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Abstract. Single-agent LiDAR-based perception has significantly progressed 

but remains constrained by factors such as sensor range and occlusion. Multi-

agent point clouds cooperative perception leverages inter-agent communication 

to share sensory information, thereby enhancing the perception capabilities of 

individual agents. Existing methods often assume ideal communication condi-

tions. However, In the real world, data transmission delays are inevitable, which 

can cause the central agent to receive inaccurate features, leading to significant 

misguidance in perception results. This paper proposes a novel framework for 

multi-agent point clouds cooperative perception to efficiently extract key features 

and reduce latency. Specifically, we introduce a Sparse-Residual PointPillar 

(SRPP) backbone, improving inference speed and receptive field, and a Pillar Set 

Abstract Module (PSM), which abstracts scenes into compact keypoint features, 

significantly reducing shared feature map size. Additionally, we employ an inter-

agent attention module, leveraging the characteristic of the main agent's own fea-

ture map, which requires no transmission and thus has no latency, to correct po-

tential feature distortions and mitigate the impact of partially unavoidable delays, 

thereby improving system robustness. Our method can significantly reduce the 

shared feature map size to less than 0.1 MB, approximately 40 times smaller than 

highly advanced approaches. Even with significantly reduced shared feature 

maps, our model still outperforms other methods under ideal communication con-

ditions and demonstrates a substantial advantage under delayed communication 

scenarios, indicating that our method significantly enhances the perception sys-

tem's performance and delay robustness. 

Keywords: Cooperative perception, 3D object detection, Sparse-Residual con-

volution, Key Feature Selection, Transformer. 



1 Introduction 

Given the inherent limitations of single-agent perception capabilities, multi-agent point 

clouds cooperative perception in connected autonomous driving has attracted consider-

able interest from researchers in recent years [28-29]. Recent studies [4,9] have shown 

that cooperative perception among agents, as opposed to the perception of individual 

agents, can utilize inter-agent communication technologies to facilitate information 

sharing. 

 

Fig. 1. (a) shows how data size (MB) affects the accuracy decrease (%) from ideal to delayed 

communication, using FPV-RCNN [31], Cooper [3], V2VNet [22], Attentive [29], and CoBEVT 

[27] as benchmarks, all models are trained under delayed communication using the public 

OPV2V dataset [29]. The driving speed of the agent is approximately 20 km/h. (b) and (c) are 

collaborative three-dimensional detection, where red indicates detection and green represents 

ground truth. Some false positives or missed detections are highlighted with yellow arrows. 

However, recent research predominantly assumes an ideal communication environ-

ment, overlooking the fact that in delayed communication environments, delayed fea-

ture maps received by the central agent can significantly mislead the perception system, 

potentially leading to catastrophic consequences [8]. 

To address this, we first investigate the impact of communication delays on model 

performance. As shown in Fig. 1(a), in a delayed environment, the increase in the size 

of the shared feature map exacerbates communication delays, leading to a significant 

degradation in model performance compared to an ideal communication environment. 

The main reason, as indicated in [8], is that differing delays among communication 

channels lead to significant temporal asynchrony. Delay issues can significantly hinder 

cooperative perception systems, often resulting in severe false detections and misdetec-

tions. Fig. 1(b,c) illustrates the presence of multiple false-positive bounding boxes in 

scenario (b), characterized by a 1-second delay, where the agent's driving speed is ap-

proximately 20 km/h. The delayed cooperative data reflects conditions from one second 

earlier, resulting in the detector generating output boxes that are significantly deviated. 

This observation leads us to propose a robust cooperative perception system designed 

(a) Data Size vs Accuracy Difference 

(b) Collaboration without latency

(c) Collaboration with 1s latency
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to efficiently extract key target features, thereby reducing the effects of communication 

delays. 

Therefore, this paper examines the detrimental effects of communication delays on 

multi-agent point clouds cooperative perception among agents and subsequently intro-

duces a new framework aimed at extracting key shared features and alleviating delays. 

The method comprises a backbone network utilizing improved 2D sparse residual con-

volutions based on PointPillars [7] (SRPP), a pillar set abstraction module (PSM) de-

signed for the efficient integration of scene information to obtain key target features, 

and a V2V self-attention module (V2VSA) aimed at rectifying delay-affected cooper-

ative feature maps. V2VSA integrates self-attention mechanisms for the central agent 

alongside inter-agent attention processes, incorporating multi-head attention to capture 

diverse feature information from multiple subspaces, thereby improving feature fusion. 

This study makes several noteworthy contributions, including: 

(1) We conduct the first investigation into the impact of data size and communication 

latency on multi-agent point clouds cooperative perception, proposing a novel key fea-

ture fusion network to enhance system robustness to latency significantly. 

(2) We enhance the widely used feature extraction network PointPillar for the first 

time by introducing the SRPP backbone and the PSM module. This innovation effec-

tively extracts key target features, drastically curtails feature map dimensionality, lead-

ing to improved communication efficiency. 

(3) We propose a novel inter-agent attention-based feature fusion method that lever-

ages the feature map from the central agent, which does not require communication, to 

modify the delayed collaborative feature maps using this lossless feature map, signifi-

cantly improving robustness.  

2 Related Works 

2.1 Vehicle-to-Vehicle Cooperative Perception 

Based on how information is shared, cooperative approaches are typically grouped into 

early, intermediate, and late fusion strategies. 

Early Fusion. Cooper [3] and AUTOCAST [16] achieved superior performance by 

sharing raw point data between different vehicles to form a more complete perception 

point cloud. However, due to the fact that early fusion typically requires a large trans-

mission bandwidth, this strategy faces challenges in meeting the real-time requirements 

of collaborative perception. 

Late Fusion. [1,17,30] improved fine-grained detection results by integrating the 

individual 3D perception outputs of each vehicle. However, In some cases, late fusion 

could produce unexpected results due to predictions with large individual deviations. 

Therefore, to achieve a better performance-bandwidth balance, recent methods have 

focused on fusing shared vehicle feature maps in the intermediate stage. 



Intermediate Fusion. V2VNet [22] utilizes a graph neural network to consolidate 

the LiDAR features obtained from each vehicle. Various methods, including V2X-ViT 

[28], OPV2V [29], and CoBEVT [27], present distinct feature fusion strategies 

grounded in the Vision Transformer architecture, aimed at enhancing feature interac-

tion among vehicles and advancing cooperative perception performance. Despite their 

promising performance, these intermediate fusion methods fundamentally hinge on the 

premise of flawless communication. In practical scenarios, communication delays will 

result in position deviations in the feature maps received by the central vehicle. To 

mitigate this issue, the designed system selectively shares the most representative key 

features, thereby minimizing communication delay and its associated impact. 

As mentioned above, early fusion demands excessive bandwidth, and late fusion is 

susceptible to individual misrecognition results. In contrast, intermediate fusion better 

aligns with the cooperative perception design principles of balancing transmission 

bandwidth and model performance. Therefore, we develop our model based on the fun-

damental approach of intermediate fusion. 

 

Fig. 2. The Architecture of the V2VSR. Our framework is composed of five key functional 

blocks: 1) Metadata Sharing, 2) Feature Extracting & Selecting, 3) Feature Sharing, 4) V2V At-

tention Feature Fusion, 5) Header. The specifics of each component are detailed in Section 3.1. 

2.2 Delayed Communication in Vehicle-to-Vehicle Cooperative 

Perception 

Most existing studies [14,24], use prediction-based time series methods to anticipate 

the deviation of feature maps caused by communication delays, and then reverse adjust 

the shared feature maps to correct the damaged ones. However, unlike predicting 

changes in feature maps [5,25], we noticed that since the vehicle's own feature map 

does not experience communication delays, we use this perfect feature map to adjust 

the collaborative feature maps with delays, effectively handling communication delays. 

Specifically, we designed a special V2V attention module called V2VSA, which in-

cludes both self-attention and inter-vehicle attention mechanisms, along with multi-

head attention to enhance the optimization of collaborative feature maps. 
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3 Methods and Materials 

3.1 Overview of architecture 

This study acknowledges that all vehicles encounter communication delays during data 

transmission to simulate real-world scenarios. Our objective is to develop a robust fu-

sion system that reduces the effects of communication delays in the collaboration pro-

cess, thereby improving the cooperative perception capabilities of vehicles. To achieve 

this, we design a novel cooperative perception system focused on key target features 

and reduce transmission data by fusing only critical collaborative features, thereby ef-

fectively mitigating the impact of delays. Our proposed framework, as depicted in Fig. 

2, consists of five primary components: 1) V2V metadata sharing, 2) Individual vehicle 

feature extracting and selecting, 3) Collaborative feature sharing, 4) V2V key feature 

fusion module, and 5) Detection head. 

Metadata Sharing. We select one vehicle as the central vehicle (ego) to conduct 

communication-based collaborative perception around it. In this phase, all collaborative 

vehicles project their point clouds into the coordinate system of the central vehicle be-

fore feature extraction, performing an initial data alignment. 

LiDAR Feature Extraction & LiDAR Feature Selection. Recent studies have 

shown that PointPillars [10,18] suffers from performance bottlenecks due to the lack of 

robust pillar feature encoding, which leads to poor performance in communication de-

lay environments. Therefore, we have designed a real-time, high-performance target 

feature extraction method based on 2D sparse convolutions, called SRPP. Additionally, 

to further compress the data size, we have devised a feature selection module (PSM) to 

prioritize and transform critical features into shareable embeddings. Our proposed 

SRPP and PSM will be detailed in Sections 3.2 and 3.3, respectively. 

Feature Sharing. At this stage, the central vehicle will receive feature maps from 

neighboring vehicles after feature extraction. However, in real-world scenarios, data 

transmission between vehicles takes time, and the feature maps received by the central 

vehicle from the collaborative vehicles inevitably exhibit positional discrepancies upon 

reception. Due to limited transmission bandwidth, the larger the feature maps to be 

transmitted, the greater the positional deviation. When the feature maps become too 

large, this can even result in significant performance degradation, as shown in 0. 

V2V Attention Feature Fusion Module. Integrating delayed features directly into 

the central vehicle's attributes presents specific risks. We developed a V2V attention 

feature fusion module that leverages the optimal feature map of the center vehicle to 

address potential deficiencies in the collaborative feature map. Section 3.4 will provide 

a detailed description of the proposed V2V feature fusion module. 

Detection Head. Two 1×1 convolutional layers are subsequently employed on the 

fused feature map to carry out bounding box regression and object classification. 



3.2 Design of SRPP for 3D Collaborative Object Feature Extraction 

To address the issue of PointPillar [7] lacking a larger receptive field and insufficient 

fine-grained information extraction, we redesigned the encoder and neck network by 

referencing the design ideas of [10,18]. 

Encoder Design. During the feature encoding phase, we use sparse 2D CNNs to 

progressively downsample the sparse pillar features. Compared to PointPillars [7], our 

encoder network, based on sparse 2D convolutions, allows us to leverage efficient 2D 

image object detection network structures, such as VGGNet [20] and ResNet [6], sig-

nificantly enhancing 3D detection performance. In this study, we adopt a backbone 

structure similar to ResNet-18. 

 

Fig. 3. Overview of the Proposed SRPP Architecture. The point cloud is voxelized into pillars 

and encoded via 2D sparse convolutions to extract multi-scale spatial features. These are fused 

with semantic cues in the neck, and distilled into compact key features for efficient sharing. 

Neck Design. As in FPN [11], the neck serves to unify deep semantic representations 

with shallow spatial information, thereby producing more reliable base proposals 𝐵𝑖  for 

the detection head. A set of dense 2D CNNs is employed to abstract high-level semantic 

features, thereby enhancing the receptive field for large objects. Additional convolu-

tional layers enhance abstract semantic representations extracted from compact feature 

grids, integrating spatial and semantic features through further convolutional layers to 

facilitate deeper and more robust feature extraction. 

3.3 Pillar Feature Abstraction Module for Key Feature Selection 

Experimental results indicate that the key feature selection modules FPV-RCNN [31] 

and PV-RCNN [19] demonstrate superior performance in collaborative perception for 

autonomous driving. These modules aggregate multi-scale feature point clouds that rep-

resent the entire scene into a limited number of key points, thereby effectively reducing 

the volume of shared information. We developed a distinctive feature selection module, 

with the specifics of the PSM module illustrated in Fig. 3. 
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Initially, Furthest Points Sampling (FPS) is employed to select a specified number 

of uniformly distributed sparse key points. Then, features are further filtered based on 

these sampled key points. Specifically, we denote 𝐹(𝑝𝑘) = {𝑓1

(𝑝𝑘)
, … , 𝑓𝑁𝑘

(𝑝𝑘)
}  as the set 

of semantic feature vectors of individual pillars in the $k$-th Pillar CNN, and 𝑉(𝑝𝑘) =

{𝑣1

(𝑝𝑘)
, … , 𝑣𝑁𝑘

(𝑝𝑘)
} as the set of 3D coordinates calculated through pillar indices and ac-

tual pillar sizes, where 𝑣𝑗

(𝑝𝑘)
represents the center position of the j-th pillar. For each 

key point 𝑝𝑖 , we search for the neighboring non-empty pillars within radius 𝑟𝑘 at the 𝑘-

th level, forming the set 𝑆𝑖

(𝑝𝑘)
. 

𝑆𝑖

(𝑝𝑘)
= (𝑣𝑗

(𝑝𝑘)
, 𝑓𝑗

(𝑝𝑘)
) ∣∥ 𝑣𝑗

(𝑝𝑘)
− 𝑝𝑖 ∥≤ 𝑟𝑘 , 𝑗 = 1, … , 𝑁𝑘 (1) 

For the neighboring pillars 𝑆𝑖

(𝑝𝑘)
 of key point 𝑝𝑖  we concatenate the relative coordi-

nates of each pillar's center point with respect to and its semantic feature vector to ob-

tain the new feature vector: 

𝑧𝑗

(𝑝𝑘)
= 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑣𝑗

(𝑝𝑘)
− 𝑝𝑖 , 𝑓𝑗

(𝑝𝑘)
) ,  ∀ (𝑣𝑗

(𝑝𝑘)
, 𝑓𝑗

(𝑝𝑘)
) ∈ 𝑆𝑖

(𝑝𝑘)
(2) 

where 𝑐𝑜𝑛𝑐𝑎𝑡(·) denotes the vector concatenation operation, 𝑣𝑗

(𝑝𝑘)
− 𝑝𝑖  is the rela-

tive position coordinate of the j-th pillar, and 𝑓𝑗

(𝑝𝑘)
 is the semantic feature of the j-th 

pillar. 

Finally, through the PillarNetblock [18], the individual pillar features within the 

neighboring pillar set  𝑆𝑖

(𝑝𝑘)
 of 𝑝𝑖  are subject to nonlinear transformation and aggrega-

tion to generate the global feature of the key point 𝑝𝑖: 

ℎ(𝑝𝑖) = 𝑃𝑖𝑙𝑙𝑎𝑟𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 ( 𝑧𝑗

(𝑝𝑘)
∣
∣ (𝑣𝑗

(𝑝𝑘)
, 𝑓𝑗

(𝑝𝑘)
) ∈ 𝑆𝑖

(𝑝𝑘)
) (3) 

Where 𝑧𝑗

(𝑝𝑘)
 represents the input features, and the 𝑃𝑖𝑙𝑙𝑎𝑟𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 extracts high-

level features for the key point. 

After obtaining the basic key features of a single vehicle, we input these key features 

into the vehicle's perception detection head to generate the base pre-selection box 𝐵𝑖  

and further downsample these points by selecting only the key points within the pre-

selection box 𝐵𝑖  for generating shared key features. 

The ablation results presented in 0 demonstrate that, leveraging the pillar set abstrac-

tion operation described earlier, the proposed PSM module significantly reduces data 

volume. This reduction alleviates communication latency and enhances recognition ac-

curacy under delayed communication conditions, as further detailed in Section 4.4. 



3.4 V2V Attention Module for Fusing Key Features in Collaboration 

After receiving the key features from each collaborative vehicle, our objective is to 

optimize the feature map of the central vehicle using these collaborative key features. 

To achieve this, as shown in Fig. 4, we combine the intra-vehicle self-attention mech-

anism with the inter-vehicle attention mechanism. Furthermore, we leverage the multi-

head attention mechanism to optimize and fuse the collaborative feature maps. By at-

tending to diverse representation subspaces, the multi-head attention mechanism en-

riches the fusion process with complementary feature cues. 

 

Fig. 4. The collaborative V2V attention module first optimizes the vehicle's feature map through 

the self-attention mechanism. After feature map sharing, the ego vehicle complements the col-

laborative features using its own lossless feature map. Finally, the optimized features are fused 

using a multi-head attention mechanism to generate a higher-quality optimized feature. 

Vehicle Self-Attention Mechanism. For the feature map 𝐹𝑖  each vehicle 𝑖 , the 

query, key, and value are defined as: 

𝑄𝑖 = 𝑊𝑄𝐹𝑖 ,  𝐾𝑖 = 𝑊𝐾𝐹𝑖,  𝑉𝑖 = 𝑊𝑉𝐹𝑖 (4) 

The weights of the self-attention mechanism for each vehicle 𝑖 are calculated as: 

𝛽𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾𝑖

⊤

√𝑑𝑘

) (5) 

where 𝑄𝑖 , 𝐾𝑖, and 𝑑𝑘 represent the query, key, and the dimension of the key, respec-

tively. 

The feature map of vehicle 𝑖 optimized through the self-attention mechanism is: 

𝐹𝑖
self = 𝛽𝑖𝑉𝑖 (6) 

where 𝐹𝑖
self represents the self-feature map of each vehicle after extracting local de-

pendencies, resulting in higher quality. 

Inter-vehicle Attention Mechanism. After being optimized through self-attention, 

collaborative vehicles send their respective feature maps 𝐹𝑖
self to ego vehicle, then ego 
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vehicle uses the inter-vehicle attention mechanism to complement potentially missing 

feature maps during communication. Its optimized feature map serves as the query, 

while the feature maps of other collaborating vehicles are used as keys and values. At 

this stage, the query originates from the optimized ego self-feature map 𝐹𝑒𝑔𝑜
self, and the 

keys and values come from the feature maps of the collaborating vehicles, i.e.: 

𝑄𝑒𝑔𝑜 = 𝑊𝑄𝐹𝑒𝑔𝑜
𝑠𝑒𝑙𝑓~

,  𝐾𝑖 = 𝑊𝐾𝐹
~

𝑒𝑔𝑜
𝑖 ,  𝑉𝑖 = 𝑊𝑉𝐹

~

𝑒𝑔𝑜
𝑖 ,  ∀𝑖 ∈ 𝐶𝑒𝑔𝑜 (7) 

The attention weight of the ego vehicle for the feature map of the 𝑖-th vehicle is 

calculated as: 

𝛼𝑒𝑔𝑜,𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑖 (
𝑄𝑒𝑔𝑜𝐾𝑖

⊤

√𝑑𝑘

) (8) 

The completed collaborative feature map is obtained by weighted aggregation of the 

feature maps from other agents: 

𝐹𝑖
𝑐𝑜 = ∑  

𝑖∈𝐶𝑒𝑔𝑜

𝛼𝑒𝑔𝑜,𝑖𝑉𝑖 (9)
 

Multi-Head Attention Mechanism for Feature Fusion. To effectively fuse the op-

timized self-feature map 𝐹𝑒𝑔𝑜
self ∈ ℝ𝐵×𝑁×𝐶×𝐻×𝑊 and multiple collaborative feature maps 

𝐹𝑖
𝑐𝑜 = {𝐹1

𝑐𝑜, 𝐹2
𝑐𝑜 , … , 𝐹𝑛

𝑐𝑜}, where 𝐹𝑖
𝑐𝑜 ∈ 𝑅𝐵×𝐶×𝐻×𝑊, we employ a multi-head attention 

mechanism. To simplify processing, all collaborative feature maps are concatenated 

along the agent dimension to form a combined feature tensor 𝐹𝑒𝑔𝑜
co_all

∈ ℝ𝐵×𝑁×𝐶×𝐻×𝑊. 

The attention mechanism operates as follows: 

First, 𝐹𝑒𝑔𝑜
self and  𝐹co_all are mapped into query (𝑄), key (𝐾), and value (𝑉) spaces: 

𝑄 = 𝐹𝑒𝑔𝑜
self𝑊𝑄 ,  𝐾 = 𝐹co_all𝑊𝐾 ,  𝑉 = 𝐹co_all𝑊𝑉 (10) 

where  𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 ∈ ℝ𝐶×𝑑𝑘  are learnable projection matrices, and 𝑑𝑘 is the dimen-

sion of each attention head. 

For each attention head, the scaled dot-product attention is computed to obtain the 

attention scores: 

𝑆ℎ = Softmax (
𝑄𝐾⊤

√𝑑𝑘

) (11) 

where 𝑆ℎ ∈ ℝ𝐵×𝐻×𝑊×𝑁  represents the normalized attention weights for the ℎ -th 

head. These weights are then used to aggregate the value features: 

Headℎ = 𝑆ℎ ⋅ 𝑉 (12) 



where Headℎ ∈ ℝ𝐵×𝑑𝑘×𝐻×𝑊 is the output of the ℎ-th head. 

All head-specific outputs are aggregated through concatenation and subsequently 

mapped back to the initial feature space using the trainable projection 𝑊𝑂: 

MHA(𝑄, 𝐾, 𝑉) = Concat(Head1, Head2, … , Head𝐻)𝑊𝑂 (13) 

where 𝑊𝑂 ∈ 𝑅𝐻⋅𝑑𝑘×𝐶 , and 𝐻 is the total number of attention heads. 

To integrate the fused collaborative features with the optimized self-feature map, a 

residual connection is applied: 

𝐹final = 𝐹𝑒𝑔𝑜
self + MHA(𝑄, 𝐾, 𝑉) (14) 

The final feature map 𝐹final ∈ 𝑅𝐵×𝐶×𝐻×𝑊  retains the self-perception information 

from 𝐹𝑒𝑔𝑜
self while incorporating contextual collaboration information from 𝐹𝑖

co. 

4 Experiments 

4.1 Datasets 

Given the significant challenges and expenses associated with gathering collaborative 

perception data from multiple vehicles in real-world contexts, we assessed the method 

utilizing a simulation dataset derived from digital twins. The experiments utilized the 

publicly available vehicle-to-vehicle (V2V) collaborative perception dataset, OPV2V 

[29]. OPV2V is an extensive open-source simulation dataset designed for vehicle-to-

vehicle perception. It comprises 8 digital towns from Carla Town [4] and the digital 

town of Culver City in Los Angeles, totaling 11464 frames and 232913 annotated 3D 

vehicle bounding boxes. Using OPV2V's normal settings, we use 3382 frames as the 

training set and 1920 frames as the validation set. For a fair comparison, we use 2170 

frames from Carla Town and 594 frames from Culver City as the test sets for all meth-

ods. 

4.2 Experiments Setup 

Evaluation Metrics. We assess the performance of the framework by measuring the 

final 3D vehicle detection precision. In accordance with OPV2V [29], the evaluation 

range is established as 𝑥 𝜖 [−140, 140] meters and 𝑦 𝜖 [−40, 40] meters, encompass-

ing all Cooperative Autonomous Vehicles (CAVs) within this spatial domain, with the 

number of CAVs varying from 1 to 5 in the experiments. Model performance is quan-

tified via average precision (AP), detection performance is assessed using average pre-

cision at dual IoU benchmarks: 0.5 and 0.7. 

Evaluation Details. This section evaluates the vehicle cooperative target detection 

model utilizing LiDAR technology. The model is primarily evaluated in two distinct 

scenarios: 1) Ideal communication, where data is transmitted without any delays; 2) 

Delayed communication, where intermediate features from cooperative vehicles expe-

rience communication delays. To simulate delayed communication, we assume that the 
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waiting time between vehicle A and vehicle B is 𝑇𝐴→𝐵, the size of the transmitted fea-

ture map is 𝑆𝐴→𝐵, the communication bandwidth is 𝐵𝑤, the minimum transmission time 

is 𝑇𝑚𝑖𝑛, and we assume the random interference time follows a truncated normal distri-

bution 𝜖. The total waiting time can then be represented as: 

𝜖 ∼ 𝑇𝑟𝑢𝑛𝑐𝑁𝑜𝑟𝑚(𝜇, 𝜎, 𝑎, 𝑏) (15) 

𝑇𝐴→𝐵 =
𝑆𝐴→𝐵

𝐵𝑤

+ 𝜖 (16) 

Where 𝑇𝐴→𝐵 represents the total transmission time from vehicle A to vehicle B, 𝑆𝐴→𝐵 

represents the size of the feature map transmitted from vehicle A to vehicle B, 𝐵𝑤 rep-

resents the fixed transmission bandwidth, and 𝜖  represents the random interference 

time, which follows a truncated normal distribution. To simulate a highly disturbed or 

severely fluctuating network environment, we set the communication bandwidth to 100 

Mbps, the expected value 𝜇 of the interference time to 10 ms, the standard deviation 𝜎 

to 20 ms, and the upper and lower bounds of the interference time to [0,200] ms. 

Table 1. Comparison of 3D object detection performance across two testing sets based on the 

training of Scheme I in OPV2V. The transmission delay is the average delay calculated using 

Formula 15. A 'x' in the table represents the bandwidth requirement is too large, which can not 

be considered to employ in practice. Since there is no delay in ideal conditions, the data size in 

such scenarios is not shown.  

Method Type 
Data  

Size 

(Mb) 

Transmission 

Delay 

(ms) 

Deafult Towns Culver Citys 

AP@0.5 AP@0.7 AP@0.5 AP@0.7 

No Fusion 
Ideal - 0 0.683 0.613 0.553 0.469 

Latecey 0 10 0.683 0.613 0.553 0.469 

OPV2V [29] 
Ideal - 0 0.865 0.787 0.868 0.745 

Latecey 126.8 1278 0.135 0.083 0.126 0.075 

FPV-RCNN 

[31] 

Ideal - 0 0.876 0.763 0.865 0.745 

Latecey 0.24 12.4 0.293 0.158 0.283 0.165 

CoBEVT [27] 
Ideal - 0 0.908 0.840 0.875 0.746 

Latecey 72.08 730.8 0.155 0.091 0.154 0.083 

V2X-ViT [28] 
Ideal - 0 0.839 0.729 0.873 0.718 

Latecey 3.84 48.4 0.164 0.109 0.145 0.113 

V2VAM [9] 
Ideal - 0 0.918 0.857 0.881 0.779 

Latecey x x 0.083 0.019 0.079 0.023 

V2VSR(Ours) 
Ideal - 0 0.930 0.872 0.893 0.788 

Latecey 0.048 10.4 0.325 0.188 0.305 0.179 



In the training phase, two evaluation schemes are employed to investigate the effect 

of varying training datasets on the V2V 3D object detection performance. Scheme I 

uses only perfect data for training, whereas Scheme II incorporates the previously men-

tioned simulated communication delays. Both methodologies utilize identical training 

parameter configurations, we evaluate the trained models across the V2V Default 

CARLA Towns and Culver City test sets, analyzing performance in both ideal and de-

layed communication contexts. In the experiment, to facilitate a fair comparison, the 

voxel height and width resolution for all methods is standardized at 0.4m. We utilize 

the Adam optimizer [12], initializing the learning rate at 10−3, which undergoes a 0.1 

factor reduction every 10 epochs.We utilize the same hyperparameters as those in 

OPV2V. 

Table 2. Comparison of 3D object detection performance across two testing sets based on the 

training of Scheme II in OPV2V. 

Method Type 
Data  

Size 

(Mb) 

Transmission 

Delay 

(ms) 

Deafult Towns Culver Citys 

AP@0.5 AP@0.7 AP@0.5 AP@0.7 

No Fusion 
Ideal - 0 0.683 0.613 0.553 0.469 

Latecey 0 10 0.683 0.613 0.553 0.469 

OPV2V [29] 
Ideal - 0 0.785 0.622 0.764 0.634 

Latecey 126.8 1278 0.714 0.578 0.702 0.564 

FPV-RCNN 
[31] 

Ideal - 0 0.846 0.721 0.831 0.725 

Latecey 0.24 12.4 0.815 0.702 0.812 0.693 

CoBEVT [27] 
Ideal - 0 0.875 0.789 0.843 0.727 

Latecey 72.08 730.8 0.733 0.601 0.701 0.587 

V2X-ViT [28] 
Ideal - 0 0.825 0.698 0.821 0.702 

Latecey 3.84 48.4 0.712 0.585 0.681 0.564 

V2VAM [9] 
Ideal - 0 0.891 0.802 0.865 0.758 

Latecey X x 0.745 0.610 0.733 0.585 

V2VSR(Ours) 
Ideal - 0 0.902 0.815 0.875 0.769 

Latecey 0.048 10.4 0.865 0.758 0.867 0.721 

Comparison methods. The baseline approach is evaluated using only the LIDAR point 

cloud from the central vehicle, without incorporating any fusion strategies. This study 

assesses five advanced techniques utilizing intermediate fusion as the main fusion ap-

proach. CoBEVT [27], V2VAM [9], OPV2V [29], FPV-RCNN [31], and V2X-ViT 

[28] represent various models and frameworks in the field of vehicle communication 

and perception. To demonstrate the significant influence of high-latency communica-

tion, we first train these techniques in two scenarios: ideal communication and delayed 

communication. We then test these approaches in the same two scenarios to determine 

their effectiveness. 
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4.3 Experimental Results 

0 presents a comparative analysis of the performance of all models trained using 

Scheme I, evaluated on two distinct data types: ideal scenarios and delayed communi-

cation. In optimal communication conditions, all cooperative perception methods 

demonstrate a marked improvement over the NO Fusion baseline. In the V2V Default 

CARLA Town test set, our proposed V2VSR surpasses the other five advanced fusion 

methods, attaining 93.0%/87.2% for AP@0.5/0.7, as indicated in bold in 0. In the V2V 

Culver City test set, V2VAM [9] attains 88.1%/77.9% for AP@0.5/0.7, whereas 

V2VSR demonstrates superior performance at 89.3%/78.8% for AP@0.5/0.7, repre-

senting an enhancement of 1.2%/0.9% over the second-best fusion method 

V2VAM.The results demonstrate that under ideal communication conditions, coopera-

tive perception methods outperform single-vehicle perception systems in terms of per-

ception performance, and the proposed V2VSR method effectively expands the model's 

receptive field to achieve the best perception performance. However, in high-latency 

communication test scenarios, the performance of all intermediate fusion methods 

sharply decreases on both test sets, with the accuracy of these methods even falling 

below NO Fusion.  

Table 3. Component Ablation Study under delayed communication conditions based on the train-

ing of Scheme II in OPV2V. SRPP, V2VSA, and PSM respectively indicate the addition of 1) 

Sparse-Residual PointPillars Backbone Network, 2) Vehicle-to-Vehicle  Self Attention Mecha-

nism, and 3) Pillar Key Feature Selection Module. 

SRPP V2VSA PSM 

Data 

Size 

(Mb) 

Transmission 

Delay 

(ms) 

Deafult Towns Culver Citys 

AP@0.5 AP@0.7 AP@0.5 AP@0.7 

   3.84 48.4 0.658 0.459 0.687 0.455 

√   1.92 29.2 0.682 0.491 0.713 0.493 

 √  3.84 48.4 0.726 0.597 0.785 0.576 

  √ 0.096 10.9 0.801 0.679 0.801 0.597 

√ √  1.92 29.2 0.737 0.628 0.802 0.612 

√  √ 0.048 10.4 0.821 0.702 0.833 0.656 

 √ √ 0.096 10.9 0.843 0.732 0.848 0.689 

√ √ √ 0.048 10.4 0.865 0.758 0.867 0.721 

In the V2V Default CARLA Town test set, the cooperative perception performance 

of OPV2V [29], FPV-RCNN [31], CoBEVT [27], V2X-ViT [28], and V2VAM [9] de-

creased by 73.0%, 58.3%, 75.3%, 67.5%, and 83.5% at AP@0.5, respectively. Notably, 



the performance of V2VAM, which requires the largest data transmission and highest 

communication latency, deteriorates most significantly. Obviously, any intermediate 

fusion techniques that do not take delayed communication into consideration are not 

feasible for real-world implementation. The outcomes of 3D object detection on the 

two OPV2V test sets, utilizing Scheme II for training, are detailed in 0. Despite all 

intermediate fusion methods demonstrating superior performance compared to those in 

0 due to their training with delayed communication, they remain inadequate in manag-

ing high-latency communication data, resulting in diminished perception performance.  

In the V2V Default CARLA Town test set, OPV2V [29] achieves 57.8% for 

AP@0.7, FPV-RCNN [31] achieves 70.2%, CoBEVT [27] achieves 60.1%, V2X-ViT 

[28] achieves 58.5%, and V2VAM achieves 61.0%. Among them, OPV2V, CoBEVT, 

V2X-ViT, and V2VAM perform even worse than the single-vehicle baseline, NO Fu-

sion. FPV-RCNN, due to the use of a key feature selection algorithm, achieves better 

results in comparison, highlighting the severe negative impact of high-latency commu-

nication. Our proposed method demonstrates performance metrics of 86.5%/75.8% for 

AP@0.5/0.7 in the V2V Default CARLA Town test set, and 86.7%/72.1% for 

AP@0.5/0.7 in the Culver City test set. The proposed method demonstrates superior 

performance in both ideal and high-latency communication scenarios, as indicated in 

0. Our proposed V2VSR method effectively reduces communication latency, resulting 

in enhanced collaborative perception performance. 

 

Fig. 5. A visual analysis of a crowded intersection, where ground truth is marked with green 3D 

boxes and model predictions are outlined in red. Our method produces more precise detection 

outcomes. Examples of false detections are indicated with yellow arrows. 

4.4 Ablation Study 

This study investigates the effectiveness of three components: SRPP, PSM, and 

V2VSA. All methods were assessed using the V2V CARLA Town and Culver City test 

sets. In the ablation experiments, the conventional PointPillar served as the baseline 

backbone network, while a 1 × 1 convolution was employed as the baseline fusion 

method to average all intermediate features. The impact of each component on the 
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model was evaluated by incrementally adding 1) SRPP, 2) V2VSA, and 3) PSM mod-

ules.As the experimental results in 0 show, all modules contribute to performance im-

provement. Under the condition of high communication latency, in the V2V Default 

CARLA Town test set, the V2VSA method outperforms the feature-averaging baseline 

method by 6.8% and 13.8% for AP@0.5 and AP@0.7, respectively, demonstrating its 

ability to efficiently fuse multi-agent features.The SRPP module compresses the origi-

nal feature size from 3.84 Mb to 1.92 Mb, while the PSM module further reduces it to 

0.096 Mb, indicating the effectiveness of both modules in significantly reducing data 

volume and alleviating communication latency. If the PSM module is removed from 

V2VSR or if SRPP is replaced with the conventional PointPillar, the performance de-

creases to varying degrees. Therefore, it is clear that due to the SRPP, PSM, and 

V2VSA components, the ultimate performance of 3D object detection is enhanced in 

high-latency communication circumstances. 

4.5 Qualitative Analysis 

Fig. 5 shows the detection visualization in the intersection street under communication 

delay scenarios for OPV2V [29], CoBEVT [27], V2X-ViT [28], V2VAM [9], FPV-

RCNN [31], and V2VSR. Our model accurately predicts the bounding boxes, while 

other methods suffer from varying degrees of deviation in the detected target boxes due 

to their inability to effectively handle the misleading effects caused by delayed infor-

mation. More importantly, V2VSR maintains good performance in a delayed environ-

ment (with no false detections or missed detections), demonstrating its ability to effec-

tively cope with potential network fluctuations, reduce the amount of data to be trans-

mitted, and decrease the time required for data transmission. This ensures a good bal-

ance between bandwidth and performance as well as high robustness in communication 

delay environments. 

5 Conclusions 

In this paper, we have conducted a study on the issue of communication delays in multi-

agent point clouds cooperative perception systems. To mitigate the impact of commu-

nication delays, we have designed a novel model focused on key target features. By 

leveraging 2D sparse convolution and pillar set abstraction, we have developed a key 

feature extraction network that expands the model's receptive field while effectively 

extracting key target features and minimizing communication delays. Additionally, we 

have designed a specialized V2V attention module to address the remaining small yet 

unavoidable communication delays, incorporating self-attention, inter-agent attention, 

and multi-head attention mechanisms. Experimental results have demonstrated that our 

approach has effectively handled real-world delay issues and has enhanced model ro-

bustness. 
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