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Abstract. Printed circuit board (PCB) defect detection is crucial for ensuring 

PCB quality. However, small defect sizes on PCBs and the substantial parameter 

and computational requirements of deep learning models pose challenges in de-

tection accuracy and deployment on resource-constrained devices. To address 

these issues, we introduce an optimized PCB defect detection method based on 

the RT-DETR model. Firstly, we propose the ContextAdown-D-LKAEfficient-

FormerV2 lightweight network to replace the ResNet18 backbone, reducing pa-

rameters and computations while enhancing small defect feature extraction. Sec-

ondly, we present the Bi-Slim-Neck lightweight structure to replace the CCFM 

component in the original model, achieving lightweight design and improved fea-

ture fusion capabilities to leverage effective features fully. Lastly, we propose the 

InnerShapeIoU loss function to replace the GIoU loss function, accounting for 

the influence of PCB defect bounding box shapes and scales on regression, and 

generating auxiliary bounding boxes suitable for PCB defect detection tasks and 

detectors. This enhances model generalization and detection accuracy. Experi-

mental results show that the improved model achieves detection accuracies of 

97% (mAP50) and 55% (mAP50:95), with a 23.8% reduction in parameters and a 

44.9% decrease in computations compared to the original model. This indicates 

that the improved method significantly boosts parameter efficiency and reduces 

computational complexity while maintaining high detection accuracy. 

Keywords: RT-DETR, PCB defect detection, Small defect. 

1 Introduction 

As the core component of electronic devices, printed circuit boards (PCBs) satisfy 

diverse application requirements through intricate circuit designs and component 

layouts. PCB defect detection, a crucial means of ensuring quality, has undergone 

continuous technological innovations, effectively identifying defects such as shorts, 

opens, and missing holes, ultimately contributing to a substantial enhancement in pro-

duction quality and ensuring the reliable and consistent operation of electronic equip-

ment in diverse operational environments. Initially, PCB defect detection relied on 

manual inspection. However, as PCB complexity increased, manual methods faced 

 
 



 

issues such as operator fatigue, slow speed, and reduced accuracy, highlighting their 

increasing limitations. Consequently, detection techniques based on traditional image 

processing gained popularity, encompassing methods such as template matching, image 

subtraction (Pal [1]), K-means clustering (Melnyk [2]), and Gaussian Mixture Models 

(Cai [3]). Nevertheless, these methods are sensitive to translation and illumination 

changes and are primarily suited for detecting large-scale defects, lacking precision in 

identifying small-target PCB defects. 

With the development of deep learning technology, its advantages of high accuracy 

and efficiency have gradually been applied in the field of PCB defect detection. Ding 

[4] proposed TDD-net based on Faster R-CNN, designing anchor boxes through K-

means clustering, enhancing semantic interaction using FPN, and optimizing prediction 

results with OHEM. Hu [5] improved Faster R-CNN by using ResNet50 and FPN for 

feature extraction and fusion, introducing Shuffle V2 residual units and a generative 

adversarial region proposal network to enhance detection accuracy and efficiency. 

Wang et al. [6] designed the YOLO-Biformer model for challenges such as complex 

backgrounds, small defects, and irregular shapes in PCB defect images. Wu [7] 

proposed an improved YOLOv7-tiny network based on YOLOv7, employing the 

CARAFE upsampling method, global attention mechanism, and Focal-EIoU loss 

function to address training sample imbalance, improving target localization and 

regression accuracy, and achieving high-accuracy real-time detection. However, these 

deep learning models have limited feature extraction capabilities, unable to fully utilize 

defect features for object detection, and there is still considerable room for 

improvement in detection accuracy for small target defects.  

The Transformer model, due to its global attention mechanism, effectively considers 

comprehensive global information and enhances the feature weights of small targets, 

thereby gradually gaining widespread application in small object detection tasks. Chen 

[8] introduced a Transformer-YOLO detection network, which utilizes Swin Trans-

former as the feature extraction network while incorporating an attention mechanism 

module. This approach successfully improved detection accuracy and featured a 

smaller model size compared to other mainstream object detection models. Li [9] pro-

posed PCB-DETR, which successfully enhanced the detection accuracy of small target 

defects on printed circuit boards (PCBs) by improving Deformable-DETR. However, 

the aforementioned studies suffer from slow inference speeds due to the large amount 

of matrix calculations required by the global attention mechanism, making real-time 

detection unachievable, and the defect detection accuracy also needs further 

improvement. Therefore, this study proposes to improve the RT-DETR [10] with better 

real-time performance to achieve rapid and accurate PCB defect detection. 

2 Proposed Method 

2.1 Improved RT-DETR Model 

Compared to other DETR-like models, RT-DETR stands out by significantly reducing 

computational costs and enhancing detection accuracy through the innovative integra-

tion of an efficient hybrid encoder and an IoU-aware mechanism. This model not only 
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achieves remarkable performance in terms of detection accuracy but also boasts a no-

table increase in inference speed. Despite achieving remarkable performance in 

detection accuracy and inference speed,  the RT-DETR model encounters deployment 

challenges when utilized in PCB defect detection equipment due to its substantial pa-

rameter count and computational demands. Furthermore, its effectiveness in detecting 

small targets requires additional refinement. Based on the RT-DETR architecture, this 

study proposes an optimized network structure. Specifically, improvements are made 

to the original model by introducing ContextAdown-D-LKAEfficientFormerV2, Bi-

Slim-Neck, and the InnerShapeIoU loss function. These enhancements collectively aim 

to lighten the model's load and leverage effective feature information to boost the de-

tection capabilities for small PCB defects. The proposed model structure is illustrated 

in Fig. 1. 

 

Fig. 1. Diagram of the improved RT-DETR network model structure for PCB defect detection. 

2.2 ContextAdown-D-LKAEfficientFormerV2 

The improvement work is based on the RT-DETR model with ResNet18 as the back-

bone network. Although ResNet18 demonstrates strong feature extraction capabilities, 

its high parameter count and computational complexity limit its application in real-time 

detection tasks, and there are limitations in small target detection. Therefore, this study 

introduces the lightweight EfficientFormerV2 [11] network as the new backbone and 

proposes the ContextAdown downsampling module to replace some convolutional 

layers in EfficientFormerV2. Furthermore, the D-LKA (Deformable Large Kernel At-

tention) [12] is added to enhance the model's ability to extract multi-scale and complex 

shape features. 

EfficientFormerV2 is a vision Transformer network specifically optimized for de-

ployment on mobile devices. It achieves this by incorporating depthwise separable con-

volutions within the Feed-Forward Network (FFN) module. The network not only 

      

      

         

    

     

     

         

     

      

         

     

      

      

                

        

      

      

        

      

        

      

      

        

      

      

        

      

      

        

        

            

  
 
  
 
 
  
  
 
 
  
  
 
  
 
   

 

 
 
 
 
 
 
   

 
 
 
 



 

enhances local feature extraction capabilities but also simplifies the model structure. 

Additionally, the network incorporates refined multi-head self-attention mechanism 

modules at multiple stages. These enhancements contribute significantly to enhancing 

the network's ability to detect small targets with higher accuracy. 

Given the small size of PCB defect targets and the limited effective feature infor-

mation available for subsequent detection, it is crucial to preserve effective small-target 

feature information while integrating surrounding contextual and global information 

during downsampling. The Adown module, a classical downsampling module, pro-

cesses input features through two-dimensional average pooling, divides them equally 

along the channel dimension for local and global information extraction, and finally 

concatenates these parts via the Concat operation to obtain the final output. However, 

despite effectively fusing local and global information, the Adown module neglects the 

importance of surrounding contextual information, which is vital for supplementing 

detection information of small targets due to their minimal size and scarce feature in-

formation. To address this, this study introduces a surrounding contextual feature ex-

traction branch into the Adown module, resulting in a new downsampling module 

named ContextAdown. This module simultaneously extracts additional information 

from the surrounding contextual feature extraction branch to aid in understanding com-

plex scenes. Subsequently, local feature information and surrounding contextual feature 

information are concatenated and further processed using Batch Normalization (BN) 

and Parametric Rectified Linear Unit (PReLU) to enhance feature representation. Fi-

nally, a 1×1 convolution is applied for cross-channel information interaction, facilitat-

ing the fusion of local and surrounding contextual feature information. This improve-

ment significantly boosts the representation capability of small targets with minimal 

computational cost, greatly enhancing the efficiency and accuracy of PCB defect de-

tection and recognition. The structure diagrams for Adown and ContextAdown are 

comprehensively illustrated in Fig. 2. 

  

(a)    (b) 

Fig. 2. Diagram of the (a) Adown and (b) ContextAdown module structures. 
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Given the diverse scales and complex shapes of PCB defects, this study introduces 

the D-LKA mechanism to enhance feature extraction and reduce irrelevant information. 

D-LKA integrates the broad receptive field of large convolutional kernels with the flex-

ibility of deformable kernel. The large convolutional kernels in D-LKA are imple-

mented using depthwise separable and dilated convolutions, enabling the network to 

learn features within a large receptive field while maintaining low computational and 

parametric costs, achieving a performance akin to global self attention. The deformable 

kernels are used to learn PCB defect features of various shapes and sizes by adjusting 

convolution sampling positions adaptively through an additional offset calculation net-

work. The final improved backbone network structure is depicted in Fig. 3. 

 
(a) 

 
(b)                                                  (c) 

Fig. 3. (a) The architectural diagram of the improved EfficientFormerV2. (b) The architectural 

diagram of the Subsample. (c) The architectural diagram of the MHSA. 



 

2.3 Bi-Slim-Neck 

The CCFM method fuses S3, S4, and S5 feature maps extracted by the backbone net-

work through bottom-up and top-down paths, utilizing upsampling/downsampling 

modules and fusion modules to achieve multi-scale feature interaction and fusion. How-

ever, the high parameter count and computational complexity of CCFM limit its appli-

cation in model deployment. 

This study introduces a lightweight neck network structure, the Slim-Neck network, 

as an alternative to CCFM. The Slim-Neck [13] network introduces the GSConv 

(Group-wise Spatial Convolution) structure, which, compared to traditional 

convolutions, reduces computational costs by half while enhancing implicit inter-

channel connections, ensuring sufficient detection accuracy. Based on this, GS Bottle-

neck and VoV-GSCSP (Variable-size Group Convolution with Spatial Pyramid) are 

proposed. The GS Bottleneck module enhances feature learning ability by extracting 

features through multiple GSConvs and enriches feature information by adding the 

extracted features to the results of regular convolutions. The VoV-GSCSP module, 

combined with convolution and GS Bottleneck, leverages different path schemes to 

enhance information exchange among multi-scale features, further improving feature 

representation capability. These modules enable the Slim-Neck network to maintain 

powerful feature processing capabilities while reducing computational complexity, 

thereby effectively fusing multi-scale feature information and providing strong support 

for subsequent detection tasks. 

In neck networks, feature maps typically undergo multiple convolution operations 

for feature extraction and fusion to obtain the final output features. However, in tasks 

such as PCB defect detection, where targets are often small and feature-poor, the 

downsampling process can lead to the loss of some small target features, thereby 

affecting the final detection results. To address this issue, this study adds two new paths 

to the Slim-Neck network, forming the Bi-Slim-Neck network. Specifically, the input 

nodes of the S4 and S5 feature maps are connected to the corresponding Concat 

modules in the bottom-up path, allowing rich feature information from the original 

feature maps to be directly provided to subsequent paths. This supplements potentially 

lost small target information, enhances the network's feature fusion capability, and thus 

improves detection accuracy. The final structural diagram of Bi-Slim-Neck is illus-

trated in Fig. 4. 

2.4 InnerShapeIoU 

Due to the diverse shapes and scales of PCB defect bounding boxes, their shape and 

size can impact bounding box regression outcomes. Therefore, this study introduces the 

Shape-IoU [14] loss function, which adjusts the loss function according to the shape 

and size of the bounding box. This method incorporates a scale factor and weight coef-

ficients related to the bounding box shape to adjust the bounding box regression loss, 

enabling the loss function to focus on the shape and scale of the bounding box itself. 
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Fig. 4. Diagram of the Bi-Slim-Neck network model structure. 

Addressing the generalization weakness and slow convergence of existing IoU 

losses across various detection tasks, as well as the inability of original bounding box 

regression to adapt to PCB defect detection tasks and detectors, this study introduces 

an improvement to the Shape-IoU loss function by incorporating Inner-IoU [15] loss, 

forming an auxiliary bounding box-based bounding box regression loss. This loss 

function selects an appropriately scaled auxiliary bounding box through a ratio factor 

for loss calculation and accelerated convergence. For different detection tasks and 

detectors, an appropriate auxiliary bounding box scale can be generated by selecting 

different ratio values, typically ranging from 0.5 to 1.5. For high-IoU samples, setting 

ratio < 1 selects a smaller-scale auxiliary bounding box with a narrower regression ef-

fective range than the actual bounding box but a larger absolute regression gradient 

than the original IoU loss, enhancing convergence speed. For low-IoU samples, setting 

ratio > 1 selects a larger-scale auxiliary bounding box, expanding the regression 

effective range and facilitating the regression of low-IoU samples.  

All formulas for InnerShapeIoU are as follows: 
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where (xc, yc) and (x
gt 

c , y
gt 

c ) represent the center point coordinates of the anchor box 

and the ground truth box, respectively; h and w represent the height and width of the 

anchor box; hgt and wgt represent the height and width of the ground truth box; and ratio 
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denotes the scaling factor controlling the size of the auxiliary bounding box, typically 

ranging from 0.5 to 1.5. 

3 Introduction 

3.1 Dataset 

This study utilizes the PKU-Market-PCB [16] publicly released by the Intelligent 

Robotics Open Lab of Peking University as the experimental subject. The dataset 

comprises 693 high-quality PCB defect images and their corresponding label files, 

covering six defect categories: missing hole, mouse bite, open circuit, short, spur, and 

spurious copper, with a relatively balanced distribution among the defect types. 

However, due to the limited number of images and the homogeneous image 

environment in the original dataset, which may not fully reflect the complexity of actual 

production environments, the risk of overfitting during model training is increased, 

potentially affecting the model's performance in real-world detection tasks. Therefore, 

this study proposes to employ data augmentation strategies to expand the dataset. 

Specifically, based on the actual production environment, two of the five enhancement 

techniques—rotation, translation, brightness transformation, contrast transformation, 

and Gaussian noise addition—are randomly applied to each image twice, resulting in a 

new dataset named EX-PCB dataset, which contains 2079 PCB defect images. 

Subsequently, the newly generated images are annotated using the labelimg tool to 

generate corresponding label files, and the dataset is split into training, validation, and 

test sets in an 8:1:1 ratio for subsequent experiments. 

3.2 Implementation Details 

The experimental environment for this study is configured with Windows 11 as the 

operating system, Python 3.9.7 as the programming language, and PyTorch 1.12.1 as 

the deep learning framework. The hardware includes a 12th-generation Intel(R) 

Core(TM) i9-12900H processor with a base frequency of 2.50 GHz and an NVIDIA 

GeForce RTX 3090 GPU with CUDA version 11.7. In terms of experimental 

parameters, the number of training epochs is set to 400, patience to 50, batch size to 4, 

and image input size to 640×640. The AdamW optimizer is employed with an initial 

learning rate of 0.0001, a final learning rate of 1, and a momentum parameter of 0.9. 

3.3 Evaluation Metrics 

To comprehensively assess model performance, this study adopt mAP50, mAP50:95, 

number of parameters (Params), and computational complexity (GFLOPS) as evalua-

tion metrics. Params and GFLOPS are used as lightweight indicators, where Params 

represent the total number of parameters to be trained in the network model, correspond 

to spatial complexity and GFLOPS, indicating the capability to perform one billion 

floating-point operations per second, correspond to temporal complexity. In this paper, 



 

mAP50, and mAP50:95 are used to measure the detection capability of the model. Samples 

are classified as true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN). Precision (P) is defined as the proportion of true positive samples 

among all samples classified as positive, while recall (R) is the proportion of positive 

samples correctly classified as positive. AP represents the area enclosed by the PR 

curve for each class in the dataset and the coordinate axes, and mAP is the average of 

AP across all classes. In this study, mAP50 denotes the mAP value at an IoU threshold 

of 0.5, while mAP50:95 represents the average mAP value across IoU thresholds ranging 

from 0.5 to 0.95 in steps of 0.05. The relevant calculation formulas are as follows:  
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3.4 Experimental Results and Analysis 

The InnerShapeIoU loss function includes two parameters: scale and ratio. The scale is 

closely related to the target scale of the dataset, while the ratio is used to select auxiliary 

bounding box scales suitable for specific detection tasks and detectors. To determine 

the optimal values of these two parameters, comparative experiments were conducted 

on our dataset, with results presented in the following Table 1. Ultimately, scale=0.0 

and ratio=0.75, which yielded the highest accuracy, were selected for this task. 

Table 1. Performance Comparison Across Different Values of Scale and Ratio. 

ratio scale mAP50 mAP50:95 

0.75 

0.0 97.0% 55.0% 

0.6 95.6% 53.8% 

1.2 96.2% 53.3% 

1.0 

0.0 95.5% 54,0% 

0.6 96.4% 54.2% 

1.2 96.0% 54.3% 

1.25 

0.0 96.6% 54.0% 

0.6 95.9% 54.0% 

1.2 96.1% 54.0% 
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The results presented in Table 2 indicate the effectiveness of the modifications to the 

backbone network. Model A utilizes ResNet18 as the backbone in our model, whereas 

Model B replaces it with the lightweight EfficientFormerV2, resulting in a slight de-

crease of 0.7% and 1.1% in mAP50 and mAP50:95, respectively, but significantly reduc-

ing the number of parameters and computational load. Model C further introduces the 

Context-Aware Downsampling module onto Model B, which integrates rich feature 

information while simplifying the model, leading to another notable reduction in pa-

rameters and computational cost with only a 0.5% drop in both mAP50 and mAP50:95. 

Additionally, Model D incorporates the D-LKA attention mechanism at the end of the 

backbone. Leveraging the broad receptive field of large convolution kernels and the 

flexibility of deformable convolution kernels, the network becomes more effective in 

focusing on complex and diverse feature information, ultimately improving model ac-

curacy by 1% in mAP50 and 0.3% in mAP50:95. In summary, these modifications not 

only achieve model lightweighting but also enhance detection accuracy, validating their 

effectiveness. 

Table 2. Performance Comparison of Improved Backbone Networks. 

Variant mAP50 mAP50:95 Params(M) GFLOPS 

A 97.2% 56.3% 19.5 54.0 

B 96.5% 55.2% 13.9 30.6 

C 96.0% 54.7% 13.7 30.4 

D 97.0% 55.0% 15.1 31.5 

The results presented in Table 3 indicate that the modifications to the neck network 

are equally effective. Model A employs CCFM as the feature fusion network in our 

model, whereas Model B utilizes Slim-Neck. It is observed that, although Model B 

sacrifices detection accuracy to a certain extent, it achieves significant lightweighting 

of the neck network. Additionally, Model C connects the input nodes of the S4 and S5 

feature maps to the corresponding concat modules in the bottom-up path to supplement 

potentially lost small object information. The results show improvements of 0.7% and 

1.5% in mAP50 and mAP50:95, respectively, validating the effectiveness of the modifi-

cations. 

Table 3. Performance Comparison of Improved Neck Networks. 

Variant mAP50 mAP50:95 Params(M) GFLOPS 

A 96.6% 54.6% 15.6 34.7 

B 96.3% 53.5% 15.1 31.4 

C 97.0% 55.0% 15.1 31.5 



 

The results in Table 4 indicate that the improvement to the loss function is effective. 

A denotes the utilization of GIoU as the loss function for our model. B represents the 

substitution of the GIoU loss function with the Shape-IoU loss function, which is ra-

tionally adjusted by focusing on the intricate shapes and scales of PCB defect features, 

ultimately leading to significant improvements in model accuracy, as measured by 

mAP50 and mAP50:95. C introduces the concept of Inner-IoU into the Shape-IoU loss 

function, aiming to adaptively select appropriate auxiliary bounding box scales based 

on specific PCB defect detection tasks. Experimental results demonstrate additional 

enhancements in detection accuracy, as indicated by increased mAP50 and mAP50:95 

values, further strengthening the model's generalization capability. 

Table 4. Performance Comparison of Improved Loss Functions. 

Variant mAP50 mAP50:95 

A 96.2% 54.0% 

B 96.3% 54.5% 

C 97.0% 55.0% 

To intuitively compare the performance of the proposed improved model with other 

mainstream object detection models, we conducted comparative experiments on the 

self-constructed EX-PCB dataset with our algorithm model, alongside YOLOv5m, 

YOLOv8m, YOLOv9m, YOLOv10m, and RT-DETR. The experimental results, 

presented in the following Table 5. 

Table 5. Performance Comparison of Real-Time Models for PCB Defect Detection. 

Method mAP50 mAP50:95 Params(M) GFLOPS 

YOLOv5m 94.6% 54.9% 22.1 52.5 

YOLOv8m 95.1% 55.2% 23.2 67.4 

YOLOv9m[17] 95.7% 55.0% 16.6 60.0 

YOLOv10m[18] 94.5% 54.2% 16.5 63.4 

YOLOv11m 95.5% 55.1% 20.0 67.7 

RT-DETR 96.9% 55.3% 19.9 57.2 

ours 97.0% 55.0% 15.1 31.5 

The experimental results indicate that, compared to the original RT-DETR model, 

the proposed model in this study achieves significant reductions of 23.8% and 44.9% 

in the number of parameters and computational cost, respectively, effectively 

mitigating parameter and computational redundancy. In terms of detection accuracy, 

although mAP50 increased by only 0.1% and mAP50:95 decreased by 0.3%, the overall 

accuracy remained stable, demonstrating that the model lightweighting process 
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successfully retained the high detection accuracy performance of RT-DETR. 

Furthermore, compared to other real-time detection models with excellent performance, 

our model achieved significant improvements in the mAP50 metric, and the gap with 

the optimal model, Yolov8m, in the mAP50:95 metric was only 0.2%. This fully 

demonstrates the advantages of our model in detecting small PCB defects. 

Simultaneously, the significant reductions in the number of parameters and 

computational cost indicate that our model exhibits higher parameter and computational 

efficiency. 

3.5 Ablation Experiments 

To thoroughly validate the improvement effects of the proposed network and loss func-

tion on the original RT-DETR model, this study conducted a series of ablation experi-

ments on the EX-PCB dataset.The experimental results are presented in Table 6. 

Table 6. Results of Ablation Experiments on the Self-Constructed EX-PCB Dataset. 

Group A B C mAP50 mAP50:95 Params(M) GFLOPS 

1    96.9% 55.3% 19.9 57.2 

2 √   96.2% 53.9% 15.6 34.7 

3  √  96.5% 55.8% 19.5 54.0 

4   √ 96.9% 55.4% 19.9 57.2 

5 √ √ √ 97.0% 55.0% 15.1 31.5 

Group 1: The baseline model, RT-DETR, achieved 96.9% mAP50 and 55.3% 

mAP50:95 on a self-constructed dataset, with specific parameter and computational 

counts recorded. 

Group 2: Introducing the ContextAdown-D-LKAEfficientFormerV2 backbone re-

duced mAP50 to 96.2% and mAP50:95 to 53.9%, but significantly decreased parameter 

and computational costs. 

Group 3: Applying the Bi-Slim-Neck feature fusion network on the baseline model 

resulted in 96.5% mAP50 and 55.8% mAP50:95, with a slight drop in mAP50 but a notable 

increase in mAP50:95, accompanied by reduced parameter and computational loads. 

Group 4: Implementing the InnerShapeIoU loss function on the baseline model 

maintained mAP50 but elevated mAP50:95 to 55.4%, representing a slight improvement 

over the original model. 

Group 5: Simultaneously introducing ContextAdown-Efficientformerv2, Bi-slim-

neck, and InnerShapeIoU achieved 97% mAP50 and 55% mAP50:95, maintaining high 

detection accuracy while significantly reducing parameter and computational costs 

compared to the original model. enhancing its practicality and efficiency in PCB defect 

detection. 

The results indicate that the proposed modifications not only significantly stream-

lined model parameters and reduced computational load, but also maintained high 



 

small-object detection accuracy. By addressing the challenges posed by small targets 

and the high parameter and computational costs associated with PCB defect detection, 

the integration of ContextAdown-Efficientformerv2, Bi-slim-neck, and InnerShapeIoU 

successfully lightweighted the RT-DETR model. This lightweighting was achieved 

without compromising detection accuracy, thereby effectively enhancing the model's 

overall performance.  

3.6 Detection Effect Display 

By leveraging an enhanced detection model to conduct inference on PCB defect images 

within the designated test dataset, six distinct types of PCB defect can be successfully 

and precisely detected. Representative images showcasing the ultimate detection out-

comes are presented in the subsequent Fig. 5. These images provide a clear visualiza-

tion of the identified defects, underscoring the model's capacity to precisely pinpoint 

and discern even minute imperfections on the PCB surface. These findings not only 

validate the model's efficacy in detecting a wide range of defect types but also demon-

strate its reliability and accuracy in practical applications. 

   

(a) missing hole (b) mouse bite (c) open circuit 

   

(d) short (e) spur (f) spurious copper 

Fig. 5. Sample results of detection for six types of PCB defect. 
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4 Conclusion 

This study improves the RT-DETR model by incorporating the ContextAdown-D-

LKAEfficientFormerV2 backbone, Bi-Slim-Neck feature fusion network, and Inner-

ShapeIoU loss function. These enhancements enable effective detection of small PCB 

defects with a lightweight model. The backbone lightweights the model while enhanc-

ing small target feature extraction. The feature fusion network enhances fusion capa-

bilities and reduces model parameters and computation. The loss function further im-

proves detection accuracy and generalization. This study addresses challenges in PCB 

defect detection, including small target features and high model complexity, demon-

strating the potential of deep learning in this field and providing a useful reference for 

future research. 
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