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Abstract. Within the domain of autonomous driving, the performance of object 

detectors is crucial, as they must not only provide accurate and reliable environ-

mental perception but also meet the demands for high inference speed and light-

weight model requirements. While Transformer-based RT-DETR architecture 

exhibit notable efficiency and precision in real-time end-to-end detection frame-

works, its capability to localize and classify small-scale objects remains limited. 

To address this issue, we introduce Omni-DETR, an advanced model aimed at 

enhancing detection accuracy for small objects without compromising efficiency. 

Omni-DETR incorporates FasterIRANet as its backbone for feature extraction, 

significantly reducing redundant computations and memory access, thereby 

achieving high inference speed while enhancing accuracy. In the encoder, our 

framework introduces the Dimensional Feature Integrator (DFI), a hierarchical 

feature fusion module that enhances multi-scale representation learning through 

cross-resolution feature aggregation. To further optimize localization precision, 

we develop InnerMPDIoU, an advanced bounding box regression loss combining 

geometric constraints and adaptive scaling mechanisms. Experimental results on 

the TT100K dataset demonstrate that Omni-DETR achieves an AP of 61.2% and 

a processing speed of 42.8 FPS on a 3090 GPU, while attaining 53.7% AP on the 

COCO dataset. Compared to several existing models, Omni-DETR proves its su-

periority in comprehensive performance. 

Keywords: End-to-End Object Detection, Small Object, Transformer. 

1 Introduction 

Recent advancements in computer vision have significantly enhanced object detection 

capabilities, with particularly transformative impacts in time-sensitive domains such as 

autonomous navigation systems and live monitoring scenarios, where it plays a crucial 

role. These algorithms can identify and track surrounding vehicles, pedestrians, traffic 

signs, traffic lights, and lane markings in real time, providing autonomous vehicles with 

accurate perception of complex environments. 



Contemporary object detection approaches predominantly fall into two paradigms. 

The first paradigm leverages convolutional neural networks (CNNs), exemplified by 

the YOLO series [1-5], renowned in industrial applications for their computational ef-

ficiency and detection precision. However, these algorithms often require non-maxi-

mum suppression (NMS) for post-processing, which adds computational overhead and 

introduces hyperparameters that can affect stability. An alternative paradigm employs 

Transformer architectures [6] to construct fully end-to-end detection systems, with the 

DETR family of models [7-14] representing prominent implementations of this ap-

proach. These models have simplified their architectures by removing post-processing 

steps like NMS, leading to significant advancements. 

RT-DETR [14], an advancement in the DETR series, tackles the computational bot-

tlenecks introduced by multi-scale feature processing by designing an efficient hybrid 

encoder. This design enhances cross-scale feature integration, substantially accelerat-

ing computational processing. The framework implements an uncertainty-aware query 

selection module that directly minimizes prediction variance during the initialization 

phase, resulting in more reliable object proposals and improved recognition perfor-

mance. Notably, RT-DETR supports flexible speed adjustment without retraining, ex-

tending DETR's capabilities to real-time detection scenarios and demonstrating excep-

tional performance. 

While RT-DETR achieves notable improvements in speed and accuracy for object 

detection through its key enhancements, our experiments indicate it still has limitations 

when it comes to detecting small objects. Specifically, the efficient hybrid encoder in 

RT-DETR primarily emphasizes the highest-scale features during multi-scale feature 

processing, while only performing basic fusion for other scales. Such processing risks 

discarding critical fine-grained information during resolution transitions, potentially 

compromising detection performance for small-scale targets. 

To address this challenge, we have carefully reconsidered and redesigned RT-

DETR's feature fusion module. We identified that optimizing the encoder's feature pro-

cessing is essential for effectively enhancing small object detection. Our architectural 

enhancements prioritize robust cross-scale feature interactions through advanced fusion 

methodologies, enabling superior preservation of high-frequency spatial information 

while optimizing feature discriminability for compact objects. 

In this paper, we introduce Omni-DETR, an enhanced and lightweight model based 

on RT-DETR that excels in small object detection scenarios. The key improvements of 

our model are as follows: 

1. High-Performance Backbone Network: We have introduced FasterIRANet as the 

backbone for Omni-DETR. By streamlining processing steps and memory usage 

while utilizing Transformer's inherent ability to model distant dependencies, we op-

timized the extraction of spatial features. 

2. Optimized Multi-Scale Feature Fusion: We introduce the Dimensional Feature 

Integrator (DFI), an innovative architectural module specifically developed for hier-

archical feature fusion. DFI significantly improves multi-scale information aggrega-

tion within the network, enabling more comprehensive contextual representation that 

enhances detection performance. 
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3. Optimized Bounding Box Regression: To optimize both convergence rate and lo-

calization precision in bounding box prediction, we introduce an enhanced loss func-

tion, InnerMPDIoU, which combines the concepts of MPDIoU [15] and InnerIoU 

[16] to improve the model's detection accuracy. 

These enhancements boost Omni-DETR's small object detection capability while 

preserving its computational efficiency and compact architecture, making it suitable for 

resource-constrained environments. Specifically, Omni-DETR demonstrates outstand-

ing performance on the TT100K [17] dataset, achieving an AP of 61.2%. Experimental 

results demonstrate significant improvements over RT-DETR, achieving superior ac-

curacy while maintaining real-time performance at 43 FPS (45% faster) on RTX 3090 

GPUs. Furthermore, the model attains 53.7% AP on COCO benchmark, confirming its 

robust generalization capability across diverse datasets. 

2 RELATED WORK 

2.1 Real-time object detection 

Real-time object detection has been a pivotal research area in computer vision, fueled 

by its extensive applications in autonomous driving, video surveillance, and robotics. 

The past two years have witnessed remarkable progress in real-time detection architec-

tures, marked by three key developments: (1) compact network design, (2) computa-

tionally efficient feature representation, and (3) specialized enhancements for small ob-

ject recognition. Driven by both hardware advancements and growing application de-

mands, contemporary research has focused on optimizing the accuracy-efficiency 

trade-off. This trend is exemplified by successive YOLO series iterations (e.g., 

YOLOv8 [3], YOLOv10 [5]), which demonstrate progressively refined speed-accuracy 

characteristics through architectural innovations. Additionally, detectors based on the 

Transformer architecture, like RT-DETR, have garnered considerable attention for their 

performance in real-time tasks. By integrating dynamic feature enhancement modules 

and multi-scale feature fusion, these detectors have effectively improved detection ef-

ficiency and the recognition capabilities for small objects. 

Emerging research has prioritized addressing challenges inherent to complex envi-

ronments, including scenarios characterized by sparse data distributions and partial tar-

get occlusions. Representative works exemplify this progress through hybrid architec-

tures combining parameter-efficient modules (GhostNet [18], FasterNet [19]) with en-

hanced pyramid networks [20]. These designs simultaneously address computational 

efficiency and scene complexity challenges. Concurrently, some studies have further 

optimized model inference speed through knowledge distillation [21], pruning [22], and 

quantization methods [23], promoting the implementation of real-time object detection 

technology in applications such as unmanned driving, intelligent security, and mobile 

devices. 



2.2 End-to-End DEtection Transformer 

DETR [7] established the first fully Transformer-based paradigm for object detection, 

significantly streamling the framework of object detection. Its intuitive structure and 

exceptional performance have garnered DETR considerable attention. However, the 

standard Transformer attention mechanism shows inherent constraints in handling vis-

ual feature representations, leading to DETR's suboptimal training convergence and 

slower inference speeds. To overcome these limitations, researchers have developed 

multiple DETR-based variants. For instance, Deformable DETR [8] modifies the atten-

tion mechanism to concentrate computations only on relevant sampling regions near 

reference points, outperforming the original DETR in accuracy while cutting training 

time significantly. Conditional DETR [11] generates spatially-aware queries from de-

coder embeddings, optimizing the multi-head cross-attention mechanism to localize 

classification and regression targets within refined spatial regions. This approach re-

duces reliance on content embeddings and simplifies the training process. DN-DETR 

[13] introduces a denoising training strategy where corrupted ground truth boxes are 

fed into the decoder, enabling the model to recover clean box predictions and achieve 

faster convergence. 

Recently, RT-DETR has resolved the issue of slow inference speed by redesigning 

the encoder. Through the separation of intra-scale processing and inter-scale feature 

integration, RT-DETR has notably decreased inference latency and surpassed the 

YOLO series in precision and inference speed on the COCO dataset [24], representing 

a substantial leap forward in real-time object detection capabilities. 

 

Fig. 1. Overview of Omni-DETR 

3 DESIGN OF Omni-DETR 

3.1 Model Overview 

Omni-DETR's architectural framework integrates three core components: a lightweight 

FasterIRANet backbone for feature extraction, a hybrid encoder optimized for multi-
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scale interactions, and a Transformer decoder augmented with auxiliary prediction 

modules, as shown in Figure 1. Our model takes the output feature maps s1, s2, s3, s4 

from the four stages of FasterIRANet as input to the encoder. The top-level feature map 

S4 is processed in the AIFI module [14] to generate feature map F4. The combined 

feature set S1, S2, S3, S4, F4 is then fed into the DFI module for further feature fusion. 

The DFI module integrates two synergistic components: the Scale Sequence Feature 

Fusion (SSFF) [25] and Fine-Scale Feature Extractor (FSFE) module (Figures 2 and 3). 

This hierarchical architecture facilitates comprehensive multi-scale feature aggrega-

tion, thereby enriching contextual representations. Following feature fusion, a uncer-

tainty-aware query selection mechanism identifies the most informative encoder tokens 

to initialize decoder queries. Coupled with an auxiliary prediction branch, the decoder 

progressively refines these queries through iterative updates, ultimately generating both 

class predictions and bounding box coordinates. 

 

Fig. 2. Scale Sequence Feature Fusion Block 

 

Fig. 3. Fine-Scale Feature Extractor Block 

3.2 FastIRANet Backbone 

Deploying object detection models on mobile devices typically requires achieving 

lightweight and high-speed inference under limited hardware conditions. On GPUs, the 

computational bottleneck often lies in memory bandwidth. High data read/write opera-

tions, coupled with the memory bandwidth limitations of GPUs, lead to models spend-

ing a significant amount of time on data read/write in video memory. To address these 

issues, we proposed an efficient backbone network called FasterIRANet. The architec-

ture comprises four hierarchical stages, each preceded by either an embedding layer or 



merging layer for spatial downsampling or channel dimension expansion. Every stage 

contains multiple FasterIRABlocks (Figure 4) - each integrating: (1) a Partial Convo-

lution (PConv) [19] layer for local feature extraction and (2) an Inverted Residual At-

tention Block (IRAB) that synergizes CNN-like efficiency with Transformer-style 

global modeling capabilities. 

 

Fig. 4. The structure of the FasterIRABlock 

The PConv layer performs standard convolution operations only on a strategically cho-

sen portion of input channels for spatial feature extraction, maintaining the remaining 

channels in their original state. Compared to standard convolution, it reduces FLOPs 

and memory access. Following the PConv layer, we integrated the IRAB structure to 

leverage Transformer long-range interactions.The IRAB consists of a basic inverted 

residual structure and W-MHSA module [26]. Due to the expansion rate 𝜆 of the in-

verted residual module typically being greater than 1, directly applying W-MHSA 

would result in a quadratic 𝜆 increase in the number of parameters and computational 

load. Therefore, the IRAB structure calculates W-MHSA using the unexpanded feature 

maps, and the obtained weights are then applied to the expanded feature maps. Since 

W-MHSA is more suitable for modeling deeper semantic features, we only apply it in 

the third and fourth stages of FasterIRANet, which also reduces some parameters and 

computational load.The formula for 𝑄, 𝐾, 𝑉  is as follows: 

 𝑄 = 𝐾 = 𝑃𝐶𝑜𝑛𝑣(𝑥)(∈ ℝ𝐶×𝐻×𝑊 ) (1) 

 𝑉 = 𝑀𝐿𝑃𝜆(𝑃𝐶𝑜𝑛𝑣(𝑥))(∈ ℝ𝜆 𝐶×𝐻×𝑊 ) (2) 

3.3 Dimensional Feature Integrator 

Scale Sequence Feature Fusion. In object detection, a critical challenge is designing 

models that effectively detect targets of varying sizes, necessitating in-depth multi-
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scale feature fusion. While RT-DETR employs PANet-style [27] feature integration via 

basic additive or concatenative fusion, this approach inadequately captures cross-scale 

feature dependencies. Our solution, the SSFF module, innovatively arranges multi-

scale features along the depth dimension and processes them through 3D convolutional 

filters [28] for enhanced inter-scale relationship modeling. We integrate the CARAFE 

[29] upsampling operator within the SSFF module to boost performance. CARAFE en-

hances feature reconstruction by aggregating adjacent channels and dynamically ad-

justs the upsampling process based on input features, generating more accurate upsam-

pled features. The 3D convolution captures information across three spatial dimensions, 

aiding in recognizing multi-scale features of small targets and strengthening the model's 

learning capabilities, thus improving detection accuracy. 

The SSFF module particularly emphasizes the importance of the S2 layer, as it has 

a smaller receptive field and contains information crucial for the detection of small 

targets. We opt for the S2 layer over the S1 layer due to its higher resolution and com-

putational considerations. 

Fine-Scale Feature Extractor. To improve small object detection performance, 

multi-scale analysis can be performed by examining shape and appearance variations 

across different resolutions. Conventional Feature Pyramid Networks (FPN) [20] typi-

cally neglect the fine-grained details present in high-resolution feature maps, instead 

relying solely on upsampling lower-resolution features followed by simple concatena-

tion or element-wise addition with coarser layers. To address this limitation, we propose 

the Triple Feature Encoding (TFE) module, which explicitly processes feature maps at 

three distinct scales (large, medium, and small) while preserving critical high-frequency 

details through learned feature amplification. The detailed architecture of TFE is illus-

trated in Figure 5. 

 

Fig. 5. The structure of TFE module 

The TFE module first normalizes channel dimensions across scales to ensure feature 

compatibility. For high-resolution inputs, a hybrid downsampling strategy (joint max-

average pooling) preserves fine-grained structures critical for small objects. Lower-res-

olution features undergo CARAFE-based upsampling to reconstruct localized detail 

while minimizing information loss. The module finally generates output 𝐹{𝑇𝐹𝐸} through 

concatenation of these adaptively processed multi-scale features.  



After the TFE module processes multi-scale features, we introduce two variants of 

the C3 structure (RepC3 and C3Ghost, as illustrated in Figure 6) for enhanced feature 

extraction. When the variant of the C3 structure is a RepBlock [30], it forms the RepC3 

structure, and when it is a GhostBottleNeck [18], it forms the C3Ghost structure. 

The RepBlock is a reparameterization convolution module [30] that enables the net-

work to adopt different structures during training and inference. During training, it com-

prises multiple branches, including various 1x1 and 3x3 convolutions and identity map-

pings, to learn diverse features. For inference, the RepBlock's multi-branch structure is 

streamlined into a single branch, reparameterized as a 3x3 convolutional layer that in-

tegrates all feature information from the training phase, enhancing computational effi-

ciency and speed. 

The GhostBottleNeck generates additional feature maps through an efficient Ghost 

module [18], revealing deep information of intrinsic features at a low cost, which aids 

in constructing a more lightweight and efficient network structure. These extra Ghost 

feature maps are generated using convolutional kernels of 3x3 or 5x5 sizes with chan-

nel-wise operations, similar to DW-Conv [31]. The GhostBottleNeck's overall structure 

resembles the fundamental residual block found in ResNet [32], where the first Ghost 

module decreases channel quantity, and the subsequent module acts as an expansion 

layer to boost the channel count. 

 

Fig. 6. The structure of C3 block 

3.4 Loss Function 

Bounding box regression loss functions play a critical role in object detection systems, 

where optimal design can significantly enhance model performance. Traditional ap-

proaches apply homogeneous penalty terms to localization errors regardless of their 
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geometric properties, which may: (1) slow optimization convergence and (2) limit final 

prediction accuracy due to insufficient spatial discrimination. Therefore, we propose an 

improved loss function that combines the concepts of MPDIoU and InnerIoU to 

strengthen model performance. Bounding boxes are conventionally represented 

through the spatial coordinates of their top-left and bottom-right vertices. Leveraging 

the geometric properties of bounding boxes, MPDIoU minimizes the distance between 

the predicted bounding box and the corresponding corners of the Ground Truth box 

based on the IoU metric. In addition, InnerIoU employs auxiliary bounding boxes of 

varying scales for distinct regression instances, utilizing a scaling factor to regulate the 

dimensions of these boxes in the loss computation process. For instances with high IoU, 

employing a smaller auxiliary box for loss calculation can speed up convergence; con-

versely, a larger auxiliary box is appropriate for instances with low IoU. The formula 

for InnerIoU is as follows: 

 𝑖𝑛𝑡𝑒𝑟 =  𝐵𝑖𝑛𝑛𝑒𝑟
𝑔𝑡

∩  𝐵𝑖𝑛𝑛𝑒𝑟
𝑝𝑟𝑒

 (3) 

 𝑢𝑛𝑖𝑜𝑛 =  (𝑤𝑔𝑡×ℎ𝑔𝑡  ) × 𝑟𝑎𝑡𝑖𝑜2 +  (𝑤𝑝𝑟𝑒×ℎ𝑝𝑟𝑒  ) × 𝑟𝑎𝑡𝑖𝑜2 − 𝑖𝑛𝑡𝑒𝑟 (4) 

 𝐼𝑜𝑈𝑖𝑛𝑛𝑒𝑟 =  
𝑖𝑛𝑡𝑒𝑟

𝑢𝑛𝑖𝑜𝑛
 (5) 

where 𝐵𝑖𝑛𝑛𝑒𝑟
𝑔𝑡

 represents the auxiliary box obtained by scaling the Target box,𝐵𝑖𝑛𝑛𝑒𝑟
𝑝𝑟𝑒

 

is the Anchor box after scaling, the scaling factor is 𝑟𝑎𝑡𝑖𝑜, typically ranging from [0.5-

1.5]. The input image size is ℎ ×  𝑤, and the corresponding bounding box regression 

loss is: 

 ℒ𝐼𝑛𝑛𝑒𝑟−𝑀𝑃𝐷𝐼𝑜𝑈 =  1 − 𝐼𝑜𝑈𝑖𝑛𝑛𝑒𝑟 +
𝑑1

2

𝑤2+ℎ2 +
𝑑2

2

𝑤2+ℎ2 (6) 

 

Fig. 7. Factors of Inner−MPDIoU 

 



4 EXPERIMENTS 

4.1 Dataset and Environment 

To evaluate small object detection performance, we conducted comprehensive experi-

ments on the TT100K benchmark. Furthermore, comparative analysis on the COCO 

dataset was performed to assess the model's generalization capability across diverse 

scenarios. 

The TT100K dataset, developed collaboratively by Tsinghua University and Tencent 

Research, comprises 100,000 high-resolution traffic images containing approximately 

30,000 annotated traffic sign instances. The TT100K dataset covers 221 unique cate-

gories of traffic signs, providing annotation data for 128 categories among them. Over 

90% of the targets in this dataset occupy less than 5% of the image width and height, 

indicating that the dataset primarily consists of small-sized targets. This characteristic 

strongly corresponds with real-world traffic scenarios where signs typically appear as 

small objects within complex urban environments. 

In terms of experimental environment setup, we used the GeForce RTX 3090 GPU. 

To ensure the comparability of model performance, the training parameters for all ex-

periments were kept consistent, and no pre-trained weights were employed. Details of 

the specific parameter configurations are presented in Table 1. 

Table 1. Setting table of experimental environment parameters 

Item Value 

epochs 100 

batch 16 

imgsz 640 

optimizer AdamW 

Lr0 0.001 

momentum 0.9 

weight_decay 0.0001 

warmup_epochs 5.0 

warmup_bias_lr 0.1 

4.2 Comparison with Others 

We performed comprehensive benchmarking of Omni-DETR against state-of-the-art 

approaches, including both the YOLO family and contemporary DETR-based detec-

tors, with quantitative results detailed in Table 2 and Table 3. 

Table 2 displays the comparative experimental results on the small-object dataset 

TT100K. The data clearly demonstrates that Omni-DETR achieves a high inference 

speed of 42.8 FPS, representing a 45% improvement over RT-DETR-1. Compared to 

existing real-time object detection models, Omni-DETR has achieved the highest 

scores of 78.6% in mAP50 and 61.2% in mAPval. This result highlights the model's 
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exceptional performance in terms of accuracy in small object detection. When com-

pared to the DETR series models, Omni-DETR has shown significant enhancements 

across all key metrics. 

Table 2. Comparative Results on TT100K 

Item Params(M) GFLOPs FPS mAP50 mAPval 

YOLOv5m [2] 25.1 64.2 119.6 73.8 57.0 

YOLOv8s [3] 11.2 28.6 126.1 70.2 54.2 

YOLOv8m [3] 25.9 78.9 101.6 75.8 58.8 

YOLOv9m [4] 20.1 76.8 69.8 75.7 58.6 

YOLOv10m [5] 15.4 59.1 95.2 69.7 54.2 

YOLOv10b [5] 19.6 91.8 87.5 76.8 60.0 

RT-DETR-l [14] 32.1 103.6 29.5 57.5 42.1 

RT-DETR-R50 [14] 42.0 125.8 25.1 62.9 46.4 

RT-DETRv3-R18 [33] 20.0 60.0 48.2 59.6 43.7 

RT-DETRv3-R50 [33] 42.0 134.5 25.7 63.6 46.9 

LW-DETR-medium [34] 28.3 42.8 47.3 62.1 46.0 

LW-DETR-large [34] 46.8 71.6 28.7 67.8 51.1 

Omni-DETR (ours) 27.1 65.7 42.8 78.6 61.2 

 

The data in Table 3 presents the comparative experimental results on the COCO 

dataset, showing that Omni-DETR achieves the highest mAPval of 53.7%, demonstrat-

ing its broad applicability in general scenarios. 

Table 3. Comparative Results on COCO 

Model YOLOv8m YOLOv10b RT-DETR- 

v3-R50 

LW-DETR- 

medium 

Omni- 

DETR (ours) 

AP 50.6 52.5 53.4 52.5 53.7 

 

In summary, the Omni-DETR model not only demonstrates its advantage in compu-

tational efficiency but also surpasses several existing state-of-the-art models in detec-

tion accuracy. These results substantiate the effectiveness of Omni-DETR in object de-

tection tasks and reveal its potential in application scenarios requiring real-time pro-

cessing and high precision. 

4.3 Ablation Study on Key Components 

To systematically evaluate the contribution of each component, we conducted ablation 

experiments focusing on three critical aspects: (1) backbone architecture, (2) feature 

integration mechanism, and (3) loss function formulation. 



Table 4.  Result of the Ablation Experiments on Key Components 

Variant Faster- 

IRANet 

DFI Inner- 

MPDIoU 

Params Gflops FPS mAP50 mAPval 

A(base)    32.1 103.6 27.8 57.5 42.1 

B ✓   27.6 60.0 32.1 68.7 52.3 

C  ✓  28.7 80.1 30.7 74.1 56.0 

D   ✓ 32.1 103.6 27.8 58.8 43.2 

E ✓ ✓  27.1 65.7 42.8 77.3 60.4 

F ✓  ✓ 27.6 60.0 32.1 70.1 53.2 

G  ✓ ✓ 28.7 80.1 30.7 74.9 56.7 

H(ours) ✓ ✓ ✓ 27.1 65.7 42.8 78.6 61.2 

 

Table 4 presents the outcomes of our ablation study, with baseline A representing 

the RT-DETR-l model, which utilizes HGNetv2 as its backbone network and CCFF as 

the feature fusion module. The comparison between variants G and H demonstrates that 

replacing HGNetv2 with FasterIRANet not only reduced the model parameters but also 

accelerated the inference speed, achieving a 3.7% increase in mAP50 and a 4.5% in-

crease in mAPval. The comparison between variants F and H indicates that the model 

with the CCFF feature fusion module replaced by our proposed DFI feature fusion 

module experienced a slight increase in GFLOPs, yet there was an improvement in 

inference speed, with an 8.5% increase in mAP50 and an 8.0% increase in mAPval. 

This confirms that our DFI feature fusion module has a distinct advantage over the 

CCFF module in the domain of small object detection. The results of variant E show a 

slight enhancement in accuracy after the introduction of Inner-MPDIoU. The experi-

mental outcomes for variants A, B, and C indicate that each module, when applied in-

dividually to baseline A, contributes to the enhancement of model performance. 

4.4 Ablation Study on Backbone 

Table 5 illustrates the impact of two main modules in the backbone network, PConv 

and IRAB, on model performance. Variant A indicates that each FasterIRABlock is 

composed of a PConv layer and a basic inverted residual block, while Variant B signi-

fies that each FasterIRABlock consists solely of an enhanced inverted residual block, 

IRAB. Variant C represents a combination of PConv and IRMB in a single block. When 

the backbone network employs Variant A, the model still achieves good performance. 

Furthermore, we observed that when both modules are used together, the highest pre-

cision of 61.2% in mAPval is achieved, although the detection speed is somewhat re-

duced. 

4.5 Ablation Study on DFI 

Within the FSFE module, we implemented four instances of the C3 structure. The ex-

perimental results in Table 6 assess the influence of various C3 structure variations on 
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performance metrics. The subjects of the experiment included RepC3 and C3Ghost, 

where Variant A indicates that all four positions utilize the RepC3 structure, Variant B 

indicates that all positions use C3Ghost, and Variant C represents a hybrid structure 

that employs RepC3 after the TFE module and C3Ghost after the Concat operation. 

Both Variants A and C achieved high levels of performance, while Variant B (which 

exclusively used C3Ghost) failed to converge during training. The experimental results 

demonstrate that the RepC3 structure can achieve high detection accuracy at a lower 

computational cost, while the C3Ghost structure is suitable for enhancing network non-

linearity after feature fusion and is more lightweight compared to RepC3. In the final 

model, we adopted the configuration of Variant C to achieve optimal performance. 

Table 5. Result of the Ablation Experiments on Backbone 

Variant PConv W-MHSA FPS AP 

A ✓  46.2 59.7 

B  ✓ 44.2 50.2 

C ✓ ✓ 42.8 61.2 

Table 6. Result of the Ablation Experiments on DFI 

Variant Params GFLOPs AP 

A 27.9 62.2 60.7 

B 26.3 54,8 — 

C 27.1 60.7 61.2 

4.6 Ablation Study on Loss Function 

The result in Table 7 demonstrate that the proposed Inner-MPDIoU loss function in this 

study achieves the best performance in both mAP50 and mAPval, reaching 78.6% and 

61.2%, respectively, significantly outperforming other compared loss functions. Com-

pared to traditional IoU-based loss functions (GIoU, DIoU, CIoU, EIoU), it shows con-

sistent improvements, with the most substantial gain of 1.7% in mAP50 over GIoU. 

The experimental result validate the effectiveness of introducing Inner-MPDIoU. 

Table 7. Result of the Ablation Experiments on Loss 

Loss 𝓛𝑮𝑰𝒐𝑼 𝓛𝑫𝑰𝒐𝑼 𝓛𝑪𝑰𝒐𝑼 𝓛𝑬𝑰𝒐𝑼 𝓛𝑰𝒏𝒏𝒆𝒓−𝑴𝑷𝑫𝑰𝒐𝑼 

mAP50 76.9 77.3 77.1 77.3 78.6 

mAPval 60.4 60.5 60.5 60.6 61.2 

5 CONCLUSION 

We present Omni-DETR, an end-to-end object detection framework that achieves su-

perior performance through three key innovations: (1) the FasterIRANet backbone for 



efficient feature extraction, reducing both parameter count and computational complex-

ity; (2) the Dimensional Feature Integrator (DFI) module that overcomes RT-DETR's 

small-object detection limitations via advanced cross-scale fusion; and (3) a novel 

bounding box regression loss that improves localization accuracy. 

Ablation experiments validated the effectiveness of each component in Omni-

DETR, demonstrating that our model can achieve higher detection precision and speed 

while reducing computational costs. Compared to existing state-of-the-art object detec-

tion models, Omni-DETR has shown superior performance. Overall, Omni-DETR has 

proven its effectiveness and potential in practical applications through our experiments. 

We hope that Omni-DETR will be implemented in the field of real-time object detec-

tion. 
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