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Abstract. Spiking Neural Networks (SNNs), inspired by biological neurons, 

have gained increasing attention for their energy efficiency and event-driven 

computation. However, their binary nature and complex dynamics make it diffi-

cult to train high-performance, low-latency models, limiting their progress com-

pared to Artificial Neural Networks (ANNs). To address these challenges, we 

propose PBSpikformer, a directly trainable spiking Transformer architecture that 

incorporates two novel components: Fourier-Phase Attention (FPA) and Dy-

namic Batch Context (DBC). FPA combines spike-based Q-K token attention 

with Spectral Cross-Modal Augmentation (SCMA) to effectively fuse spatial, 

temporal, and frequency-domain features while reducing computational com-

plexity. DBC introduces batch-level global signals to modulate local and global 

activations, improving gradient flow and training robustness. Extensive experi-

ments show that PBSpikformer outperforms existing SNN models across multi-

ple benchmarks, achieving 96.7% accuracy on CIFAR10-DVS—a 12.7% im-

provement over previous methods—and becomes the first directly trained SNN 

to surpass 90% accuracy on this dataset. 

Keywords: Spiking Neural Network, Fourier Transform, Attention Mechanism. 

1 Introduction 

Spiking Neural Networks (SNNs), inspired by biological neurons, enable energy-effi-

cient, event-driven computation through spike-based signaling. Recognized as the third 

generation of neural networks [1], SNNs exhibit rich temporal dynamics and map nat-

urally onto neuromorphic hardware [2, 3]. However, the binary and non-differentiable 

nature of spikes presents challenges in training deep SNNs. Recent works have ad-

dressed this via surrogate gradients [4, 5] and residual learning [6]. 

Meanwhile, Transformer models [7] have achieved impressive results in vision tasks 

[8-10]. Combining Transformers with SNNs—known as Spiking Transformers [3, 11, 

12]—has emerged as a promising direction for building high-performance, low-power 



 

models. In vision applications, Fourier phase information captures critical semantic fea-

tures like structure and contours, whereas amplitude reflects low-level textures [13-15].  

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Illustration of phase and amplitude contributions to image reconstruction: (a) Original 

image; (b) Reconstruction using amplitude; (c) Reconstruction using phase. 

As shown in  Fig. 1, phase preserves object shape even when amplitude is discarded, 

highlighting its importance for robust representation. 

In this paper, we propose PBSpikformer, a hierarchical spiking Transformer incor-

porating two key innovations: Fourier-Phase Attention (FPA) and Dynamic Batch Con-

text (DBC). Our principal contributions are listed as below: 

1. We propose FPA, a mechanism that extracts phase information from the Fourier 

spectrum to capture high-level semantic features like image structures and contours, 

while reducing computational complexity compared to traditional attention mecha-

nisms. 

2. We introduce DBC, a biologically inspired technique that dynamically adjusts local 

and global activation levels within a batch, improving gradient propagation, training 

robustness, and generalization in deep SNNs. 

3. We develop PBSpikformer, an energy-efficient hierarchical spiking Transformer in-

tegrating FPA and DBC, supporting end-to-end training and enabling deep explora-

tion of hierarchical representations in Transformer-based SNNs. 

4. Extensive trials confirm that PBSpikformer pushes the performance frontier, with 

96.7% accuracy on CIFAR10-DVS, surpassing the previous SOTA by 12.7%, and 

delivering competitive results on CIFAR10, CIFAR100, and DVS128 Gesture. 

2 Related Work 

2.1 Approaches to Training SNNs 

SNN-learing techniques are divided into two main broad camps. The first thing is con-

version of ANN-to-SNN [16, 17], where spiking neurons replace ReLU in pre-trained 

ANNs. While effective for reusing ANN structures, this method suffers from high la-

tency and strong dependence on the original architecture [18]. The second is direct 

training using surrogate gradients [4-6], which enables end-to-end optimization despite 

spike non-differentiability. This approach provides better flexibility, lower latency, and 

broader architectural adaptability, making it the mainstream choice in recent research. 
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2.2 Applications of Phase Information in Fourier Transform 

Extensive studies [13-15] show that phase information in the Fourier spectrum encodes 

key semantic features, such as image structure and contours, while amplitude mainly 

reflects low-level statistics like color and texture. Building on this, [19] enhanced image 

classification by manipulating phase in the frequency domain and reconstructing en-

riched features via inverse Fourier transform. Further, [20] emphasized that phase re-

mains consistent across domains, while amplitude varies, proposing amplitude mix for 

robust data augmentation. Inspired by these insights, we designed a Fourier-based at-

tention mechanism that prioritizes phase to improve semantic representation. 

3 Method 

3.1 Overall Architecture 

 

Fig. 2. Overview of PBSpikformer, a hierarchical spiking transformer architecture featuring Fou-

rier-Phase Attention (FPA) and MLP with Dynamic Batch Context (DBC). 

As shown in Fig. 2, PBSpikformer is a hierarchical spiking transformer architecture 

that integrates Fourier-Phase Attention (FPA) and MLPs with Dynamic Batch Context 

(DBC). The input tensor has shape 𝑇0 × 𝐻 ×𝑊 × 𝑛, where 𝑇0, 𝐻,𝑊, 𝑛 denote the time 

steps, height, width, and channels, respectively. For static images, 𝑇0 = 1, 𝑛 = 3; for 

neuromorphic data, 𝑇0 = 𝑇, 𝑛 = 2. The input is first split into 4 × 4 patches and em-

bedded into a spiking feature space of dimension 𝐶 using the spiking patch embedding 

with deformable shortcut A (SPEDS-A), forming Stage 1 with spatial resolution re-

duced to 
𝐻

4
×

𝑊

4
. Stage 2 further downsamples by a factor of 2 using SPEDS-B, reducing 

resolution to 
𝐻

8
×

𝑊

8
 and doubling channels to 2𝐶, with FPA and MLP-DBC applied. 

Stage 3 again reduces the resolution to 
𝐻

16
×

𝑊

16
 and increases channels to 4𝐶, incorpo-

rating Spiking Self-Attention (SSA) and MLP-DBC. The numbers of PBSpikformer 

blocks in each stage are defined as 𝑁1, 𝑁2, 𝑎𝑛𝑑𝑁3, respectively. This hierarchical struc-

ture enables efficient multiscale spiking representation learning for both static and dy-

namic inputs. 

3.2 Fourier-Phase Attention 

The design of FPA is illustrated in Fig. 3a, consisting of two parts: Q-K Token Atten-

tion and Spectral Cross-Modal Augmentation. Unlike Vanilla Self-Attention (VSA) [8] 



 

and Spiking Self-Attention (SSA) [11], which rely on full QKV triplets, FPA simplifies 

the computation by using only spike-based Q and K, followed by phase enhancement. 

As shown in Table 1, FPA achieves lower time and space complexity, making it highly 

suitable for event-driven architectures. 

Table 1. Computational Complexity Comparison of Attention Methods 

Methods Time Complexity Space Complexity Characteristics 

VSA 𝑂(𝑁2𝐷) 𝑂(𝑁2) Dense, Softmax-based 

SSA 𝑂(𝑁𝐷2) or 𝑂(𝑁𝐷2) 𝑂(𝑁𝐷) Sparse, Spike-based 

FPA (Ours) 𝑂(𝑇𝑁𝐷) 𝑂(𝑁𝐷) Sparse, Spike + FFT-based 

Q-K Token Attention. For clarity, we assume a single time step T = 1 and use single-

head attention. The input spike tensor 𝑆 is converted into query (𝑄) and key (𝐾) repre-

sentations through convolution, batch normalization, and spiking activation: 

 𝑄 = SN𝑄 (BN(Conv(𝑆))) , 𝐾 = SN𝐾 (BN(Conv(𝑆))) (1) 

Given the spike-form matrices 𝑄,𝐾 ∈ ℝ𝑁×𝐷 , we compute a token-wise attention 

vector 𝐴𝑡 ∈ ℝ𝑁×1 as: 

 𝐴𝑡 = SN(∑ 𝑄𝑖,𝑗
𝐷
𝑖=0 ), 𝑋’ = BN(Conv(𝐴𝑡 ⊗𝐾)) (2) 

Here, 𝐴𝑡 represents the binarized importance of each token, obtained by row-wise 

summation over 𝑄 followed by a spiking neuron layer. The Hadamard product ⊗ ap-

plies token-wise masking on 𝐾, allowing attention to selectively emphasize informative 

spikes. The result is then refined via convolution and normalization to produce 𝑋′. 
Since spike-based attention may miss certain global structures, we later fuse Fourier 

phase information to recover complementary frequency-domain semantics. 

Spectral Cross-Modal Augmentation. We apply the one-dimensional Discrete Fou-

rier Transform (1D DFT) along the temporal dimension to transform the spike-based 

spatial features into spectral features. Since the 1D DFT is efficiently computed using 

the implementation provided by Python’s NumPy package, we omit the temporal di-

mension from Fig. [2] to highlight other essential operations. Specifically, given an in-

put temporal sequence 𝑥[𝑖] of length 𝑛, the spectral representation is computed as fol-

lows: 

 𝑋[𝑘] = ℱtime(𝑥[𝑖]) = ∑ 𝑥𝑛−1
𝑖=0 [𝑖]𝑒−𝑗

2𝜋𝑘𝑖

𝑛 , 𝑘 = 0,1, … , 𝑛 − 1 (3) 

where 𝑋[𝑘] ∈ ℂ𝑑 denotes the complex-valued spectral tensor at frequency index 𝑘, 𝑗 is 

the imaginary unit, and ℱtime(⋅) represents the 1D DFT applied along the temporal axis. 

After obtaining the frequency-domain representation 𝑋[𝑘], we separate each fre-

quency component into its real and imaginary parts: 
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 𝑋[𝑘] = Re(𝑋[𝑘]) + 𝑗Im(𝑋[𝑘]) (4) 

where Re(𝑋[𝑘]) and Im(𝑋[𝑘]) are the real and imaginary components of 𝑋[𝑘], respec-

tively. The phase information 𝜃[𝑘] of each complex frequency component is subse-

quently extracted as the argument of the complex spectral number, defined by: 

 𝜃[𝑘] = angle(𝑋[𝑘]) = atan2(Im(𝑋[𝑘]),Re(𝑋[𝑘])) (5) 

where (X[k]) denotes the angle extraction operation, which in practice is implemented 

directly using Python’s NumPy function np.angle() for numerical stability and effi-

ciency, and it internally utilizes the atan2 function to accurately determine the phase 

angle in the range [−𝜋, 𝜋]. 
Finally, we integrate this frequency-domain phase information 𝜃[𝑘] into the spatial-

domain features obtained from the QKTA module, denoted as 𝑋′. This fusion enhances 

multimodal representation, increases feature diversity, and improves the semantic ex-

pressiveness of the model. The resulting features pass through a spiking neuron layer, 

preserving the spike-based processing, sustaining biological interpretability, and low-

ering energy consumption. 

 

(a) 

 

(b) 

Fig. 3. Illustration of PBSpikformer components: (a) QKTA and SCMA modules in FPA; (b) 

Batch-level averaging in DBC. 

3.3 Dynamic Batch Context 

The activation of neurons is influenced by both local input and global brain states, such 

as attention [21, 22]. To simulate this biological mechanism, we propose DBC module, 

whose operational flow is illustrated in Fig. [fig:DBC]. Furthermore, inspired by the 

Spike-Element-Wise (SEW) addition strategy in residual spiking networks [6], DBC 

introduces a batch-level global signal to balance local and global activation levels be-

fore processing by spiking neurons, a process known as Activation-Pre-Batch-Context 

(APBC). Introducing APBC effectively improves gradient flow, stability, and feature 

representation in deep SNNs. In summary, DBC serves as an activation modulation 

mechanism designed to enhance the learning dynamics and robustness of deep SNNs 



 

by regulating sample activation via batch-level global signals, thus improving SNN 

performance in a biologically plausible and computationally efficient manner. 

The core idea of DBC is that the activation of each sample in a batch should refer to 

the global activation pattern of the entire batch. To this end, DBC introduces a batch 

mean activation signal 𝜇, calculated as: 

 𝜇 =
1

𝐵
∑ 𝑥𝑖
𝐵
𝑖=1  (6) 

where 𝑥𝑖 denotes the activation the 𝑖-th sample, and 𝐵 represents the batch size. Then, 

the activation 𝑥𝑖 of each sample is modulated based on the global signal 𝜇: 

 𝑥′ = 𝛼𝑥𝑖 + (1 − 𝛼)𝜇 (7) 

where 𝛼 ∈ [0,1] is the balance factor that controls the weighting of local activation and 

the global signal. Experimental results show that manually setting 𝛼 (e.g., 𝛼 = 0.5) 

yields better performance, and the modulated signal 𝑥′ is then passed on to the spiking 

neural network for subsequent processing. 

3.4 Theoretical Energy Consumption Calculation Analysis 

In SNNs research, energy consumption is typically analyzed using theoretical estimates 

rather than specific hardware implementations, primarily for qualitative comparisons 

with ANNs [23, 24]. These estimates assume that BN layers can be combined with 

convolutional layers due to the homogeneity of convolution operations, thus neglecting 

the energy cost of BN layers during deployment [25]. The energy consumption of 

PBSpikformer is calculated based on prior works [23-27], assuming Multiply-Accumu-

late (MAC) and accumulate (AC) operations on 45 nm hardware. The energy per MAC 

and AC operation is 𝐸MAC = 4.6 pJ and 𝐸AC = 0.9 pJ, respectively. The total energy 

consumption of PBSpikformer is given by: 

 𝐸PBSpikformer = 𝐸AC(∑ 𝑆𝑂𝑃𝑠Conv
𝑖𝑁

𝑖=2 +∑ 𝑆𝑂𝑃𝑠FPA

𝑗𝑀
𝑗=1 + ∑ 𝑆𝑂𝑃𝑠SSA

𝑘𝑍
𝑘=1 ) +

𝐸MAC(𝐹𝐿𝑂𝑃𝑠Conv
1 + ∑ 𝐹𝐿𝑂𝑃𝑠DBC

𝑖𝑀+𝑍
𝑖=1 + ∑ 𝐹𝐿𝑂𝑃𝑠SCMA

𝑗𝑀
𝑗=1 ) (8) 

where Synaptic Operations (SOPs) and FLoating-point Operations (FLOPs) refer to the 

number of spike-based AC operations and the number of floating-point MAC opera-

tions, respectively. 

4 Experiments 

In this section, we evaluate the performance of the proposed method on neuromorphic 

datasets, including CIFAR10-DVS[31] and DVS128 Gesture[32], as well as on static 

datasets, such as CIFAR[33], which encompasses both CIFAR10 and CIFAR100. Ad-

ditionally, several ablation trials are performed to gauge how each component of the 

proposed methods influences overall performance. 
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Table 2. Performance comparison of our method with existing methods on CIFAR10/100. 

Methods Architecture 
Param 

(M) 

Time 

Step 

CIFAR10 

Acc(%) 

CIFAR100 

Acc(%) 

Hybrid training[28] ResNet-20/VGG-11a 9.27 125 92.22 67.87 

STBP[4] CIFARNet 17.54 12 89.83 - 

STBP-tdBN[29] ResNet-19 12.63 4 92.92 70.86 

TET[30] ResNet-19 12.63 4 94.44 74.47 

MS-ResNet[26] 
ResNet-110 - - 91.72 66.83 

ResNet-482 - - 91.90 - 

ANN[11] 
ResNet-19b 12.63 1 94.97 75.35 

Transformer 9.32 1 96.73 81.02 

Transformer-based 

SNNs 

Spikformer[11] 9.32 4 95.51 78.21 

QKFormer[12] 6.74 4 96.18 81.15 

PBSpikformer 6.74 4 96.48 81.43 

a X1/X2 denotes the architecture or time step for CIFAR10 and CIFAR100. 
b denotes self-implementation results by [30]. 

4.1 Static Datasets Classification 

For CIFAR datasets, PBSpikformer uses four blocks across three stages (N1, N2, N3 = 

1, 1, 2). The AdamW optimizer is used with a batch size of 64, a learning rate of 

1 × 10−3  for CIFAR-10 and 2 × 10−3  for CIFAR-100, and training lasts for 700 

epochs with a cosine annealing scheduler and 20-epoch warm-up. The train:test ratio is 

5:1. Following DeiT[34], we apply RandAugment[35], random erasing[36], and sto-

chastic depth[37] for data augmentaion. 

As Table 2 shows, PBSpikformer outperforms prior work on both CIFAR-10 and 

CIFAR-100 datasets. On CIFAR-10, it achieves 96.48%, outperforming most state-of-

the-art methods, including QKFormer by 0.3% and falling just 0.25% behind the con-

ventional Transformer model. On CIFAR-100, PBSpikformer reaches 81.43%, surpas-

sing QKFormer and Transformer by 0.28% and 0.41%, respectively, confirming its po-

sition as a leading SOTA model in SNNs. 

4.2 Neuromorphic Datasets Classification 

In this experiment, we evaluate a compact version of PBSpikformer (mini-BatchSpike-

former), which consists of one encoder block in Stage 2 (N2=1) and one in Stage 3 

(N3=1), while skipping Stage 1 (N1=0). For the CIFAR10-DVS dataset, the model is 

trained with a batch size of 16 for 500 epochs, using a learning rate of 5 × 10−4. For 

the DVS128 Gesture dataset, the batch size is also 16, with a learning rate of 1 × 10−3 

and 200 epochs. The train:test ratio for both datasets is 9:1, and all other experimental 

settings align with those used for CIFAR-10 and CIFAR-100 to ensure consistency. 



 

Table 3. Performance comparison of our method with existing methods on DVS128 Gesture and 

CIFAR10DVS. 

Methods Architecture 
Time 

Step 

DVS128 

Acc(%) 

CIFAR10DVS 

Acc(%) 

TA-SNN[38] CNN-based SNN[39] 60/10 98.6 72.0 

STBP-tdBN[29] ResNet-17/19 40/10 96.9 67.8 

SEW-ResNet[40] 7B-Net/Wide-7B-Net 16 97.9 74.4 

SALT[41] VGG-11 -/20 - 67.1 

DSR[42] VGG-11 -/10 - 77.3 

MS-ResNet[26] MS-ResNet20 - - 75.6 

Transformer-based 

SNNs 

Spikformer[11] 16 98.3 80.9 

QKFormer[12] 16 98.6 84.0 

PBSpikformer 16 99.3 96.7 

Table 3 presents the performance of PBSpikformer on the DVS128 Gesture and 

CIFAR10-DVS datasets, comparing it with state-of-the-art methods. PBSpikformer 

achieves 99.3% accuracy on the DVS128 Gesture dataset, matching the best-perform-

ing S-Transformer and outperforming Spikformer and QKFormer by 1% and 0.7%, 

respectively. On CIFAR10-DVS, it reaches 96.7%, significantly surpassing QKFormer 

and S-Transformer by 12.7% and 16.7%, respectively. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Ablation study results of DBC: (a) Smoothed gradient trends with confidence intervals; 

(b) Accuracy under different batch sizes. 

4.3 Ablation Study 

We run a suite of ablation studies to quantify each module’s contribution. First, we 

analyze how DBC contributes to gradient stability and robustness under varying batch 

sizes. As shown in Fig. 4a and Fig. 4b show that DBC leads to lower and more stable 

gradient norms across layers. Moreover, Fig. 4c demonstrates that while smaller batch 

sizes (8 and 16) yield higher accuracy due to finer updates, DBC consistently enhances 

performance across all batch sizes. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Table 4. Effect of The Proposed Modules. 

Methods Mem Usage (MB) Training Speed (FPS) Accuracy (%) 

Baseline 41.38 205 84 

+ DBCa 41.38 198 95 

+ DBC’b 41.39 203 85.4 

+ FPA 42.26 205 84.3 

+ DBC + FPA 42.26 206 95.2 

a denotes 𝛼 is set to 0.5, b denotes 𝛼 is learnable. 

We further evaluate the individual contributions of DBC and FPA. As shown in Table 

4, introducing DBC with a fixed coefficient (𝛼 = 0.5) boosts accuracy from 84% to 

95%, with minimal overhead in memory and training speed. In contrast, making 𝛼 

learnable leads to unstable results. FPA alone provides only a modest improvement, but 

combining FPA with DBC achieves the best result—95.2% accuracy—without com-

promising efficiency. And t-SNE visualizations (see Fig. 5) show improved class sep-

aration when DBC and FPA are applied. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. t-SNE visualization under different settings: (a) baseline, (b) with FPA, (c) with DBC, 

and (d) with FPA and DBC modules. 

Table 5. Theoretical energy evaluation on CIFAR100. 

Methods Architecture Param (M) OPs (G) Power (mJ) Accuracy (%) 

ANN Transformer[11] 9.32 0.51 2.37 81.02 

SNN 

Spikformer[11] 9.33 0.30 0.30 77.77 

QKformer[12] 6.74 0.33 0.34 81.15 

PBSpikformer 6.74 0.37 0.36 81.43 

Finally, we evaluate the theoretical energy efficiency of PBSpikformer. As shown in 

Table 4, our model achieves a low energy consumption of 0.36 mJ on CIFAR100, rep-

resenting a 6.7× reduction compared to ANN-based Transformers. Although slightly 

higher than Spikformer (by 20%) and QKformer (by 6%), PBSpikformer attains the 

highest accuracy (81.43%), demonstrating an excellent balance between performance 

and energy efficiency. 



 

5 Conclusion 

In this paper, we present PBSpikformer, a novel SNN architecture that integrates Fou-

rier-Phase Attention (FPA) and Dynamic Batch Context (DBC) to enhance image clas-

sification. By leveraging spectral phase features and batch-level global activation sig-

nals, our model captures domain-invariant semantics and improves training stability. 

Inspired by biological principles, this design addresses key limitations of traditional 

SNNs. PBSpikformer achieves state-of-the-art performance on both static and neuro-

morphic datasets, with strong energy efficiency. Our results highlight the potential of 

combining spiking dynamics with attention mechanisms for energy-constrained appli-

cations. Future work will extend this framework to real-time and large-scale scenarios. 
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