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Abstract. Handwritten text detection is a crucial step in converting handwritten 

text images into editable text. However, in practical applications, text detection 

still faces numerous challenges, including the complexity of environmental back-

grounds, diversity of target scales, and the contact between complex characters. 

To address these challenges, this paper proposes a BGE-YOLO model for hand-

written text detection.  Firstly, a new feature fusion module is designed to achieve 

bidirectional information flow through cross-scale connections and rapid plan-

ning, ensuring effective integration of features across multiple scales. On this 

basis, a Global Attention Mechanism (GAM) is incorporated, which reduces in-

formation loss and amplifies the interaction of global dimensional features, ena-

bling the model to extract meaningful information in complex backgrounds. Ad-

ditionally, the incorporated Multi-Scale Attention (EMA) module utilizes a novel 

cross-spatial learning approach, enhancing the interaction of local features and 

further improving feature fusion efficiency. Furthermore, a data augmentation 

strategy enriches the self-constructed handwritten text image dataset, further im-

proving the model's generalization ability. Experimental results indicate that 

compared to the YOLOv8 model, the mAP50 and accuracy P of this model have 

increased by 2.8% and 3.9%, respectively. This validates the advantages of the 

BGE-YOLO model in handwritten text detection and facilitates more convenient 

information extraction from handwritten text. 

Keywords: handwritten text, text detection, BGE-YOLO, BiFPN, Global At-

tention Module, EMA, self-constructed dataset. 

1 Introduction 

With the advent of the internet era and the widespread use of smart terminal devices, 

various aspects of people's lives are being recorded and preserved in the form of pho-

tographs. In these natural scene images, both printed and handwritten text play signifi-

cant roles. Printed text is commonly found in road signs, license plates, and product 



labels. Handwritten text is prevalent in contexts such as handwritten notes, memos, and 

whiteboards in classrooms and meeting rooms. Thus, Chinese Handwritten Character 

Detection (CHCD) has become a topic of great interest to researchers [1]. CHCD has a 

wide range of application scenarios in various business systems, including document 

digitization, automated logistics, signature verification, and medical services. However, 

as shown in Fig. 1, several factors significantly increase the difficulty of character seg-

mentation. These include the diversity of handwriting styles, complex character over-

laps, variations in character shapes, and varying image backgrounds. These factors ad-

versely affect text detection and recognition performance [2]. Therefore, proposing a 

method that can accurately and efficiently locate the positions of handwritten text has 

become an important research topic today. 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Chinese handwritten text in various backgrounds 

 

Fig. 2. The mAP@0.5 variation curves for YOLOv5, YOLOv8, YOLOv11, and the model pro-

posed in this paper under the condition of no pre-trained weights.  

To tackle these challenges, we propose an improved Chinese handwritten text detec-

tion algorithm based on YOLOv8, referred to as BGE-YOLO. This method introduces 

modules such as GAM, BiFPN, and EMA to enhance the backbone and neck layers of 

the original YOLOv8. These improvements not only facilitate the fusion of attention 

features across channel and spatial dimensions, enhancing the model's ability to extract 

features from handwritten Chinese text, but also achieve a better balance between net-

work efficiency and performance. Moreover, they accelerate the convergence of model 
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loss, enabling the model to produce more accurate localization results. Finally, a data 

augmentation strategy enriches the handwritten text image dataset, further improving 

the model's generalization ability. Our proposed model achieves outstanding results on 

self-constructed dataset, as shown in Fig. 2. The contributions of this paper are as fol-

lows: 

• Considering the limited availability of line-level Chinese handwritten text datasets 

with bounding boxes and character category labels, we independently created and 

annotated a dataset containing 3,000 images. This dataset includes the handwriting 

styles of 20 individuals and covers 240 commonly used Chinese characters. 

• To enhance the model’s ability to extract and fuse effective features, we introduced 

the GAM module to reduce information loss in complex backgrounds, improved 

YOLOv8’s feature fusion strategy to better integrate shallow and deep features for 

small-target detection, and incorporated EMA-S and EMA-M modules to enhance 

feature representation across different receptive fields while maintaining computa-

tional efficiency. 

• While improving the accuracy of text detection, we explored an approach based on 

YOLO's detection and classification framework to efficiently detect and predict spe-

cific handwritten Chinese characters under the constraints of a small dataset and a 

limited set of character classes. 

2 Related Work 

2.1 Traditional Research Methods 

Previous research on Chinese handwritten text detection can be broadly categorized 

into traditional approaches and computer vision-based methods. Traditional approaches 

primarily include two methods: template matching [3] and feature extraction. For ex-

ample, early researchers compared handwritten characters with predefined character 

templates and selected the template with the highest similarity as the detection result 

[4]. Traditional feature extraction methods achieve character detection by segmenting 

the text into individual characters and extracting features such as stroke width and di-

rection [5]. However, these methods rely on predefined templates based on manually 

classified handwritten samples, making it difficult to adapt to variations in handwriting 

styles and layouts. As a result, computer vision methods capable of accurately and ef-

ficiently locating text positions have gradually gained widespread application. 

2.2 Traditional Machine Learning Methods 

Research in computer vision can primarily be divided into traditional machine learning 

methods and deep learning methods. Traditional machine learning methods include 

Hidden Markov Models (HMM) [6], Support Vector Machines (SVM) [7], K-Nearest 



Neighbors (K-NN) [8], among others. Xiao et al. [9] utilized an SVM-based video text 

detection method using color, edge, and HOG features, achieving high recall and accu-

racy rates in both single-frame and three-frame text detection. Xia et al. [10] adopted a 

discrete HMM to detect spam SMS by utilizing word sequence information, achieving 

a precision of 89.20% and a recall rate of 81.60%. However, traditional machine learn-

ing methods are computationally expensive and inefficient for large-scale data, limiting 

their practical applicability. In contrast, deep learning-based methods have been widely 

applied in Chinese handwritten text detection. 

2.3 Two-Stage Deep Learning Methods 

Deep learning methods can be primarily categorized into two-stage deep learning meth-

ods and single-stage deep learning methods. In handwritten text detection, two-stage 

deep learning methods typically involve two primary steps: firstly, detecting text re-

gions (such as characters, words, or lines); secondly, performing regression on these 

detected regions. Text region detection methods primarily encompass the R-CNN series 

of algorithms, including the original R-CNN [11], Faster R-CNN [12], and Mask R-

CNN [13], among others. Joseph Raj et al. [14] utilized Faster R-CNN to extract po-

tential text regions and employed a simple yet effective classifier for prediction, achiev-

ing an F1 score of 0.70 on the MSRA-TD500 dataset. Qiu et al. [15] proposed a method 

that over-segments text line images into character segments to generate candidates, 

constructing a segmentation-recognition grid. Recognition scores and semantic context 

are then used to determine the optimal path for character segmentation and recognition. 

Although two-stage deep learning methods have achieved promising results in hand-

written text detection, they still face certain challenges, including high computational 

resource demands [16], which limit their application on resource-constrained devices. 

Additionally, these methods exhibit high computational complexity and processing 

time [17], making it difficult to meet the requirements of real-time applications. Thus, 

single-stage deep learning methods have gradually gained widespread recognition and 

have become a crucial approach for handwritten text detection. 

2.4 Single-Stage Deep Learning Methods 

Single-stage deep learning methods primarily include the YOLO [18] series, SSD [19], 

RetinaNet [20], and others. Compared to Faster R-CNN, the YOLO model adopts a 

single-stage object detection architecture, which does not include a Region Proposal 

Network (RPN) [21]. Wang et al. [22] proposed a new text detection method called R-

YOLO, which is a powerful real-time convolutional neural network (CNN) model ca-

pable of effectively detecting text in any orientation, achieving an F-measure score of 

82.3%. Wang et al. [23] designed a new feature fusion structure based on an improved 

YOLOv3 algorithm, achieving a defect detection performance of 89.2%. Subsequently, 

YOLOv5 [24] has further optimized the YOLO series, showing significant improve-

ments over YOLOv3 [25] in detection accuracy, network structure compactness, and 

the versatility of application scenarios. Thereafter, YOLOv7 [26] optimized convolu-

tional operation speed and model size, achieving further performance enhancements. 
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Khan et al. [27] proposed an Arabic text detection model based on YOLOv7, achieving 

an accuracy of 91.30%, which is an improvement of 2.80% over the YOLOv5 model. 

This method achieves high precision while requiring low computational resources, 

making it a promising solution for text detection applications. 

Subsequently, YOLOv8 [28] has made significant strides in detection accuracy and 

speed. However, it still overlooks issues related to the classification and localization 

loss of small targets. In summary, although previous researchers have made positive 

contributions in this field, their studies have not sufficiently addressed issues such as 

background complexity and target scale diversity. Therefore, to tackle these challenges, 

this paper proposes a novel BGE-YOLO model for handwritten text detection. 

3 Proposed Method 

The improved network framework BGE-YOLO is illustrated in Fig. 3. Specifically, in 

the feature extraction module, we introduced the GAM module, which enhances the 

interaction of global-dimensional features to reduce the loss of critical information. 

This method can enhance the model's ability to detect targets in complex backgrounds. 

In the feature fusion module, we replaced the Concat structure in YOLOv8 with BiFPN-

Concat2 and BiFPN-Concat3. By employing a bidirectional cross-scale connection 

structure, the method enhances the transfer and fusion of semantic information between 

feature maps of different scales and network levels, enabling the network to better focus 

on regions containing small and medium-sized targets. To supervise the recognition of 

different targets with varying receptive fields, we integrated the EMA-S and EMA-M 

modules before the small-scale and medium-scale detection heads, respectively. This 

module combines channel and spatial information using a multi-scale parallel sub-net-

work structure, focusing on preserving information from each channel while reducing 

computational overhead, thereby further enhancing fusion efficiency. These modules 

enhance the extraction and fusion of key information, making the model more accurate 

in detecting and recognizing small and medium-sized targets. This optimization im-

proves the model's ability to handle handwritten text detection tasks, especially in ef-

fectively addressing varying text sizes and complex background scenarios. 



 

Fig. 3. BGE-YOLO Network Structure 

3.1 Bidirectional Feature Pyramid Network 

In the process of handwritten text detection, challenges such as the diversity of text 

sizes and shapes, as well as complex character overlaps, pose significant difficulties. 

YOLOv8 adopts a strategy that combines the Feature Pyramid Network (FPN) and Path 

Aggregation Network (PANet) to integrate multi-scale feature information. This ap-

proach increases the model's parameter count and computational burden while failing 

to fully account for the weight differences between various input features. Therefore, 

this study introduces the Bidirectional Feature Pyramid Network (BiFPN) [29], as 

shown in Fig. 4(b). The network achieves dynamic feature fusion through learnable 

weights, rather than relying on simple concatenation or addition. This strategy allows 

the network to adaptively adjust the contribution of different features based on task-

specific requirements, thereby significantly improving overall performance. Moreover, 

BiFPN introduces skip connections between the initial input and output nodes. This 

approach allows the fusion of more features without significantly increasing computa-

tional cost. 
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(a)                                                             (b) 

Fig. 4. (a)Structure of PANet (b)Structure of BiFPN 

To address the varying contributions of input features at different resolutions to 

handwritten text detection, this study adopts a rapid normalized fusion method with 

additional weights. This method performs feature fusion by dividing each weight by 

the sum of all accumulated weights, enabling the network to recognize the importance 

of each feature layer. As a result, this strategy significantly improves the performance 

of handwritten text detection tasks. The specific calculation process is shown in the 

following equation: 

 i

i

i j

j

w
O I

w
= 

+



 (1) 

In the formula, O  represents the output feature, iI  denotes the input feature, and 

w i  indicates the node weight. It is important to note that the learning rate   is set to 

0.0001 to prevent the occurrence of unstable results. 

 

Fig. 5. Structure of the GAM module, which utilizes channel and spatial attention mechanisms 

to process the final output of the given feature map. 
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Fig. 6. Structure of the channel attention module 

 

Fig. 7. Structure of the spatial attention module 

3.2 Global Attention Mechanism 

In practical handwritten text detection, various complex detection scenarios are often 

encountered. The complexity of the background in handwritten text images signifi-

cantly increases the difficulty of detection. The backbone layer of YOLOv8 employs 

the C2f module as its basic building block, which features a lower parameter count and 

excellent feature extraction capabilities. However, while this design enhances feature 

extraction capabilities, it does not improve the detection of small targets in complex 

backgrounds. Additionally, the attention in the backbone layer is typically focused on 

two dimensions, potentially failing to fully utilize information across all three dimen-

sions. To improve the detection accuracy of the model, a Global Attention Mechanism 

(GAM) [30] was introduced into the backbone network module. By effectively captur-

ing critical information across three dimensions, the model's capacity for feature ex-

traction in complex backgrounds has been enhanced. The detailed architecture of this 

module is shown in Fig. 5. 

The GAM module enhances global-dimensional target interaction features, thereby 

reducing the loss of critical information. It adopts the sequential channel-spatial atten-

tion mechanism from CBAM while introducing new channel and spatial attention mod-

ules to replace the submodules of the original CBAM model. The structures of the new 

channel and spatial attention modules are shown in Fig. 6 and Fig. 7. The entire process 

is illustrated in Eqs. (2) to (3), while the following equations define the intermediate 

stages and outputs of the specific input feature maps: 

 2 1 1( )CF M F F=   (2) 

 3 2 2( )SF M F F=   (3) 

Permutation Reverse Permutation

F1

C x W x H MLP sigmoid

Mc(F1)

W x H x C

F2

7X7

Conv

7X7

Conv

Ms(F2)

C  x H x W C/r  x H x W C  x H x W

sigmoid



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

In the formula, CM  and SM  denote the channel attention module and the spatial 

attention module, respectively;   signifies multiplication; 1F  , 2F  ,and 3F  represent 

the input  features, intermediate features, and output features, respectively. 

3.3 EMA Attention Mechanism 

In handwritten text detection tasks, due to the small size of the text and significant 

background interference, missed detections frequently occur. To address this issue, the 

model needs to possess stronger contextual capture capabilities and enhanced local fea-

ture interaction abilities. 

The Channel Attention (CA) mechanism learns the correlation between channels 

through global average pooling and fully connected layers, and it normalizes the atten-

tion weights using the softmax function to achieve the fusion of cross-channel and spa-

tial information. However, this method incurs high computational costs, limiting its 

practical application. The EMA module builds upon this foundation by employing par-

allel subnetwork blocks to effectively capture cross-dimensional interactions and es-

tablish dependencies between different dimensions [31]. Specifically, the EMA inte-

grates more contextual information into the intermediate feature map by concurrently 

utilizing 3×3 and 1×1 convolutions, thereby achieving multi-channel information fu-

sion and optimizing feature grouping. By introducing this cross-dimensional logical 

reasoning capability, our model enhances the semantic expression ability between con-

texts while reducing computational overhead, thereby alleviating the issue of missed 

detections in handwritten text detection tasks. The structure is shown in Fig. 8. 

Assume the input feature is represented as: x C H WR   , where H and W denote the 

height and width of the feature map, and C represents the number of channels in the 

feature map. The EMA module divides the channels C evenly into G groups，with 

each group containing /C G  channels , while maintaining the spatial dimensions as 

H W  , i.e., / /C G H W   . Three parallel computational paths are applied to each 

group of features. Among these, two paths involve subnetworks with 1 × 1 convolution 

kernels, which perform 1D global average pooling along the H and W directions. The 

formula for the pooling operation is as follows: 

 
0

1
z ( ) ( , )H

C i W CH X H i
W

 =   (4) 

 0

1
z ( ) ( , )

C

W

j H CW X j W
H

 =   (5) 



 

Fig. 8. Structure of the EMA attention mechanism 

In Eqs. (4) to (5), CX represents the input characteristics of channel C. z ( )H

C H  and 

( )W

Cz W represent the pooling results along fixed width and height, respectively, used 

to capture information from different spatial locations. Afterward, concatenation and 

group normalization (GN) are applied to perform intra-group statistics, enhancing the 

ability to extract local features. Next, 2D pooling is conducted to further compress the 

features. This specific implementation can be represented by Eq. (6). 

 
1

( , )
C

H W

Cj i
Z X i j

H W
=


   (6) 

where cZ  represents the result of performing 2D pooling on the features. The fea-

tures extracted from the subnetworks are aggregated, passed through a Sigmoid activa-

tion function, and then element-wise multiplied with the original features. Finally, the 

enhanced features are reshaped to align with the initial input size, generating the final 

output. 
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4 Experiments 

4.1 Dataset 

The dataset used in this study is a self-constructed dataset for line-level handwritten 

Chinese character detection, which includes bounding boxes and character category la-

bels. The dataset consists of 3,000 images, encompassing different writing styles from 

20 individuals and including 240 common Chinese characters. These characters were 

randomly selected from the first-level character list of the General Standard Chinese 

Character Table. Each character is treated as a separate category, and bounding boxes 

and category labels are annotated for each character. Data augmentation was then per-

formed, including operations such as blurring, noise processing, and image scaling. Fi-

nally, the dataset was divided into training, validation, and test sets in a ratio of 7:1:2. 

As shown in Fig. 9, this dataset includes several challenging scenarios encountered in 

line-level handwritten text detection, such as complex character interactions, diversity 

in the size of handwritten characters, and variations in writing styles. 

   

   

   

   

   

   

Fig. 9. A subset of the dataset illustrates the irregular handwriting styles of different individuals. 

Various data processing techniques were applied, including binarization, salt-and-pepper noise, 

and Gaussian blur. 

4.2 Experimental Environment and Evaluation Metrics 

Our experimental environment is based on a Linux operating system and utilizes a hard-

ware platform equipped with an NVIDIA Tesla V100 32GB GPU, employing the 



PyTorch deep learning framework. Our hardware configuration includes 64GB of 

DDR4 memory, providing sufficient memory resources for the experiments. During 

training, we uniformly employed the Adam optimizer, setting the number of epochs to 

120 and the batch size to 32, while not utilizing any pre-trained weights. 
To comprehensively evaluate the effectiveness of the proposed model in text 

detection, this study employed four fundamental evaluation metrics: precision (P), recall 
(R), mean average precision (mAP), and F1 score. The corresponding computational 
formulas are presented below (refer to Eqs. (7) to (10)): 

 
TP

P
TP FP

=
+

 (7) 

 
TP

R
TP FN

=
+

 (8) 

 
2* *

1
P R

F
P R

=
+

 (9) 

 
1

( )
Q

q

AP q

mAP
Q

=
=


 (10) 

Precision quantifies the proportion of actual positive samples among the predicted 

positive categories made by the model, while Recall measures the proportion of accu-

rately predicted actual positive samples. Mean Average Precision (mAP) is the average 

precision calculated at different levels of recall, serving as a comprehensive metric for 

model evaluation. mAP50 denotes the average precision at an IoU threshold of 0.5, and 

mAP50:95 denotes the average precision averaged over IoU thresholds from 0.5 to 

0.95. F1 score is the harmonic mean of precision and recall, utilized for a comprehen-

sive assessment of the model's accuracy and stability. 

4.3 Results 

To assess the performance of the proposed BGE-YOLO model, we performed a com-

parative evaluation against the baseline network YOLOv8 on the same test dataset after 

training. The specific results can be found in Table 1. 

Table 1. Comparison results with the baseline model. The best results in each column are in bold. 

Model Precision(%) Recall(%) F1(%) mAP50(%) mAP50:95(%) 

YOLOv8 84.0 85.5 81.2 92.8 81.7 

Ours 87.9 89.1 85.0 95.6 83.8 

The data presented in Table 1 indicates that the BGE-YOLO model exhibits signifi-

cant improvements over YOLOv8n across several metrics, including accuracy, recall, 

F1 score, and mAP50, with increases of 3.9%, 3.6%, 3.8%, and 2.8%, respectively. The 
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proposed model not only enhances detection performance but also improves the ability 

to perceive targets of varying scales.  

4.4 Ablation Experiments 

To verify the effectiveness of each module in the proposed BGE-YOLO model, we 

conducted ablation experiments comparing the performance of different modules on 

the same test dataset. Detailed results are presented in Table 2. 

Table 2. Results of the ablation experiments. 

Model Precision(%) Recall(%) F1(%) mAP50(%) mAP50:95(%) 

YOLOv8 84.0 85.5 81.2 92.8 81.7 

+BiFPN 83.9 87.7 83.0 93.9 82.5 

+BiFPN+GAM 86.1 86.9 84.2 94.7 83.2 

Ours 87.9 89.1 85.0 95.6 83.8 

Table 2 shows that the introduction of BiFPN resulted in a significant increase of 

1.1% in the model's mAP50. This improvement can be attributed to the cross-scale 

connections and efficient planning methods employed by BiFPN, which facilitate bidi-

rectional information flow and significantly enhance the model's ability to fuse features 

across different scales. Consequently, the model can identify text targets of varying 

sizes with greater precision. 

With the introduction of GAM, the model's mAP50 increased significantly by 1.9%. 

This enhancement can be primarily attributed to GAM's mechanism, which reduces 

information reduction and amplifies global dimensional interaction features, thereby 

improving the model's ability to extract effective information in complex backgrounds. 

Subsequent to the integration of EMA, the model's mAP50 increased significantly 

by 2.8%. This enhancement is attributed to EMA's cross-space learning approach and 

multi-scale parallel subnetworks that establish dependencies. Consequently, the mod-

el's computational efficiency and local feature interaction capabilities improved, lead-

ing to better fusion efficiency. 

As shown in Fig. 10, this study presents the detection results of the improved algo-

rithm on line-level handwritten text images of specific Chinese characters. The model 

effectively classifies the detected text targets, identifies the text category with the high-

est predicted probability, and thereby obtains the predicted value for each target. The 

proposed model exhibits remarkable performance in detecting small text targets, 

achieving a significant reduction in the missed detection rate. These improvements pro-

vide higher precision and reliability for the detection and recognition of line-level hand-

written text images, which is anticipated to yield better outcomes in practical applica-

tions. 



4.5 Comparison Experiments 

To validate the performance of the proposed BGE-YOLO model, we conducted com-

parative verification using the same test dataset against current mainstream models after 

training, as well as performing comparative experimental analysis between single-stage 

and two-stage object detection models. The specific results can be found in Table 3. 
Original Images Baseline BGE-YOLO(Ours) 

 
GT:我们和家人都想念你。 

 
Pre:我冲家人都想念。 

 
Pre:我们和家人都想念你。 

 
GT:我最大的希望是全家来吃饭。 

 
Pre:我最大你希望是全命来吃饭。 

 
Pre:我最大的希望是全家来吃饭。 

 
GT:这封离别信能够给予冲动。 

 
Pre: 这封别能都予冲动。 

 
Pre: 这封离别信能够给予冲动。 

 
GT:自己对不起爱情，爸妈知道了。 

 
Pre: 不爱情，爸妈知道了。 

 
Pre:自己对不起爱情，爸妈知道了。 

 
GT:健康和工作都要考虑。 

 
Pre: 健康和工作都要考虑。 

 
Pre: 健康和工作都要考虑。 

Fig. 10. Test results of the improved model. GT represents the ground truth of the text in the 

image, while Pre denotes the text category with the highest predicted probability. 

Table 3. Results of the comparison experiments. The model weight file size was introduced to 

evaluate model complexity and storage requirements. 

Model Precision 

(%) 

Recall 

(%) 

F1 

(%) 

mAP50 

(%) 

mAP50:95 

(%) 

Weight 

(MB) 

Faster-RCNN[12] 80.10 82.00 77.30 87.60 71.20 172.12 

SSD[19] 80.50 83.20 77.80 88.20 71.80 160.47 

RetinaNet[20] 81.20 83.10 78.10 89.10 73.20 153.53 

YOLOv3-tiny[25] 82.90 83.40 79.40 90.20 74.80 17.22 

DBNet[32] 82.50 84.30 79.80 90.60 74.50 136.51 

YOLOv5[24] 83.30 84.60 80.00 91.50 77.30 14.35 

YOLOv7-tiny[26] 83.00 83.90 79.80 91.00 76.90 12.39 

DBNet++[33] 84.70 87.10 83.40 93.40 81.10 118.62 

YOLOv11[34] 84.80 85.30 81.30 92.70 80.40 5.36 

Ours 87.90 89.10 85.00 95.60 83.80 7.84 
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Table 3 shows that the detection accuracy of the Faster R-CNN model is relatively 

low, primarily due to its reliance on anchor boxes generated from single-scale feature 

maps. Compared to other two-stage detection models, this characteristic reduces its ef-

ficiency in detecting multi-scale objects. As the network depth increases, the resolution 

of the feature maps gradually decreases, further weakening the SSD and RetinaNet 

models' ability to detect small-scale targets, such as text. In contrast, YOLOv3-Tiny 

maintains a lightweight model while utilizing three feature maps of different scales for 

bounding box predictions, thereby enhancing the localization accuracy for text detec-

tion. Although DBNet demonstrates stable performance in end-to-end text detection 

tasks, it exhibits certain limitations in feature fusion mechanisms, which constrain its 

ability to accurately detect small-scale text instances. As an improved version of 

YOLOv3, YOLOv5 optimizes the loss function, allowing the model to focus more on 

learning critical features during the training phase. Although YOLOv7-Tiny achieves 

better lightweight performance through a combination of ELAN and MaxPool2d struc-

tures, its information extraction capability diminishes accordingly. DBNet++ enhances 

detection accuracy by refining the feature fusion mechanism of DBNet and optimizing 

the post-processing steps. However, the relatively complex network architecture still 

presents challenges in terms of deployment efficiency. YOLOv11 builds upon 

YOLOv8 by introducing a more simplified network architecture and improved training 

strategies, further optimizing the model's lightweight characteristics, resulting in a re-

duction of the weight file size to 5.36MB. However, while achieving a lightweight 

model, YOLOv11 inevitably results in some loss of accuracy, particularly in the current 

task, where its performance is not as strong as that of YOLOv8. 

In contrast, the proposed BGE-YOLO model significantly enhances detection per-

formance by strengthening feature fusion and introducing a more effective small target 

detection module. This not only improves the ability to extract relevant information but 

also optimizes feature fusion across different scales. Although the size of the model's 

weight file has slightly increased, the improved model demonstrates superior perfor-

mance in accuracy and small target detection capabilities. This outcome substantiates 

the efficacy of the optimization strategies employed. 

5 Conclusion 

Handwritten text detection is essential for converting handwritten text images into ed-

itable text. This study presents BGE-YOLO, an innovative deep learning approach de-

signed to address challenges encountered in text detection, such as varying scales and 

complex backgrounds. The significant advantages of this model largely arise from im-

provements in the BiFPN architecture, which enhance its capability to integrate infor-

mation across different scales. Additionally, the newly introduced GAM mechanism 

enables the model to focus more on extracting key features relevant to text detection, 

thereby minimizing the risk of extracting irrelevant information in complex 



backgrounds. Meanwhile, the new EMA module effectively strengthens the interaction 

of local features, improving fusion efficiency. Experimental results indicate that the 

BGE-YOLO model achieves improvements of 2.8% in mAP50 and 3.9% in precision  

compared to the YOLOv8 model.  

However, there are still certain limitations in the current study, particularly regarding 

the underrepresentation of cluttered backgrounds and low-light conditions in the cus-

tom dataset. Future research will focus on enhancing the efficiency of text detection 

and recognition, with an emphasis on improving the ability to detect and recognize large 

amounts of text, as well as exploring its potential applications in end-user devices. 
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