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Abstract. High-voltage transmission lines are continuously exposed to outdoor 

environments, where harsh natural conditions can lead to structural damage. Ad-

dressing the challenge of defect detection under complex weather conditions, we 

propose the Detection Algorithm in Complex Weather (DAICW). Firstly, we in-

troduce the Detail-Enhanced Convolution (DEConv), designed to extract richer 

features without increasing the parameters. Subsequently, a Focus-Detect is in-

corporated to emphasize defect features within images while suppressing back-

ground interference. Finally, using the LInner-IoU loss function can effectively 

accelerate convergence and improve the model's ability to detect small objects. 

Comparison experiments with other mainstream models show that the proposed 

model achieves 78.2% precision and 67.1% recall, demonstrating strong adapta-

bility in complex weather and multi-class defect detection tasks. 

Keywords: High-voltage Transmission Line, Complex Weather, Defect Detec-

tion, Feature Enhancement. 

1 Introduction 

High-voltage transmission lines are critical components of the power system, serving 

as essential conduits for delivering electrical energy from generation stations to end-

users [1]. Their secure and stable operation is vital for national economic development 

and the normal functioning of society [2]. However, these lines often traverse regions 

with complex terrains and varying environmental conditions, making them susceptible 

to natural disasters, equipment aging, and external damages. Consequently, defects 

such as cable strand disconnect, insulator damage, and cable foreign object may occur, 

as illustrated in Fig. 1. If not promptly identified and addressed, these defects can lead 

to line faults or even widespread power outages, resulting in significant economic 

losses and social disruptions. Therefore, efficient and accurate detection of high-volt-

age transmission line defects is imperative to ensure the stable operation of the power 

system. 

In recent years, the rapid advancement of deep learning techniques has led to ground-

breaking progress in image recognition and object detection across various domains. 

Deep learning models, particularly convolutional neural networks (CNNs), excel at ex- 



Fig. 1. (a)insulator damage, (b)grading ring tilt, (c)grading ring abscision, (d)cable strand dis-

connect, (e)cable loose strand, (f)cable foreign object. 

tracting multi-level features from images, achieving high detection accuracy even in 

complex scenarios [3]. The integration of unmanned aerial vehicles (UAVs) with deep 

learning algorithms for high-voltage transmission line defect detection not only effec-

tively addresses the issues of high labor costs and safety risks associated with traditional 

manual inspections but also significantly improves inspection efficiency [4]. 

High-voltage transmission line defect detection faces numerous challenges, includ-

ing the presence of small-scale defects and complex weather conditions, which often 

result in suboptimal model performance. Additionally, existing deep learning models 

have high FLOPs and demand substantial hardware resources, making direct deploy-

ment on resource-constrained edge devices difficult [5]. These issues hinder the wide-

spread application of deep learning techniques in practical inspection tasks. Therefore, 

developing a lightweight, high-precision deep learning model capable of adapting to 

complex weather conditions has become a focal point in the field of high-voltage trans-

mission line defect detection. To address these challenges, we have designed the De-

tection Algorithm in Complex Weather (DAICW). The main contributions of this paper 

are as follows: 

(1) The designed Detail-Enhanced Convolution (DEConv) can extract richer features 

while maintaining the original parameters. 

(2) The designed Focus-Detect head effectively facilitates multi-scale defect detec-

tion, highlighting defect features in the image and reducing interference from back-

ground regions. 

(3) Through a comparative analysis of different loss functions, the advantages of the 

LInner-IoU loss function in bounding box regression were validated, providing data 

support for further enhancing the of performance of model. 

(4) A dataset for high-voltage transmission line defect detection in complex scenarios 

was constructed, with defect categories including: insulator damage, grading ring tilt, 

grading ring abscision, cable strand disconnect, cable loose strand, cable foreign object. 

2 Related Work 

In recent years, the YOLO series of algorithms have been widely applied in the field of 

high-voltage transmission line defect detection due to their high precision and rapid 

detection capabilities [6,7,8]. Images of transmission lines captured under varying 

weather conditions exhibit significant differences in brightness, color, and texture fea-

tures, leading to reduced contrast between defects and the background, thereby increas-

ing the difficulty of detection. To address the challenges posed by complex background 
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interference and small target defects, researchers have proposed various improved al-

gorithms. 

2.1 Defect Detection of High-voltage Transmission Lines 

To address the challenge of complex background interference, numerous researchers 

have integrated attention mechanisms into deep learning networks to enhance the mod-

el's focus on defect features. Wang et al. [9] proposed the multiscale channel infor-

mation (MCI)-global-local attention (GLA), a plug-in designed for YOLO series mod-

els. GLA captures both global context information and local spatial details, thereby 

enhancing the network's learning capabilities. Ding et al. [10] proposed GC-YOLO, 

which incorporates coordinate attention at the end of the YOLOv5 backbone network. 

This improvement strengthens the network's capability to localize and identify targets 

within complex scenes, effectively reducing the degradation of detection accuracy in-

duced by complex backgrounds. Lin et al. [11] proposed YOLO-DA, a detection algo-

rithm tailored for remote sensing object detection. By integrating the Convolutional 

Block Attention Module (CBAM) at the terminal stage of the YOLO-DA detector, the 

model effectively addresses challenges posed by complex scenes in optical remote 

sensing images. In addition, Ji et al. [12] proposed FusionNet based on an algorithm for 

cable foreign object detection in bad weather, where coordinate attention in the network 

significantly improves the detection precision. While these methods mitigate the nega-

tive effects of complex image backgrounds to some extent, they have significant limi-

tations. Effectively extracting and learning features from the feature map is the key to 

solving the multi-scale problem. The correlation and fusion of contextual information 

between target and background as well as global and local information are crucial for 

weakening background features and enhancing defective region features. 

2.2 Small Object Detection 

In small object detection tasks, targets typically occupy minimal pixel areas and often 

appear in dense distributions. Specifically, in high-voltage transmission line defect de-

tection, certain defects such as wire strand breakage and loosened strands manifest as 

small-scale anomalies. To address these challenges, various methodologies have been 

proposed to enhance the model's capability in identifying small targets. These ap-

proaches encompass super-resolution techniques, loss function optimization, feature 

fusion, and multi-scale feature learning. 

To overcome these issues, Jain et al. [13] proposed a generalized model for identify-

ing or classifying different small-size component types on the transmission lines. Mao 

et al. [14] employed dilated convolutions to expand the receptive field, effectively en-

hancing the detection of small objects, achieving an Average Precision (AP) of 92% on 

a transmission line fasteners dataset.  Wang et al. [15] introduced an additional detec-

tion head specifically designed for small objects into the head network, significantly 

improving detection accuracy. Peng et al. [16] developed a Multi-scale Path Aggrega-

tion Network (M-PANet) that seamlessly integrates multi-scale information and incor-

porates four detection heads, effectively reducing the recall of small objects. Similarly, 

Zhang et al. [17] designed a specialized detection head for small objects to enhance the 

sensitivity of object recognition. 



3 Methods 

Integrating DEConv into the backbone network facilitates the extraction of richer fea-

tures without increasing the number of parameters, thereby avoiding additional compu-

tational cost and memory burden during the inference phase， as illustrated in Fig. 2. 

Additionally, the incorporation of the Focus-Detect effectively promotes multi-scale 

defect detection by emphasizing defect features within images. 
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Fig. 2. Overall structure of DAICW. 

3.1 Detail-Enhanced Convolution 

In the field of image denoising, traditional methods typically use vanilla convolution 

layers for feature extraction and learning. The convolution kernels in vanilla convolu-

tions (VC) search the vast solution space without any constrains (even initialize ran-

domly), which limits their expressiveness and modeling capacity. From the perspective 

of image denoising, the presence of fog, snowflakes, and sandstorms causes changes in 

brightness and color, which are low-frequency variations. Additionally, natural scenes 

in adverse weather conditions may lose high-frequency details. Low-frequency infor-

mation is crucial for correcting lighting and color distribution, while high-frequency 

information is essential for recovering missing fine textures. However, vanilla convo-

lution tends to prioritize low-frequency information while neglecting high-frequency 

components. Previously, some researchers incorporated edge prior knowledge in de-

noising models to help recover clearer contours. Inspired by this, we designed DEConv, 

as shown in Fig. 3, by combining differential convolution with vanilla convolution in 

parallel to form DEConv. 
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Fig. 3. Detail-Enhanced Convolution. It consists of five convolution layers deployed in parallel: 

vanilla convolution (VC), central difference convolution (CDC), angular difference convolution 

(ADC), horizontal difference convolution (HDC), and vertical difference convolution (VDC). 

To the best of our knowledge, this is the first time that we introduce Difference Con-

volution (DC) to address issues such as fog, snow, and sandstorms in defect detection 

scenarios. In our implementation, we use four DCs and one vanilla convolution, de-

ployed in parallel for feature extraction. In DCs, a pixel-pair differential computation 

strategy is designed to encode prior information into the CNN. Taking HDC as an ex-

ample, the horizontal gradient is calculated by computing the difference between the 

selected pixel pairs, as shown in Fig. 4. After training, the learned convolution kernel 

weights are rearranged and directly convolved with the input features, with the con-

straint that the sum of the horizontal weights equals zero. VDC follows a similar deri-

vation, replacing the horizontal gradient with the corresponding vertical gradient. Both 

HDC and VDC explicitly encode gradient priors into the convolution layers, enhancing 

representation and generalization capabilities by learning useful gradient information. 
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Fig. 4. The derivation of horizontal difference convolution (HDC). 



In our design, vanilla convolution is used to obtain intensity-level information, while 

DC is employed to enhance gradient-level information. By combining the learned fea-

tures, we obtain the output of DEConv. However, deploying five parallel convolution 

layers for feature extraction leads to an increase in both parameters and inference time. 

We attempt to leverage the additivity property of convolution layers to simplify the 

parallel convolutions into a single standard convolution, and the reparameterization 

technique perfectly satisfies this requirement. If several 2D kernels of the same size 

produce outputs for the same input with the same stride and padding, we can add their 

outputs together to obtain the final result. In this case, we can sum the kernels at the 

corresponding positions to obtain an equivalent kernel that produces the same final out-

put. Surprisingly, the DEConv we designed fully conforms to this situation. Given the 

input feature 𝐹𝑖𝑛, the reparameterization technique is used to obtain 𝐹𝑜𝑢𝑡. The formula 

for the reparameterization technique is as follows: 

𝐹𝑜𝑢𝑡 = 𝐷𝐸𝐶𝑜𝑛𝑣(𝐹𝑖𝑛) = ∑ 𝐹𝑖𝑛

5

𝑖=1

∗ 𝐾𝑖 = 𝐹𝑖𝑛 ∗ (∑ 𝐾𝑖

5

𝑖=1

) = 𝐹𝑖𝑛 ∗ 𝐾𝑐𝑣𝑡 (1) 

where 𝐷𝐸𝐶𝑜𝑛𝑣(·) denotes the DEConv operation, 𝐾𝑖=1:5 represents the kernel of VC, 

CDC, ADC, HDC, and VDC, respectively, * denotes the convolution operation, and 

𝐾𝑐𝑣𝑡  denotes the converted convolution kernel. 

3.2 Focus-Detect 

This paper presents an in-depth study of the detection head. To address issues such as 

occlusion and significant variations in defect scale in high-voltage transmission line 

inspection, a Focus-Detect is designed, as shown in Fig. 5. The design aims to minimize 

parameter and computational requirements while reducing accuracy loss as much as 

possible. The Focus-Detect effectively facilitates multi-scale defect detection, high-

lighting defect features in the image. 
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Fig. 5. Focus-Detect 

Specifically, the design of the object detection head network structure optimizes the 

feature extraction and model training processes through a series of convolutions com-

bined with activation functions, along with batch normalization. The first part of the 

category detection head consists of depthwise separable convolutions with residual con-

nections. Depthwise separable convolution operates in a per-depth manner, meaning it 

performs convolution separately for each channel, allowing it to learn the importance 

of different channels and reduce the number of parameters. The most critical compo-

nent of the Focus-Detect is the Focus module, which is simultaneously applied in both 
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the IoU loss and category loss functions. This strengthens the information representa-

tion capability of the defect region and enhances the model's detection performance in 

complex backgrounds. Within the Focus module, the basic unit Conv2d-GELU-BN is 

used twice with residual connections to enhance high-level features. The network then 

utilizes global average pooling for feature compression. Finally, two fully connected 

layers are applied. 

3.3 Loss Function 

 

Fig. 6. IoUInner 

Loss functions such as LGIoU [18], LEIoU [19], and LCIoU [20] can effectively ac-

celerate convergence and improve detection performance. However, they do not con-

sider the rationality of the IoU loss itself, which largely determines the quality of the 

detection results. To address this limitation, this chapter proposes the use of the LInner-

EIoU [21] loss function for bounding box regression, which offers higher efficiency 

and accuracy in bounding box regression. In  𝐼𝑜𝑈𝐼𝑛𝑛𝑒𝑟 , a scaling factor, denoted as the 

ratio, is introduced to control the proportion size of the auxiliary bounding boxes. As 

shown in Fig. 6, by using auxiliary bounding boxes of different scales on different da-

tasets, the limitations of weak generalization in existing methods can be overcome. The 

ground truth box and predicted box are denoted as 𝐵 and 𝐵𝑔𝑡 , respectively, with the 

center points of the ground truth box and inner ground truth box represented as 

(𝑥𝑐
𝑔𝑡

, 𝑦𝑐
𝑔𝑡

) , and the center points of the predicted box and inner predicted box as 

(𝑥𝑐 , 𝑦𝑐). The width and height of the ground truth box are denoted as 𝑤𝑔𝑡  and ℎ𝑔𝑡, while 

the width and height of the predicted box are denoted as 𝑤 and ℎ. The variable "ratio" 

corresponds to the scaling factor, with values typically in the range of [0.5, 1.5]. The 

calculation formula for 𝐼𝑜𝑈𝐼𝑛𝑛𝑒𝑟  is as follows: 

𝑏𝑙
𝑔𝑡

= 𝑥𝑐
𝑔𝑡

−
𝑤𝑔𝑡 × 𝑟𝑎𝑡𝑖𝑜

2
, 𝑏𝑟

𝑔𝑡
= 𝑥𝑐

𝑔𝑡
+

𝑤𝑔𝑡 × 𝑟𝑎𝑡𝑖𝑜

2
(2) 
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𝑖𝑛𝑡𝑒𝑟 = (min(𝑏𝑟
𝑔𝑡

, 𝑏𝑟) − max(𝑏𝑙
𝑔𝑡

, 𝑏𝑙)) × (min(𝑏𝑏
𝑔𝑡

, 𝑏𝑏) − max(𝑏𝑡
𝑔𝑡

, 𝑏𝑡)) (6) 

𝑢𝑛𝑖𝑜𝑛 = (𝑤𝑔𝑡 × ℎ𝑔𝑡) × (𝑟𝑎𝑡𝑖𝑜)2 + (𝑤 × ℎ) × (𝑟𝑎𝑡𝑖𝑜)2 − 𝑖𝑛𝑡𝑒𝑟 (7) 

𝐼𝑜𝑈𝐼𝑛𝑛𝑒𝑟 =
𝑖𝑛𝑡𝑒𝑟

𝑢𝑛𝑖𝑜𝑛
(8) 

Compared to IoU loss, when the ratio is less than 1 and the auxiliary bounding box 

size is smaller than the actual bounding box, the effective range of regression is smaller 

than that of IoU loss. However, the gradient magnitude obtained from this regression is 

greater than that of the IoU loss, which can accelerate the convergence of high IoU 

samples. Conversely, when the ratio is greater than 1, the larger auxiliary bounding box 

size increases the effective range of regression, enhancing the regression performance 

for low IoU samples. The application of the Inner-IoU loss to existing IoU-based 

bounding box regression loss functions results in the LInner-EIoU loss, which is ex-

pressed as follows: 

𝐿𝐼𝑛𝑛𝑒𝑟­𝐸𝐼𝑜𝑈 = 𝐿𝐸𝐼𝑜𝑈 + 𝐼𝑜𝑈 − 𝐼𝑜𝑈𝐼𝑛𝑛𝑒𝑟 (9) 

4 Experimental Results 

4.1 Datasets 

The publicly available Chinese Power Line Insulator Dataset (CPLID) [22] was re-

leased in 2018, containing 600 images of normal insulators and 248 images of defective 

insulators. The normal images are real photographs captured by drones from various 

angles, while the defective images are synthetic, created by pasting cropped images of 

defective insulators onto background images. The dataset has a limited number of im-

ages and a single defect category, focusing only on insulators, which makes it insuffi-

cient to meet the requirements for intelligent power line inspection. 

    

    
(a) original (b) foggy (c) snowy (d) sandstorm 

Fig. 7. Images of transmission lines in complex weather. 
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To address these limitations, this study constructs a high-voltage transmission line 

defect detection dataset with diverse defect categories, based on images provided by a 

national power grid project. A large number of images related to high-voltage trans-

mission lines were captured in real-world scenarios, featuring defects such as insulator 

damage, grading ring tilt, grading ring detachment, cable strand disconnect, cable loose 

strands, and cable foreign objects, as shown in Fig. 1, totaling 4,800 images. To simu-

late complex weather conditions in the real world, data augmentation was applied to 

the images in the self-constructed dataset. Specifically, parameters were designed to 

simulate the effects of fog, snow, and sandstorm conditions, as illustrated in Fig. 7. The 

augmented dataset contains a total of 19,200 images. Ultimately, we created a reliable 

and diverse high-voltage transmission line defect detection dataset, which not only in-

cludes multiple defect types but also offers a rich variety of weather scenarios, provid-

ing a solid data foundation for the training of subsequent deep learning models. 

4.2 Implementation Details 

The experiments were conducted on an Ubuntu 20.04 operating system, with the spe-

cific experimental platform and configuration detailed in Table 1. During the network 

training phase, the batch size was set to 32, and the SGD optimizer was used to update 

and iterate the network parameters. The initial learning rate was set to 0.01, with a 

momentum of 0.9, and the number of epochs was set to 300. No pre-trained weights 

were used during training. 

Table 1. Experimental platform and setup. 

Configuration environment Version 

Operating system Ubuntu 20.04 

Deep learning framework PyTorch 2.2.2 

Computational framework CUDA 11.8 

Programming language Python 3.10.14 

CPU Intel(R) Xeon(R) Gold 5320 CPU @ 2.20GHz 

GPU Tesla T4 

4.3 Evaluation Metrics 

To objectively evaluate the effectiveness of the algorithm, this paper uses Precision (P), 

Recall (R), Average Precision (AP), and mean Average Precision (mAP) as evaluation 

metrics. The formulas for calculating P and R are as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(10) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11) 

Here, TP represents True Positive, FP represents False Positive, and FN represents 

False Negative. 

The Average Precision (AP) combines both Precision and Recall, and it measures 

the model's performance by calculating the area under the Precision-Recall curve. The 

formula for AP is as follows: 



𝐴𝑃 = ∫ 𝑃(𝑟)𝑑𝑟
1

0

(12) 

The mean Average Precision (mAP) is the mean of the AP values across all classes, 

and it is used for the overall performance evaluation in multi-class object detection 

tasks. The formula for mAP is as follows: 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃(𝑖)

𝑛

𝑖=1

(13) 

4.4 Ablation Experiments 

To validate the impact of different ratio values on the model's detection performance, 

experimental results on the test set are shown in Table 2. As can be seen from the table, 

when the ratio is set to 0.7, the LInner-EIoU loss function performs the best in terms of 

Precision, Recall, and Average Precision. As the ratio value increases, all metrics show 

a decline. 

Table 2. The performance comparison is conducted for ratio values within the range (0.5, 1.5). 

Loss function ratio P(%) R(%) mAP50(%) 

LInner-EIoU 0.5 76.1 65.0 67.6 

LInner-EIoU 0.7 78.2 67.8 69.2 

LInner-EIoU 0.9 75.4 65.0 68.1 

LInner-EIoU 1.1 77.2 66.1 68.3 

LInner-EIoU 1.3 74.8 65.7 67.4 

LInner-EIoU 1.5 72.2 65.3 66.3 

To validate the impact of the proposed DEConv, Focus-Detect, and LInner-EIoU on 

the model's performance, YOLOv11 was used as the baseline. Ablation experiments 

were conducted by adding these modules to the network, and the results are presented 

in Table 3. As shown in the table, the performance of the YOLOv11 model gradually 

improved with the addition of different modules. After adding the DEConv module to 

the YOLOv11 model, the precision increased by 1.5%, recall slightly improved, and 

mAP50 showed a notable improvement, indicating that DEConv enhances feature ex-

traction, particularly in balancing precision and recall. When the Focus-Detect was 

added, precision further increased by 2.8%, and both recall and mAP50 showed signif-

icant improvements, demonstrating that the Focus-Detect effectively enhanced the 

model's detection capability, especially in complex backgrounds. After incorporating  

Table 3. Ablation experiments. 

YOLOv11 DEConv Focus-Detect LInner-Iou P(%) R(%) mAP50(%) 

    72.1 65.0 66.8 
    73.6 65.3 67.8 
    76.4 67.1 68.7 
    78.2 67.8 69.2 

the LInner-EIoU module, all three metrics—precision, recall, and mAP50—showed 

significant improvement, with precision increasing by 1.8%. This indicates that the in-

clusion of LInner-EIoU significantly improved the model's performance in bounding 
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box regression, particularly in handling different types of defects, thereby enhancing 

the model's robustness in complex scenarios. 

4.5 Comparative Experiments 

This experiment compares the performance of five backbone networks in the high-volt-

age transmission line defect detection task. The results are shown in Table 4. Fasternet 

performs the best in terms of precision and mAP50, but it has a high number of param-

eters and computational cost. Starnet, while having the lowest parameter count and 

computational cost, shows significantly lower precision, recall, and mAP50 compared 

to other methods. The DAICW model, with a relatively low number of parameters and 

computational cost, demonstrates excellent performance in precision, recall, and 

mAP50, particularly surpassing Fasternet in recall. This indicates a good balance be-

tween resource efficiency and detection performance, making it an efficient and prac-

tical backbone network choice. 

Table 4. Performance comparison of different backbone networks. 

backbone Params/M FLOPs/G P(%) R(%) mAP50(%) 

EfficientViT [23] 3.7 8.0 77.9 66.3 68.5 

Fasternet [24] 3.9 9.2 79.1 67.0 69.4 

HGNetV2 [25] 2.1 5.9 76.0 63.5 65.3 

Starnet [26] 1.9 5.0 68.6 59.1 61.5 

Ours 2.5 5.8 78.2 67.8 69.2 

Based on the comparative experimental results of different loss functions shown in 

Table 5, it can be observed that the loss function used in this study significantly im-

proves precision, recall, and mAP. Specifically, the precision of the proposed loss func-

tion is 78.2%, recall is 67.8%, and mAP is 69.2%. Compared to other common loss 

functions, there are notable improvements across all metrics. For instance, compared to 

the EIoU loss function, precision increased by 2.6%, and recall improved by 1.9%. 

These results demonstrate that the loss function used in this study performs particularly 

well in enhancing both precision and recall, especially in the model's ability to identify 

defect targets and in overall evaluation metrics, significantly outperforming the tradi-

tional EIoU loss function. 

Table 5. Comparative experiments with different loss functions. 

Loss function P(%) R(%) mAP50(%) F1(%) 

IoU 73.2 60.3 61.5 66.1 

GIoU [18] 75.8 65.4 68.2 70.2 

CIoU [20] 74.3 65.3 67.8 69.5 

EIoU [19] 75.6 65.9 68.1 70.4 

SIoU [27] 74.6 64.3 65.8 69.0 

Linner-IoU 78.2 67.8 69.2 72.6 

According to the performance comparison of different models shown in Table 6, the 

DAICW model demonstrates excellent performance with a parameter count of 2.5M. 

Compared to YOLOv5n, its precision increased by 1.5%, reaching 78.2%, while Recall 

improved by 5%, reaching 67.8%. This indicates that the DAICW model significantly 

enhances detection performance while maintaining a relatively low number of 



parameters, especially in terms of recall, demonstrating stronger detection capability. 

Compared to other models, the DAICW model outperforms most existing models in 

both precision and recall. For instance, compared to YOLOv7-tiny, both precision and 

recall show significant improvement, indicating that the model designed in this study 

is better at capturing target information, especially when handling smaller targets or 

complex scenes. While the DAICW model’s precision is slightly lower than YOLOv8n, 

it has smaller computational cost and parameter count, indicating a good balance be-

tween computational efficiency and performance. Overall, the DAICW model excels 

in multiple aspects compared to other models, particularly in precision and recall, 

providing strong support for detection tasks in complex scenarios such as high-voltage 

transmission lines. 

Table 6. Comparison of the performance of different models. 

Model Params/M FLOPs/G P(%) R(%) mAP50(%) 

Faster R-CNN [28] 27 4.3 72.1 62.3 63.5 

Mask R-CNN [29] 31 6.6 76.3 65.2 67.2 

RtinaNet [30] 33 117 72.1 61.4 63.5 

YOLOv5n 2.5 7.1 76.7 63.8 66.9 

YOLOv7-tiny [8] 6.2 4.5 69.6 60.5 63.4 

YOLOv8n [7] 3.0 8.1 78.6 68.1 69.3 

YOLOv10n [31] 2.2 6.5 79.2 66.1 68.8 

DETR [32] 41.5 122 73.1 63.5 65.7 

DAICW 2.5 5.8 78.2 67.8 69.2 

5 Conclusion 

For detection tasks in complex weather scenarios, we have designed the DAICW. Ex-

perimental results demonstrate that this method effectively enhances the robustness and 

generalization ability of high-voltage transmission line defect detection models under 

complex weather conditions. By introducing Detail-Enhanced Convolution, Focus-De-

tect, and LInner-IoU loss function, the model's detection performance has been pro-

gressively improved, with significant enhancements in precision, recall, and mAP. In 

comparative experiments with other mainstream models, the proposed model has 

shown superior performance across multiple metrics, including detection precision and 

recall. 
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