ Per-FedAvg [4]: A meta-learning based personalization approach. 

─ FedRep [3]: Learns shared representations and personalized heads. 

─ pFedMe [20]: Formulates personalization as a bi-level optimization problem. 

─ Ditto [12]: Regularizes local models toward a global model. 

─ FedAMP [7]: Uses attentive message passing for personalization. 

─ FedPHP [19]: Employs personalized hypernetworks. 

─ FedFomo [16]: Aggregates models from similar clients. 

─ APPLE [17]: Adaptively personalizes models based on local performance. 

─ PartialFed [2]: Partially shares model parameters. 

─ FedALA [10]: Uses adaptive layer aggregation. 

 

Implementation Details: We implement all methods using PyTorch. For MNIST, 

we use a CNN with two convolutional layers followed by two fully con nected layers. 

For CIFAR-10 and CIFAR-100, we use a ResNet-18 architecture. For Tiny-ImageNet, 

we use a ResNet-34 architecture. For AG News, we use a text CNN with pre-trained 

word embeddings. 

We implement AMGCN-FL with the following configuration: 50 clients, 100 com-

munication rounds, 5 local epochs per round, and a learning rate of 0.01. The graph 

convolution strength 𝛽 is set to 0.5, and the meta learning rate 𝜂𝛾 is set to 0.001. The 

proxy and validation sets each contain 100 samples. We use the Adam optimizer for 

local training. 

5.2 Performance Comparison 

Pathological Heterogeneous Setting: Table 1 shows the test accuracy of different 

methods under pathological non-IID settings. AMGCN-FL consistently outperforms all 

baseline methods across all datasets. The improvement is particularly significant on 

more complex datasets like CIFAR-100 and Tiny-ImageNet, where capturing the rela-

tionships between clients becomes more important. 

Practical Heterogeneous Setting: Table 2 presents the results under practical non-IID 

settings with Dirichlet distribution. AMGCN-FL achieves the best performance across 



different levels of heterogeneity. For highly heterogeneous settings (Dir(0.01)), 

AMGCN-FL shows a significant improvement over the best baseline (FedALA), 

demonstrating its effectiveness in capturing complex client relationships. 

Table 1. Test accuracy (%) under pathological heterogeneous setting. Best results are in bold 

 

Table 2. Test accuracy (%) under practical heterogeneous setting with Dirichlet distribution. Best 

results are in bold. 

Methods 
Tiny-ImageNet AGNews 

Dir(1) 

CIFAR-100Scalability 

Dir(0.01) Dir(0.5) 50clients 100clients 

FedAvg 15.70 21.14 87.12 31.90 31.95 

FedProx 15.66 21.22 87.21 31.94 31.97 

FedAvg-C 49.88 16.21 91.38 49.82 47.90 

FedProx-C 49.84 16.36 92.03 49.79 48.02 

Per-FedAvg 39.39 16.36 87.08 44.31 36.07 

FedRep 55.43 16.74 92.25 47.41 44.61 

pFedMe 41.45 17.48 87.08 48.36 46.45 

Ditto 50.62 18.98 91.89 54.22 52.89 

FedAMP 48.42 12.48 83.35 44.39 40.43 

FedPHP 48.63 21.09 90.52 52.44 49.70 

FedFomo 46.36 11.59 91.20 42.56 38.91 

APPLE 48.04 24.28 84.10 55.06 52.81 

PartialFed 49.38 24.20 91.01 48.95 39.31 

FedALA 55.75 27.85 92.45 55.61 54.68 

AMGCNFL 58.93 29.42 93.87 57.24 56.32 

 

Methods MNIST 
CIFAR-
10 

CIFAR-
100 

TINY TINY* 
AG 

News 

FedAvg 97.93 55.09 25.98 19.46 19.45 79.57 

FedProx 98.01 55.06 25.94 19.37 19.27 79.35 

FedAvg-C 99.79 92.13 66.17 30.67 36.94 95.89 

FedProx-C 99.80 92.12 66.07 30.77 38.78 96.10 

Per-FdAvg 99.63 89.63 56.80 25.07 21.81 93.27 

FedRep 99.77 91.93 67.56 37.27 39.95 96.28 
pFedMe 99.75 90.11 58.20 26.93 33.44 91.41 

Ditto 99.81 92.39 67.23 32.15 35.92 95.45 

FedAMP 99.76 90.79 64.34 27.99 29.11 94.18 
FedPHP 99.73 90.01 63.09 35.69 29.90 94.38 

FedFomo 99.83 91.85 62.49 26.33 26.84 95.84 
APPLE 99.75 90.97 65.80 35.04 39.93 95.63 

PartialFed 99.86 89.60 61.39 35.26 37.50 85.20 

FedALA 99.88 92.44 67.83 40.54 41.94 96.52 

AMGCNFL 99.91 93.26 69.42 42.87 44.63 97.18 
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5.3 Ablation Studies and Analytical Results 

Scalability Analysis:Figure 1(a) shows that AMGCN-FL maintains its performance 

advantage over baseline methods as the number of clients increases from 10 to 100. 

This demonstrates the scalability of our approach to large federated networks, which is 

crucial for industrial IoT applications involving numerous devices. Even with 100 cli-

ents, AMGCN-FL outperforms FedALA by approximately 1.7 percentage points on the 

CIFAR-100 dataset. 

Convergence Analysis: Figure 1(b) depicts the convergence behavior of different 

methods across communication rounds. AMGCN-FL not only achieves higher final ac-

curacy but also converges faster than the baseline methods. By round 40, AMGCN-FL 

already reaches a test accuracy that is higher than what FedAvg achieves after 100 

rounds, highlighting the efficiency of our graph-based knowledge transfer mechanism. 

This faster convergence is particularly important in bandwidth-constrained industrial 

settings where minimizing communication rounds is essential. 

Fig. 1. Scalability and convergence analysis of AMGCN-FL compared to baseline methods:Test 

accuracy vs. number of clients on CIFAR-100 dataset with Dir(0.1) partition(a,The left one), 

Convergence rate comparison on CIFAR-100 dataset with Dir(0.1) partition (b,The right one). 

Impact of Graph Structures: To understand the contribution of each graph structure, 

we conduct an ablation study by removing one graph at a time. Table 3 shows that all 

three graphs contribute to the performance of AMGCN-FL, with the parameter similar-

ity graph having the largest impact. This confirms our intuition that different graph 

structures capture complementary aspects of client relationships. 

AdaptiveLayer-wiseAggregation: Figure 2 (a) visualizes the learned aggregation 

weights 𝛾𝑙
𝑖 for different layers and clients with varying degrees of data heterogeneity. 

We observe that lower layers (closer to the input) tend to have lower aggregation 

weights, indicating more sharing of general features, while higher layers (closer to the 

output) have higher weights, indicating more personalization for task-specific features. 

This aligns with the intuition that lower layers learn more transferable features. More-

over, clients with higher data heterogeneity consistently maintain higher aggregation 

weights across all layers, demonstrating the adaptive nature of our approach to client-

specific characteristics. 



Graph Weights Evolution: Figure 2 (b) shows how the graph weights 𝛼𝑝 , 𝛼𝑓 , 𝛼𝑡 

evolve during training. Initially, all weights are equal (1/3). As training progresses, the 

parameter similarity graph weight 𝛼𝑝  increases, indicating its growing importance, 

while the feature space graph weight  𝛼𝑓and task correlation graph weight  𝛼𝑡 decrease 

but remain significant. This demonstrates the adaptive nature of our multi-graph ap-

proach, which dynamically adjusts the importance of different client relationship met-

rics throughout the training process. 

 

Table 3. Ablation study on graph structures. Test accuracy (\%) on CIFAR-100 with Dir(0.1) 

partition. 

Variant Test Accuracy 

AMGCN-FL (full) 57.24 

w/o Parameter Similarity Graph 54.82 

w/o Feature Space Graph 55.93 

w/o Task Correlation Graph 56.41 

Single Static Graph 53.76 

 

Fig. 2.  Analysis of AMGCN-FL’s adaptive components during federated learning：Learned 

aggregation weights for different layers and clients with varying degrees of heterogeneity(a,The 

left one), Evolution of graph weights during training on CIFAR-100 dataset. Which demonstrate 

the dynamic adaptation(b,The right one). 

5.4 Communication and Computation Efficiency 

We also analyze the communication and computation efficiency of AMGCN-FL com-

pared to baseline methods. Table 4 presents the communication cost per round (meas-

ured in GB), client computation time (seconds per round), and server computation time 

(seconds per round) on CIFAR-100 with 50 clients. Although AMGCN-FL introduces 

a slight overhead compared to simpler methods like FedAvg and FedProx due to the 
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additional graph construction and adaptive layer-wise aggregation, the overhead is 

moderate and justified by the significant performance improvements. Specifically, 

AMGCN-FL requires only about 14% more communication bandwidth and 47% more 

client computation time than FedAvg, while achieving more than 8 percentage points 

higher accuracy. Compared to the competitive FedALA baseline, AMGCN-FL shows 

only marginal increases in resource usage while delivering better performance. 

Table 4. Communication and computation efficiency comparison on CIFAR-100 with 50 clients. 

Methods 
Communication Cost 

(GB per round) 

Client Computation 

(s per round) 

Server Computation 

(s per round) 

FedAvg 0.42 3.8 0.6 

FedProx 0.42 4.2 0.6 

FedRep 0.35 4.4 0.7 

Ditto 0.84 5.1 0.9 

FedALA 0.44 5.2 1.3 

AMGCN-FL 0.48 5.6 1.7 

 

5.5 Industrial IoT Case Study 

To demonstrate the practical relevance of AMGCN-FL, we conduct a case study on an 

industrial IoT dataset collected from manufacturing equipment. The dataset contains 

sensor readings from 30 machines across 5 factories, with each machine performing 

similar but not identical tasks. The goal is to predict equipment failures based on sensor 

data. 

Table 5 shows that AMGCN-FL achieves the highest prediction accuracy and F1-

score compared to baseline methods. The improvement is particularly significant for 

rare failure events, which are critical in industrial settings. This demonstrates the effec-

tiveness of our approach in real-world industrial applications with heterogeneous data 

distributions. 

Furthermore, we analyze the interpretability of our approach in the industrial IoT 

context. By examining the learned graph structures, factory operators can identify clus-

ters of machines with similar behavior patterns and failure modes. This information can 

be valuable for maintenance planning and resource allocation. Additionally, the layer-

wise aggregation weights provide insights into which components of the models benefit 

most from knowledge sharing and which require more personalization, helping to opti-

mize the trade-off between global knowledge and local specialization. 

 

 

 



Table 5. Performance comparison on industrial IoT dataset for equipment failure prediction. 

Methods Accuracy (%) 
F1-

Score 
AUC 

FedAvg 87.32 0.76 0.83 

FedProx 87.65 0.77 0.84 

FedRep 89.41 0.81 0.87 

Ditto 90.23 0.83 0.89 

FedALA 91.56 0.85 0.91 

AMGCN--FL 93.28 0.88 0.93 

 

6 Conclusion 

In this paper, we proposed AMGCN-FL, an adaptive multi-graph convolutional net-

work approach for personalized federated learning in industrial IoT environments. Our 

method leverages multiple graph structures to capture different aspects of client rela-

tionships and employs adaptive layer-wise aggregation to balance knowledge sharing 

and local specialization. Theoretical analysis established the convergence properties of 

our algorithm under non-IID data distributions. Extensive experiments on benchmark 

datasets and an industrial IoT case study demonstrated that AMGCN-FL consistently 

outperforms state-of-the-art personalized FL methods across various heterogeneity set-

tings. 

The key advantages of AMGCN-FL include: (1) adaptive modeling of complex cli-

ent relationships through multiple complementary graph structures, (2) parameter-effi-

cient knowledge transfer that preserves local specialization, and (3) robust performance 

across varying degrees of data heterogeneity. These properties make AMGCN-FL par-

ticularly suitable for industrial IoT applications where devices generate heterogeneous 

data under diverse operating conditions. 

Future work includes extending AMGCN-FL to handle dynamic client participation, 

incorporating privacy-preserving mechanisms for graph construction, and exploring the 

application of our approach to other domains with heterogeneous distributed data. We 

also plan to investigate the theoretical connections between graph structures and con-

vergence rates in more detail. 
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