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Abstract. DEtection TRansformer (DETR) represents an end-to-end paradigm 

for object detection based on transformers that generates multiple object queries 

per ground truth box and selects the best prediction through matching. However, 

studies have shown that many object queries rejected by the Hungarian matching 

algorithm still focus on foreground elements. Leveraging these potentially useful 

negative queries in DETR has thus emerged as a promising research direction.In 

this paper, I propose FUSION-DETR, a novel model that introduces a one-to-

many matching strategy by grouping queries while preserving DETR's traditional 

one-to-one matching. This approach utilizes the foreground information embed-

ded in queries rejected by Hungarian matching as negative samples. Furthermore, 

during training, the model dynamically assigns weights to the one-to-many loss 

using a clustering-based method, enhancing its robustness.Experiments demon-

strate that the FUSION-DETR approach improves Deformable-DETR by 3.0 

mAP50 on the BDD-100K datasets and achieves 70.5 mAP50 on COCO2017, 

outperforming existing DETR-based models incorporating one-to-many assign-

ment. 
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1 Introduction 

1.1 Background 

DEtection Transformer [3](DETR) represents an end-to-end paradigm for object detec-

tion that integrates a CNN-based feature extraction network, a Transformer encoder, 

and a Transformer decoder[2]. The decoder comprises self-attention mechanisms, 

cross-attention modules, and feedforward neural networks (FFNs), followed by classi-

fication and bounding box regression layers. In traditional DETR models [5], the de-

coder generates multiple object queries per real object and selects the best prediction 

through Hungarian matching. However, studies [20] have shown that many object que-

ries rejected by the Hungarian matching algorithm still focus on foreground elements, 

containing rich and valuable information. This observation suggests that leveraging 

these rejected queries could further enhance model performance. Consequently, a one-



 

to-many assignment strategy has been proposed to incorporate these queries into the 

optimization process. 

 

  

(a) (b) 

Figure 1: (a) shows the detection performance of the baseline model prior to applying improve-

ments, and (b) displays the detection results of the improved model. A comparison between the 

two figures reveals that the improved model demonstrates superior performance, especially in 

detecting small objects and overlapping objects. This observation indicates that the model has 

effectively leveraged the information carried by the negative queries to enhance detection accu-

racy in challenging scenarios. 

 

The one-to-many assignment strategy has been extensively applied in CNN-based 

object recognition models [14], demonstrating its effectiveness in multi-class object 

detection. Within the DETR framework, two primary approaches have been explored 

for implementing one-to-many assignment: 

(1) Grouping Object Queries:This approach[4] partitions the object queries into 

multiple groups and performs group-wise one-to-one assignment, enabling a real object 

to be assigned to multiple predictions. This strategy encourages high-confidence pre-

dictions for the real object while suppressing redundant predictions within the same 

group.  

(2) Introducing Additional Query Branches: This approach [9] retains DETR’s 

one-to-one matching while incorporating additional query branches or decoder weights 

to facilitate one-to-many assignments. By expanding the query space, this approach 

enables each positive sample to be assigned multiple meaningful foreground queries 

Both approaches offer distinct advantages and challenges: The first method is akin 

to ensemble learning [15], as it enhances object query representations through auto-

matic learning without increasing the number of network parameters. It provides 

stronger supervision during training, leading to performance improvements in a simple 

and effective manner. However, it introduces several challenges: 

(1) Reduction in Query Variable Dimensionality: Constraining the query space 

may limit model performance [16]. 

(2) Achieving One-to-Many Matching: Two key concerns arise here: 

1): Without pre-trained weights: shared decoder weights across query groups may 

lead to similar spatial distributions, making it difficult to establish meaningful one-to-

many relationships. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

2): With pre-trained weights: grouping queries effectively is nontrivial. Ideally, 

queries within a group should focus on distinct targets while maintaining similar prior-

ity levels. However, coarse query grouping can undermine the benefits of pre-training, 

complicating convergence. 

The second approach introduces additional one-to-many query branches while 

preserving the original DETR architecture. This method retains most of DETR’s ad-

vantages, such as avoiding Non-Maximum Suppression (NMS) [17], which is benefi-

cial for accuracy and efficiency. By assigning multiple foreground queries to a single 

real object globally, this method provides sufficient localization supervision. However, 

there are notable drawbacks: 

(1) Loss Function Complexity: This method introduces two types of loss: the one-

to-one loss and the one-to-many loss. These losses must be balanced, with the appro-

priate weights varying depending on the datasets. Currently, there is no systematic 

method to determine the correct weighting. 

(2) Increased Training Time: The introduction of additional training weights 

leads to longer training cycles. 

  

(a) (b) 

Figure 2: (a) shows the clustering diagram of the query vectors before passing through the 

decoupling module, while (b) displays the clustering diagram of the query vectors after pass-

ing through the decoupling module. Although the model’s accuracy has reached a high level 

(43.3 mAP50), the silhouette score of the query vectors increases from 0.07 to 0.09 after de-

coupling. This increment demonstrates that the query decoupling module effectively helps 

the query vectors focus more on different targets, strengthening the model’s ability to distin-

guish among individual objects with greater precision. 

 

1.2 Our Methods 

To address these challenges, I propose FUSION-DETR, which integrates the following 

three components: 

 

 



 

Table 1: The results of the performance of improved deformable-detr on the 

COCO2017datasets. 

model queries epoches mAP mAP50 APs APm APl 

Conditional DETR[12] 300 108 43 64 22.7 46.7 61.5 

Anchor DETR[8] 300 50 42.1 63.1 22.3 46.2 60 

Efficient DETR[6] 300 50 45.1 63.1 28.3 48.4 59 

DAB DETR[7] 900 50 45.7 66.2 26.1 49.4 63.1 

Deformable DETR[22] 300 50 46.9 65.6 29.6 50.1 61.6 

Group DETR[4] 900 12 50.1 - 32.4 53.2 64.7 

Hybirds DETR[9] 900 12 50.6 68.7 34.4 53.9 63.5 

FUSION DETR 300 20 48 70.5 33.4 52 64.3 

 

(1) Joint Optimization of One-to-Many and One-to-One Losses: Building upon the 

one-to-one loss, I introduce the one-to-many loss, drawing inspiration from Group-

DETR [4]. By jointly optimizing these two losses, I enable the model to simultaneously 

learn global detection accuracy while capturing local details, as shown in Figure.1. 

(2) Query Decoupling Module:Inspired by the use of residual networks in deep 

learning, I introduce a query decoupling module. Query vectors pass through this mod-

ule before the one-to-many loss computation, ensuring that queries within each group 

focus on different targets, thereby stabilizing the assignment between query vectors and 

ground truth boxes (as shown in Figure.2). 

(3) Clustering-Based Weighting Method: I introduce a clustering-based weighting 

method that dynamically adjusts loss function weights on the basis of the clustering 

results of the target objects.Such an adjustment guides the model to allocate greater 

representational capacity to the primary task. 

As evidenced by Table 1, by comparing the performance of FUSION-DETR with 

mainstream DETR models and two DETR models [4,9] that incorporate one-to-many 

assignment on the COCO2017 datasets, we can see that FUSION-DETR achieves 70.5 

mAP50 with only 300 query dimensions, outperforming existing methods in many met-

rics. 

2 Related Work 

2.1 Transformer-based Object Detectors 

Transformer-based object detectors, such as DETR, have revolutionized computer vi-

sion by adapting transformer’s originally designed for natural language processing 

(NLP) to object detection tasks. DETR replaces traditional components like region pro-

posal networks (RPN) and non-maximum suppression (NMS)[17] with an end-to-end 

transformer architecture. By leveraging self-attention, DETR models the relationships 

between objects and background, which improves performance, especially in complex 

detection scenarios. DETR, however, is subject to several challenges, including slow 
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training times and difficulty in detecting small objects, which has prompted the devel-

opment of more efficient variants. 

Several notable improvements have been made to DETR. Deformable-DETR [22] 

introduces a sparse attention mechanism and learnable sampling points to lower the 

computational burden while improving the model's capability to focus on relevant re-

gions. Lite-DETR [10] designs an efficient encoder module that alternately updates 

high-level features, streamlining the model. MS-DETR [20] incorporates a combination 

of one-to-one and one-to-many supervision to guide the main decoder’s queries, en-

hancing detection accuracy. CO-DETR [23] improves the efficiency and power of 

DETR-based detectors by diversifying the label assignment strategy, addressing some 

of the model’s limitations. 

 

2.2 Stable Assignment Between Queries and GT Boxes 

 

Figure 3. Algorithm flowchart. 

 

DETR leverages the Hungarian algorithm for the one-to-one association of queries with 

ground truth (GT) boxes, ensuring a one-to-one correspondence between each ground 

truth (GT) box and a single query. Queries that do not match any GT box are classified 

as background. However, in complex scenarios such as small objects or overlapping 

targets, some queries may struggle to find a stable match with the GT boxes, resulting 

in unstable assignments. 

Several methods have been proposed to stabilize the matching process. Deforma-

ble-DETR [22] addresses this by grouping queries and allowing multiple queries to 

match the same GT box from different perspectives, improving stability in challenging 

detection cases. DN-DETR [11] generates pseudo-labels through multiple perturbations 

of the object and matches them with GT boxes to enhance the robustness and stability 

of the matching process. SAM-DETR [19] presents a plug-in module that projects both 



 

object queries and encoded image features into a unified feature embedding space, 

thereby enabling more consistent and stable query-to-box associations. 

3 Mechanism of FUSION-DETR 

3.1 Hybrid Loss Training 

During the training phase, the FUSION-DETR model is trained by combining both one-

to-one and one-to-many assignment losses. These two losses share the same decoder 

module for their computation. The one-to-one loss is generated using the traditional 

DETR approach, where every ground truth (GT) box corresponds to a single query. 

As the Figure.3 shows,for the generation of the one-to-many assignment loss, the 

query vectors are first processed by a query decoupling module. This module ensures 

that queries within different groups focus more on their respective independent objects, 

improving the model's capacity to differentiate between multiple foreground objects. 

After decoupling, the adjusted query vectors are passed into the decoder, where they 

are processed to produce class predictions and bounding box predictions through two 

separate prediction heads. 

 

3.2 Clustering-Based Weighting Method 

Through extensive experimentation, it was observed that once the model’s performance 

reaches a certain threshold, increasing the weight of the one-to-many loss can signifi-

cantly accelerate convergence. To achieve this,as the Figure.3 shows, FUSION-DETR 

utilize the k-means algorithm to cluster the adjusted query vectors. The silhouette co-

efficient, which quantifies clustering quality, is subsequently computed. If the silhou-

ette coefficient is below a predefined threshold (denoted as δ), the weight of the one-

to-many loss is increased to . Otherwise, it is set to , promoting more dynamic and 

context-sensitive adjustments to the loss function during training. 

 

3.3 Mathematical Expression 

Original DETR Loss. In the original DETR model, the overall loss function is com-

posed of two key elements: classification loss and bounding box loss. The final loss is 

a weighted sum of these two components, calculated over all queries. 

Let , be the set of queries, and  be the 

set of ground truth objects, where N is the number of queries and ground truth objects. 

The classification loss  is computed using cross-entropy between predicted 

class labels  and ground truth labels  : 

                                      
The bounding box loss  is computed using the  loss between predicted 

bounding boxes  and the ground truth boxes  , plus a generalized intersection-

over-union (GIoU) loss: 
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The overall DETR loss is defined as the weighted sum of the classification loss 

and the bounding box regression loss: 

 
where  is a hyper parameter to balance the two losses. 

Optimized DETR Loss with One-to-Many Loss:The optimized DETR model intro-

duces the one-to-many loss, which involves splitting the queries into multiple groups, 

each of which is matched independently to ground truth objects using the Hungarian 

algorithm. The optimization procedure involves two loss components:one-to-one loss 

and one-to-many loss. 

The query decoupling module processes the initial set of query vectors and outputs 

an adjusted set of query vectors , where each query vector is de-

coupled to focus more distinctly on a specific group of objects. The operation of the 

query decoupling module is denoted by the function : 

 
where  is the function that adjusts the query vectors to ensure they focus 

on different sets of objects. The nature of this function can be tailored to the architecture 

and task at hand (e.g., a learnable transformation, attention mechanism, or clustering-

based approach). 

Let  be the adjusted set of query vectors, which are grouped 

into  clusters. The m-th group of queries is  . 

The one-to-one loss  is computed for each query within each 

group using the Hungarian matching. The one-to-one loss formula is: 

 
The total one-to-one loss for group m is: 

 
The one-to-many loss  is computed by weighting the one-to-one loss of 

each group with a dynamic coefficient: 

 

We figure out the structure of  that ,where  is the batch size, 

 is the number of queries per group,  is the number of groups, and  is the feature 

dimension. We first treat it as a concatenation of subgroups and 

.The silhouette coefficient is used to adjust the weight 

 of the one-to-many loss for each group . The silhouette coefficient is 

calculated as: 

 



 

where  represents the mean distance to other samples within the same cluster, 

and  represents the mean distance to the nearest cluster.  

Based on the silhouette coefficient, the weight adjustment rule is: 

 
Finally, the total loss for the optimized DETR model is the sum of the original 

DETR loss and the weighted one-to-many loss: 

 

4 Experiments 

4.1 Experimental Setup and Details 

Datasets:The experiments were conducted using the challenging BDD100K[18] da-

tasets and COCO2017 datasets[13]. They are all formatted in the COCO format. Model 

performance was evaluated using standard metrics, including mAP(mean Average Pre-

cision) and others. 

 

Table 2: The results of the models’ performance before and after the improvements of 

FUSION-DETR with the training parameters fixed. 

model datasets epoches mAP mAP50 APs APm APl 

focus-detr[21] bdd-10K 50 20.4 39.3 10.3 28.2 39.4 

focus-detr with FD bdd-10K 20 22.3 43.5 11.7 31.8 43.4 

deformable-detr[22] bdd-10K 50 22 43.4 12.7 31.8 43.4 

deformable-detr with 

FD 
bdd-10K 20 22.7 44.7 12.5 32.4 43.9 

deformable-detr bdd-100K 80 20.5 41.3 11.8 31 41.3 

deformable-detr with 

FD 
bdd-100K 30 23.8 44.3 12.4 32.3 43.4 

deformable-detr 
COCO201

7 
50 46.9 65.6 29.6 50.1 61.6 

deformable-detr with 

FD 

COCO20

17 
30 48 70.5 33.4 52 64.3 

 

DETR models:The FUSION-DETR method was applied to improve two existing 

DETR models: Deformable-DETR and Focus-DETR. These models were selected for 

their strong performance on large datasets with relatively low training costs, and be-

cause both lacked effective strategies for utilizing negative queries which can be com-

pensated by the FUSION-DETR method. 

 

 

Experimental Details:  The performance of the two models before and after applying 
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the FUSION-DETR method was compared on the BDD10K datasets. The training was 

performed on two NVIDIA 3080 GPU for 30 epochs. Additionally, the Deformable-

DETR model was also evaluated on the BDD100K datasets and COCO2017 datasets, 

using a single NVIDIA 3090 GPU, with 30 epochs of training for improvement ver-

sions. The ResNet-50 architecture was used for feature extraction in all experiments, 

and the Adam optimizer was employed for training. 

 

4.2 Main Results 

Table 3: The results of the performance of improved deformable-detr on the bdd100K da-

tasets in the ablation study. 

model epoches mAP mAP50 APs APm APl 

Deformable-detr[22] 80 20.5 41.3 11.8 31 41.3 

FD without decoupling module 20 22.5 42.4 11.5 30.8 41.5 

FD without dynamic weight 20 22.7 42.8 11.5 31 42.2 

FUSION-DETR 30 23.8 44.3 12.4 32.3 43.4 

 

Table 4: The results of the performance of improved deformable-detr on the 

bdd100K datasets with different λ2. 

model  epoches mAP mAP50 APs APm APl 

improved d-d 0.1 80 23.2 43.3 12 31.5 42.6 

improved d-d 0.2 80 23.8 44.3 12.4 32.3 43.4 

improved d-d 0.3 80 23.1 43.2 11.9 31.5 42.5 

 

This section presents the results from three different sets of experiments: (1)A compar-

ison of model performance before and after improvements, while holding training pa-

rameters constant; (2) The relationship between batch size and the performance of the 

optimized model; (3) The effect of the one-to-many loss weight on model performance. 

 

Comparison of Model Performance with Fixed Training Parameters:The results of 

this experiment are shown in Table.2. On the BDD10K datasets, the FUSION-DETR 

method improved the mAP50 score of Deformable-DETR by 1.3% and Focus-DETR 

(Zheng et al., 2023) by 4.2%. On the BDD100K datasets, FUSION-DETR improved 

the mAP50 score of Deformable-DETR by 3.0%. On the COCO2017 datasets, 

FUSION-DETR improved the mAP50 score of Deformable-DETR by 4.9%. These re-

sults demonstrate that the FUSION-DETR method can effectively enhance the perfor-

mance of DETR-based models and exhibits a certain degree of robustness across da-

tasets. 

 

Ablation Study:The experimental results are shown in Table 3.To evaluate the impact 

of the dynamic weighting mechanism and the decoupling module on the model’s per-

formance, I conducted comparative experiments on the BDD-100K datasets.  



 

In this study:Removing the decoupling module means that the query vectors are 

fed directly into the decoder without undergoing decoupling. Not using the dynamic 

weighting method means that the weight of the one-to-many loss remains fixed 

throughout the entire training process. 

The results show that both the decoupling module and the clustering-based dy-

namic weighting mechanism contribute to improving model performance to some ex-

tent. Specifically, the decoupling module increases the model’s mAP50 by 1.1, while 

the dynamic weighting mechanism further boosts it by 1.5. When these two components 

are combined, they achieve even better performance and increase the model’s mAP50 

by 3.0, demonstrating their complementary benefits in enhancing detection accuracy 

 

Effect of One-to-Many Loss Weight:In this experiment, the value of  was kept con-

stant during the first stage, and different values for  were selected to train the im-

proved Deformable-DETR on the BDD100K datasets. The results are presented in Ta-

ble.4. It was observed that selecting an appropriate value for  is critical, as both ex-

cessively high and low values lead to a decline in model performance. This demon-

strates the importance of fine-tuning the weight of the one-to-many loss to achieve op-

timal results. 

5 Conclusion 

In this study, I propose a method for fully leveraging the negative queries in DETR. 

This approach was implemented to enhance the performance of two DETR-based mod-

els, DeformableDETR and Focus-DETR, and was evaluated on the COCO2017 and 

BDD100K datasets. Experimental results confirm the efficacy of the proposed method. 

It is hoped that the FUSION-DETR method will contribute to further advancements in 

the field and inspire future research in object detection using transformer-based archi-

tectures. 

References 

1. Ahmed, M., Seraj, R., and Islam, S. M. S. (2020). The k-means algorithm: A comprehensive 

survey and performance evaluation. Electronics, 9(8):1295. 

2. Ashish, V. (2017). Attention is all you need. Advances in neural information processing 

systems, 30:I. 

3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. 

(2020).End-to-end object detection with transformers. In European conference on computer 

vision, pages 213–229. Springer. 

4. Chen, Q., Chen, X., Wang, J., Zhang, S., Yao, K., Feng, H., Han, J., Ding, E., Zeng,G., and 

Wang, J. (2023). Group detr: Fast detr training with group-wise one-to-many assignment. In 

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6633–

6642. 

5. Dai, Z., Cai, B., Lin, Y., and Chen, J. (2021). Up-detr: Unsupervised pre-training for object 

detection with transformers. In Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 1601–1610. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

6. Yao Z, Ai J, Li B, et al. Efficient detr: improving end-to-end object detector with dense 

prior[J]. arXiv preprint arXiv:2104.01318, 2021. 

7. Liu S, Li F, Zhang H, et al. Dab-detr: Dynamic anchor boxes are better queries for detr[J]. 

arXiv preprint arXiv:2201.12329, 2022. 

8. Wang Y, Zhang X, Yang T, et al. Anchor detr: Query design for transformer-based detec-

tor[C]//Proceedings of the AAAI conference on artificial intelligence. 2022, 36(3): 2567-

2575. 

9. Jia, D., Yuan, Y., He, H., Wu, X., Yu, H., Lin, W., Sun, L., Zhang, C., and Hu, H. (2023). 

Detrs with hybrid matching. In Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 19702–19712. 

10. Li, F., Zeng, A., Liu, S., Zhang, H., Li, H., Zhang, L., and Ni, L. M. (2023). Lite detr: An 

interleaved multi-scale encoder for efficient detr. In Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, pages 18558–18567. 

11. Li, F., Zhang, H., Liu, S., Guo, J., Ni, L. M., and Zhang, L. (2022). Dn-detr: Accelerate detr 

training by introducing query denoising. In Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition, pages 13619–13627. 

12. Meng D, Chen X, Fan Z, et al. Conditional detr for fast training convergence[C]//Proceed-

ings of the IEEE/CVF international conference on computer vision. 2021: 3651-3660. 

13. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and 

Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer vision-

ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, pro-

ceedings, part v 13, pages 740–755. Springer. 

14. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). 

Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Con-

ference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 

21–37. Springer. 

15. Mohammed, A. and Kora, R. (2023). A comprehensive review on ensemble deep learning: 

Opportunities and challenges. Journal of King Saud University-Computer and Information 

Sciences, 35(2):757–774. 

16. Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural 

networks. In International conference on machine learning, pages 6105–6114. PMLR. 

17. Wu, G. and Li, Y. (2021). Non-maximum suppression for object detection based on the 

chaotic whale optimization algorithm. Journal of Visual Communication and Image Repre-

sentation, 74:102985. 

18. Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., and Darrell, T. 

(2020). Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 

2636–2645. 

19. Zhang, G., Luo, Z., Yu, Y., Cui, K., and Lu, S. (2022). Accelerating detr convergence via 

semantic-aligned matching. In Proceedings of the IEEE/CVF conference on computer vision 

and pattern recognition, pages 949–958. 

20. Zhao, C., Sun, Y., Wang, W., Chen, Q., Ding, E., Yang, Y., and Wang, J. (2024). Msdetr: 

Efficient detr training with mixed supervision. In Proceedings of the IEEE/CVF conference 

on computer vision and pattern recognition, pages 17027–17036. 

21. Zheng, D., Dong, W., Hu, H., Chen, X., and Wang, Y. (2023). Less is more: Focus attention 

for efficient detr. In Proceedings of the IEEE/CVF international conference on computer 

vision, pages 6674–6683. 



 

22. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2010). Deformable detr: Deformable 

transformers for end-to-end object detection. arxiv 2020. arXiv preprint arXiv:2010.04159, 

3. 

23. Zong, Z., Song, G., and Liu, Y. (2023). Detrs with collaborative hybrid assignments training. 

In Proceedings of the IEEE/CVF international conference on computer vision, pages 6748–

6758. 


