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Abstract. Monocular depth estimation infers 3D geometric structures of scenes 

from a single RGB image, offering significant applications in autonomous driv-

ing, robot navigation, and other fields. While current self-supervised learning 

methods avoid dependency on ground truth depth data, they still exhibit notable 

limitations in complex scenarios: traditional encoder-decoder architectures inev-

itably lose high-frequency detail features when acquiring global context through 

continuous downsampling, resulting in blurred edges and texture distortion in 

depth maps. To alleviate these issues, we propose a novel approach named Hy-

perDetailNet, which significantly enhances depth estimation detail preservation. 

Specifically, our method contains two key components: 1) A dual-branch detail-

global feature extraction network, where the detail branch adopts an enlarge-

then-reduce strategy to preserve high-frequency texture information, while the 

global branch extracts overall structural information of the scene. 2) To effec-

tively fuse features from both branches, we designed a multi-attention fusion 

module that combines spatial attention, channel attention, and sliding window 

self-attention mechanisms to enhance model perception of detailed regions. Ex-

perimental results demonstrate that HyperDetailNet achieves excellent perfor-

mance on both KITTI and Make3D datasets, with significant improvements in 

depth estimation for edge and texture-rich areas. Additionally, ablation experi-

ments verify the effectiveness of the dual-branch detail-global feature extraction 

DepthNet and multi-attention fusion module. 

Keywords: Monocular Depth Estimation·Self-Supervised·Dual-Branch 

Network 

1 Introduction 

Monocular depth estimation, as one of the crucial tasks in computer vision, has demon-

strated immense potential in various applications including autonomous driving [1], 

robot navigation [2], and augmented reality [3]. In these applications, depth information 

is essential for understanding the environment, making decisions, and conducting ac-

curate spatial positioning. Particularly in autonomous driving, precise depth estimation 



helps vehicles comprehend the 3D structure of their surroundings, enabling safe and 

swift decision-making. However, despite significant advancements in depth estimation 

technology, accurately extracting fine-grained depth information from monocular im-

ages, especially in texture-rich regions, remains a formidable challenge. 

Traditional depth estimation methods [4-6] typically rely on multi-view or stereo 

vision techniques, obtaining depth information by matching image pairs from multiple 

viewpoints. The advantage of these methods lies in their ability to utilize disparity in-

formation from multiple perspectives to acquire relatively accurate depth maps. How-

ever, stereo vision methods [7,8] require additional camera hardware support and show-

case suboptimal performance in smooth regions or scenes with significant view 

changes. With the proliferation of deep learning technology, researchers have proposed 

supervised monocular depth estimation methods [9-12] that can directly predict depth 

information from a single image through training on large-scale annotated data. Alt-

hough supervised learning methods can improve accuracy through extensive labeled 

data, acquiring precise depth data is extremely difficult and costly. Traditional depth 

sensors (such as LiDAR) struggle to obtain comprehensive or high-quality depth infor-

mation in certain scenarios, while manual annotation of depth data is not only time-and 

labor-intensive but also challenging in covering various complex environments and 

lighting conditions. Therefore, practical applications of monocular depth estimation of-

ten face the issue of insufficient labeled data, thus casting shadows on the widespread 

application of supervised methods. 

Self-supervised monocular depth estimation [13-17] has gradually become a popular 

research in recent years to overcome the dependency on labeled data in supervised 

learning. Self-supervised methods utilize geometric and photometric consistency be-

tween images for training, eliminating the need for ground truth depth data. These 

methods can improve depth estimation accuracy by learning internal structural relation-

ships within images without labeled data. However, many existing self-supervised 

methods typically extract multi-scale feature maps through consecutive downsampling 

operations [13,14,18-20], which, while capturing global information, result in progres-

sive reduction of feature map resolution, making the extraction of detailed information 

insufficient. This gradually decreasing resolution leads to the loss of high-frequency 

textures and local details, affecting the detail presentation of depth maps, especially in 

complex or high-texture regions. 

To address these issues, we propose a novel self-supervised monocular depth esti-

mation method named HyperDetailNet. This method effectively enhances the detail 

presentation of depth maps through a dual-branch detail-global feature extraction net-

work that introduces a detail branch with hierarchical upsampling high-frequency fea-

ture perception. Specifically, we incorporate a detail branch in the depth network ded-

icated to extracting high-frequency texture information, with the global branch to en-

sure global scene information without losing important local details. To further inte-

grate these two types of features, we propose a multi-attention fusion module to en-

hance detail extraction and global perception capabilities. In processing the feature 

maps extracted by the detail branch, we introduce channel and spatial attention mecha-

nisms to ensure the model can selectively enhance features in key regions. Meanwhile, 

sliding window self-attention computation is applied to the feature maps extracted by 
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the global branch, further improving the ability to capture long-range feature depend-

encies. Through this multi-attention fusion approach, the accuracy and robustness of 

depth estimation are enhanced. Our contributions mainly include the following aspects: 

• We design a dual-branch detail-global feature extraction network where the detail 

branch adopts an enlarge-then-reduce strategy, focusing on extracting high-fre-

quency texture information; the global branch is based on the traditional U-Net struc-

ture, responsible for extracting the overall semantic information of the scene. This 

dual-branch architecture can simultaneously attend to local details and global struc-

tures, thereby improving the accuracy and detail presentation of depth estimation. 

• We propose a multi-attention fusion module that combines spatial attention, channel 

attention, and sliding window self-attention mechanisms to effectively merge fea-

tures from the detail and global branches. Through this multi-level attention mecha-

nism, our model can adaptively focus on important regions and channels in the im-

age, enhancing detail perception and global understanding capabilities. 

• Experimental results demonstrate that HyperDetailNet achieves superior perfor-

mance compared to existing methods on both KITTI [21] and Make3D [22] datasets. 

Especially in zero-shot testing on the Make3D dataset, our method exhibits excellent 

generalization capability. Ablation experiments further verify the effectiveness and 

necessity of the dual-branch detail-global feature extraction network and multi-at-

tention fusion module. 

2 Related Work 

2.1 Supervised Depth Estimation 

Early depth estimation methods largely relied on supervised learning, using ground 

truth depth data provided by devices such as LiDAR or stereo vision systems as labels 

for training. These methods typically employ regression or classification approaches to 

directly predict the depth of each pixel from images. In 2014, Eigen et al. [9] first pro-

posed a supervised monocular depth estimation framework based on convolutional neu-

ral networks (CNN), adopting a multi-scale network structure: a global network extracts 

overall scene information, a local network refines details, and depth maps are generated 

by fusing multi-scale features. Subsequently, Laina et al. [10] introduced ResNet [23] 

to enhance model depth and optimization capabilities, and proposed sub-pixel convo-

lution upsampling to improve resolution. To further address the challenges of wide 

depth ranges and optimization difficulties in regression tasks, researchers redefined 

depth estimation as a joint classification-regression task. For instance, AdaBins pro-

posed by Bhat et al. [11] dynamically divides depth ranges into adaptive bins, predict-

ing depth distribution probabilities through classification and then regressing weighted 

bin center values, significantly improving the continuity and accuracy of depth estima-

tion. In recent years, architectures such as Transformer [24] and Swin-Transformer [25] 

have been introduced to enhance long-range feature modeling capabilities through 

global attention mechanisms (e.g., NeWCRFs [12]). However, supervised methods rely 

on large-scale annotated data, and the acquisition of depth ground truth is costly, while 



sensors face issues of sparsity and noise in complex scenes, limiting the generalization 

capabilities of models. 

2.2 Self-supervised Monocular Depth Estimation 

Stereo Image Training. Garg et al. [7] first proposed a photometric consistency con-

straint based on stereo images, reconstructing the image from another viewpoint by 

predicting disparity maps and using reconstruction error as a supervision signal. Build-

ing on this, Godard et al. [8] proposed left-right disparity consistency constraints and 

introduced the Structural Similarity Index (SSIM) as part of the reconstruction loss, 

making the training process more stable and robust, thereby significantly improving the 

accuracy of depth estimation. The stereo image training approach has the advantage of 

directly obtaining absolute scale information while effectively utilizing fixed stereo ge-

ometric constraints for depth reconstruction in static scenes. However, its limitations 

are also quite evident. On one hand, this method requires acquiring strictly calibrated 

stereo image pairs, and in practical applications, the installation and calibration costs 

of stereo sensors are relatively high. On the other hand, due to the interference of oc-

clusion, reflection, and dynamic object movement in stereo imaging, it often struggles 

to recover detailed information and boundary structures when processing complex 

scenes, resulting in blurring in the detailed parts of depth maps. Additionally, self-su-

pervised methods based on stereo images also have certain deficiencies in handling 

issues such as lighting changes, scene dynamics, and smooth regions, limiting their 

widespread application in large-scale self-supervised learning. 

Monocular Video Training. To overcome the limitations of the stereo training para-

digm, researchers began to turn to self-supervised training using monocular video se-

quences. The advantage of monocular video training lies in the more convenient data 

acquisition, as almost all mobile devices can capture videos, making massive unlabeled 

data possible. At the same time, utilizing motion information between consecutive 

frames provides more geometric constraints and temporal consistency, which to some 

extent alleviates issues such as occlusion, dynamic objects, and lighting changes. Zhou 

et al. [13] jointly trained a DepthNet and a PoseNet in SfMLearner, using photometric 

loss as a supervision signal. DepthNet is used to predict the depth map from a single 

frame, while PoseNet predicts the relative pose between adjacent frames. The network 

parameters are optimized by synthesizing reference frame images and comparing them 

with source frame images to calculate photometric loss, thereby achieving depth esti-

mation. Subsequently, Godard et al. [14] further improved this framework in their 

Monodepth2, proposing a more robust monocular video training strategy that employs 

an automatic masking mechanism to filter out unreliable regions caused by dynamic 

objects or stationary cameras, while combining multi-scale features and various recon-

struction losses in the reconstruction loss, making the training process more efficient 

and stable. Besides the above methods, some researchers have introduced additional 

prior information or multi-task learning frameworks based on monocular video train-

ing. For example, Mahjourian et al. [15] proposed using 3D geometric consistency to 

further constrain depth prediction, ensuring that point clouds reconstructed from 
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adjacent frames maintain consistency in 3D space, thereby improving the global con-

sistency and detail recovery capability of depth maps. Feng et al. [16] addressed the 

instability issue of depth estimation in dynamic scenes by proposing a dynamic depth 

estimation method, which further improves the adaptability and robustness of monoc-

ular video training in practical scenarios through the introduction of motion separation 

mechanisms and dynamic target detection. Meanwhile, Watson et al. [17] achieved a 

breakthrough in utilizing multi-frame information with their ManyDepth, which ena-

bles the model to better capture detailed information in monocular video sequences and 

maintain high estimation accuracy in complex scenes through multi-view fusion and 

fine-grained feature alignment strategies. These methods have solved, to varying de-

grees, the problems caused by dynamic objects, occlusion, and lighting changes in mo-

nocular video training, while also demonstrating the feasibility and advantages of uti-

lizing geometric and photometric information between consecutive video frames for 

depth estimation. 

2.3 Self-supervised Monocular Depth Estimation Methods for Edge Problems 

To address edge detail issues, researchers have proposed various improvement meth-

ods. Yang et al. [26] proposed an edge-aware depth estimation network, explicitly guid-

ing the network to focus on object contours by introducing an edge detection branch. 

Ramamonjisoa et al. [27] designed SharpNet, which simultaneously predicts depth, sur-

face normal vectors, and edges, improving depth accuracy in edge regions through 

multi-task learning. In recent years, attention mechanisms have been widely applied to 

enhance the detail preservation capability of depth estimation. Xu et al. [28] proposed 

a multi-scale attention network, effectively enhancing the representation of edges and 

details by applying attention modules at different feature scales. Johnston et al. [29] 

proposed self-supervised attention-guided depth estimation, adaptively focusing on key 

regions in images through spatial and channel attention mechanisms, improving detail 

preservation capability. Zhang et al. [30] introduced an attention network based on fea-

ture pyramids, balancing the extraction of global and local information by applying 

attention mechanisms on multi-scale features. Although the above methods have im-

proved edge detail issues partly, it is worth noting that most of them still adopt a layer-

by-layer downsampling approach for feature extraction, a strategy that leads to contin-

uous reduction in feature map resolution and gradual loss of high-frequency infor-

mation. Particularly in deep networks, the resolution of feature maps may decrease to 

1/32 of the original input or even lower, severely limiting the ability of the model to 

express details and ultimately resulting in insufficient accuracy of predicted depth maps 

in object edges and texture-rich regions. Moreover, these methods typically employ a 

single-branch architecture, making it difficult to simultaneously consider global scene 

understanding and local detail extraction. The HyperDetailNet proposed in this paper 

more effectively addresses this issue through dual-branch detail and global branch 

structures, as well as a multi-attention fusion module, significantly improving the depth 

estimation accuracy in edge and high-frequency texture regions while maintaining 

global consistency. 



 

Fig. 1. Overview of our HyperDetailNet architecture. HyperDetailNet comprises two core com-

ponents: a DepthNet for predicting depth maps and a PoseNet for estimating relative camera 

poses between adjacent monocular frames. In DepthNet, a dual-branch detail-global dual-branch 

feature extraction architecture is designed to capture both detail and global features from input 

images. A Multi-attention Fusion (MAF) module is further incorporated to adaptively enhance 

and integrate these complementary feature representations through channel-wise, spatial atten-

tion and window self-attention mechanisms.  The MAF module consists of two parts, Texture 

Enhanced Module (TEM) and Window Self-Attention (WSA) module.  

3 Method 

This section details our proposed HyperDetailNet method, which significantly en-

hances detail representation in self-supervised monocular depth estimation through 

dual-branch detail-global feature extraction networks and multi-attention fusion mech-

anisms. As shown in Fig. 1, our network consists of three main components: a dual-

branch detail-global feature extraction DepthNet, a multi-attention fusion module, and 

a PoseNet. The following will explain the design concepts and specific implementation 

of each component. 

3.1 Dual-Branch Detail-Global Feature Extraction DepthNet 

Traditional depth estimation networks [14,31] typically adopt a single encoder-decoder 

structure, extracting multi-scale features through consecutive downsampling opera-

tions. While this approach effectively captures global scene information, it leads to the 

loss of high-frequency details, especially in object edges and texture-rich regions. To 

address this issue, we propose a dual-branch structure. As shown in Fig. 2, the dual-

branch detail-global feature extraction DepthNet includes detail and global branches, 

focusing on high-frequency texture information and global scene understanding respec-

tively. These branches share the same input image but employ different feature  
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Fig. 2. Structures of Dual-Branch Detail-Global Feature Extraction DepthNet. The upper part is 

the detail branch, and the lower part is the global branch. 

extraction strategies. Given the current input image (size 192 × 640 in training), we 

first apply a 3 × 3 convolution with 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 to downsample the input image to 1/2 

of the original resolution, producing feature map 𝐹 ∈ ℝ𝐶×𝐻×𝑊. This initial downsam-

pling operation aims to reduce computational complexity while retaining sufficient spa-

tial information. Feature map 𝐹 is then input in dual-branch to both detail and global 

branches for further processing. 

Detail Branch. The detail branch adopts an enlarge-then-reduce strategy, similar to U-

Net [32] architecture. Its core design concept is to expand the spatial resolution of fea-

ture maps in the early stages of feature extraction to preserve high-frequency texture 

information. In the encoding stage, feature map size is gradually expanded through a 

series of upsampling-convolution modules. Each upsampling operation is followed by 

a 3 × 3 convolution layer to refine local details in the feature map. This design enables 

the network to retain more high-frequency texture information during feature extrac-

tion, providing richer detail representations for subsequent depth estimation. Given in-

put feature 𝐹, the feature map at layer 𝑖 is represented as: 

 𝐹𝑖 = 𝐶𝑜𝑛𝑣3×3(𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐹𝑖−1)) (1) 

where 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(∙) represents the upsampling operation implemented through bilin-

ear interpolation, expanding the spatial dimensions of the feature map by a factor of 

1.25. 𝐶𝑜𝑛𝑣3×3(∙) represents a 3 × 3 convolution with 𝑠𝑡𝑟𝑖𝑑𝑒 = 1. The decoding stage 

restores the feature map size to the original input size through consecutive downsam-

pling-convolution modules, obtaining detail features at different scales. 

Global Branch. The global branch adopts a U-Net architecture based on ResNet 

blocks, following the design concept of [14], focusing on extracting global semantic 

information and scene structure from images. Given input feature 𝐹, the global branch 

first gradually reduces the spatial dimensions of feature maps through a series of 

downsampling operations while increasing the number of channels to expand the re-

ceptive field. In the decoding stage, the global branch gradually restores the spatial 
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resolution of feature maps through upsampling operations and fuses corresponding 

layer features from the encoding stage through skip connections to preserve more spa-

tial details. This encoder-decoder structure enables the global branch to effectively un-

derstand the overall structure and semantic information of the scene, providing global 

constraints for depth estimation. 

 

Fig. 3. Structures of Multi-attention Fusion Module. MAF incorporates a texture enhanced mod-

ule for enhancing detail features and a window self-attention component for enhancing global 

features. 

3.2 Multi-attention Fusion Module 

To efficiently fuse features extracted from the detail and global branches, we propose 

a Multi-attention Fusion (MAF) module. As shown in Fig. 3, this module includes a 

texture enhanced module and window self-attention, combining channel attention, spa-

tial attention, and sliding window self-attention mechanisms to improve both detail fea-

ture extraction and global perception capabilities, thereby better capturing and integrat-

ing local and global information in images. 

Texture Enhanced Module. In processing feature maps extracted by the detail branch, 

we introduce channel attention and spatial attention mechanisms, derived from Convo-

lutional Block Attention Module (CBAM) [33]. This module receives features of scale 

𝐻 ×𝑊 from the detail branch decoding stage. It first processes the feature map through 

Spatial MaxPool and Spatial AvgPool operations, capturing salient features and overall 

distribution from the spatial dimension. The pooled features generate a spatial attention 

map through shared convolution layers and Sigmoid activation, guiding the network to 

focus on important regions in the image. After element-wise multiplication of the spa-

tial attention map with the initial detail features, we capture important difference be-

tween channels using Channel MaxPool and Channel AvgPool, ensuring the model 

adaptively focuses on specific regions and channels. The pooled features generate the 

final attention map 𝑀𝑎𝑡𝑡 through convolution layers and Sigmoid activation. Through 

these operations, this attention map 𝑀𝑎𝑡𝑡 has high weights in image detail texture re-

gions, as these have high feature values in detail features. Similarly, it has lower weights 
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in smooth regions. Thus, we obtain a reverse attention map by inverting the attention 

map, emphasizing regions overlooked by the original attention mechanism. The tex-

ture-enhanced detail feature representation is obtained through the following formula: 

 𝐹𝑑𝑒𝑡𝑎𝑖𝑙
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝐹𝑑𝑒𝑡𝑎𝑖𝑙⨀𝑀𝑎𝑡𝑡⨁𝐹𝑔𝑙𝑜𝑏𝑎𝑙⨀(1 −𝑀𝑎𝑡𝑡) (2) 

Window Self Attention. To further enhance global feature extraction capabilities, we 

introduce window self-attention mechanisms in processing the global branch feature 

maps, referencing [34] and adopting Swin Transformer layers (STL) [25] to preserve 

contextual information while alleviating GPU memory issues. We divide the global 

features 𝐹𝑔𝑙𝑜𝑏𝑎𝑙  output from the global branch into fixed-size windows and calculate 

relationships between features within each window through window self-attention (W-

SA). Then, through sliding window self-attention (SW-SA), we expand the feature 

propagation range, enabling information exchange between windows. The enhanced 

global features can be expressed as: 

 𝐹𝑔𝑙𝑜𝑏𝑎𝑙
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝑆𝑊-𝑆𝐴 (𝑊-𝑆𝐴(𝐹𝑔𝑙𝑜𝑏𝑎𝑙)) (3) 

Through this method, the model can capture global information across a wider range 

while avoiding the high computational complexity of traditional self-attention calcu-

lations. Finally, the detail features 𝐹𝑑𝑒𝑡𝑎𝑖𝑙
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑  processed by the texture enhancement 

module and the global features 𝐹𝑔𝑙𝑜𝑏𝑎𝑙
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 processed by window self-attention are con-

catenated along the channel dimension and processed through a 3 × 3 convolution 

layer and Sigmoid activation function to generate the final depth map: 

 𝐷 = 𝜎 (𝐶𝑜𝑛𝑣3×3 (𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑑𝑒𝑡𝑎𝑖𝑙
𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 , 𝐹𝑔𝑙𝑜𝑏𝑎𝑙

𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑))) (4) 

where 𝜎 represents the Sigmoid activation function, 𝐶𝑜𝑛𝑣3×3 represents the convolu-

tion operation, and 𝐶𝑜𝑛𝑐𝑎𝑡 represents the feature concatenation operation along the 

channel dimension. 

3.3 Self-supervised Learning 

The core concept of self-supervised learning is utilizing geometric relationships be-

tween consecutive video frames for training. Specifically, given a single input image 

𝐼𝑡, the DepthNet predicts its corresponding depth map 𝐷𝑡 . The PoseNet then takes two 

temporally adjacent images (the current frame 𝐼𝑡 and an adjacent frame 𝐼𝑠) as input and 

predicts the relative pose 𝑇𝑡→𝑠 between the target image 𝐼𝑡 and the adjacent image 𝐼𝑠. 

Finally, view synthesis is performed using the adjacent frame 𝐼𝑠, pose transformation 

matrix 𝑇𝑡→𝑠, and depth map 𝐷𝑡  to obtain a reconstructed image 𝐼𝑡 of the target image 

𝐼𝑡. The DepthNet and PoseNet are jointly optimized by minimizing the image recon-

struction loss ℒ𝑟 between the target image 𝐼𝑡 and the reconstructed image 𝐼𝑡, as well as 

an edge-aware smoothness loss ℒ𝑠𝑚𝑜𝑜𝑡ℎ  constraining the depth map. 



Image Reconstruction Loss. The photometric reprojection error composed of L1 loss 

and Structural Similarity (SSIM) [35] is shown as follows: 

 ℒ𝑝(𝐼𝑡 , 𝐼𝑡) = 𝛼
1−𝑆𝑆𝐼𝑀(𝐼𝑡,𝐼𝑡)

2
+ (1 − 𝛼)‖𝐼𝑡 − 𝐼𝑡‖ (5) 

where 𝛼 is empirically set to 0.85 [13]. In real-world scenarios, stationary cameras or 

moving objects break the assumption of a moving camera and static scene, damaging 

the training process of self-supervised depth estimation. To address this issue, we use 

the automatic masking strategy from Monodepth2 to filter out stationary pixels and 

low-texture regions that maintain the same appearance between two frames in a se-

quence. The masking coefficient 𝜇 is calculated in the formula below, where [] is the 

Iverson bracket. 

 𝜇 = [𝑚𝑖𝑛
s
 ℒ𝑝(𝐼𝑠, 𝐼𝑡) > 𝑚𝑖𝑛

𝑠
 ℒ𝑝(𝐼𝑡 , 𝐼𝑡)] (6) 

Therefore, the image reconstruction loss is defined as: 

 ℒ𝑟(𝐼𝑡 , 𝐼𝑡) = 𝜇 ⋅ ℒ𝑝(𝐼𝑠 , 𝐼𝑡) (7) 

Edge-aware Smoothness Loss. Inspired by previous works [14,36,37], to regularize 

depths in textureless regions, we use an edge-aware smoothness loss as regularization, 

as follows: 

 ℒ𝑠𝑚𝑜𝑜𝑡ℎ = |∂𝑥d𝑡
∗|𝑒−|∂𝑥𝐼𝑡| + |∂𝑥d𝑡

∗|𝑒−|∂𝑦𝐼𝑡| (8) 

where 𝑑𝑡
∗ = 𝑑𝑡/𝑑̂𝑡 represents the mean-normalized inverse depth. Therefore, the total 

loss can be represented as: 

 ℒ =
1

𝑆
∑ (ℒ𝑟 + 𝜆ℒ𝑠𝑚𝑜𝑜𝑡ℎ)
𝑆
𝑖  (9) 

where 𝑆 is the number of scales, and 𝜆 is the weight of the smoothness regularization 

term. 𝜆 is set to 0.001 as in [14]. 

4 Experiments 

We evaluated the HyperDetailNet model on KITTI and Make3D datasets with seven 

standard metrics. We also studied the generalization ability of the model on unseen 

datasets through zero-shot evaluation experiments. 

4.1 Datasets and Evaluation Metrics 

KITTI. KITTI [21] is a standard benchmark for depth estimation in autonomous driv-

ing scenarios. It contains image sequences from urban, rural, and highway scenes cap-

tured from moving vehicles. Following Eigen split [38], we used images from 29 scenes 
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(totally 39,810 images) for training and 697 images from different scenes for testing. 

During evaluation, predicted depths are usually limited to the [0,80]m range. 

 
Table 1. Comparison of HyperDetailNet with some recent representative methods on the KITTI 

benchmark using the Eigen split. All input images are resized to 640 × 192 unless otherwise 

specified. “M”: KITTI monocular videos, “M†”: without pre-training on ImageNet [39]. Best 

results are in bold. Our method performs better when pre-trained weights are loaded. 

Table 2. Comparison of the proposed HyperDetailNet to some other methods on the Make3D 

dataset. All models are trained on KITTI with an image resolution of 640 × 192. Best results are 

in bold. 

Method Data Abs Rel Sq Rel RMSE RMSE log 

Zhou et al. [48] M 0.383 5.321 10.470 0.478 

DDVO [49] M 0.387 4.720 8.090 0.204 
Monodepth2 [14] M 0.322 3.589 7.417 0.163 

R-MSFM6 [18] M 0.334 3.285 7.212 0.169 

CADepth [19] M 0.319 3.564 7.152 0.158 
Xu et al. [50] M 0.466 7.052 9.568 0.179 

ColorDepth [47] M 0.338 3.427 7.646 0.168 

Ours M 0.314 3.111 7.023 0.161 

Make3D. Make3D [22] dataset contains images of outdoor static scenes with corre-

sponding depth maps. It features more diverse scenes than KITTI, including buildings, 

trees, and open spaces. We used our model trained on KITTI to directly evaluate stand-

ard on Make3D test set of 134 images to assess generalization capability. 

Evaluation Metrics. To comprehensively evaluate depth estimation performance, we 

adopted seven standard metrics: (1) Absolute Relative Error (AbsRel): Reflects the av-

erage relative difference between predicted and actual values. (2) Squared Relative Er-

ror (SqRel): More sensitive to larger depth errors by amplifying prediction deviations 

in distant areas. (3) Root Mean Square Error (RMSE): Calculates the global root mean 

square difference between predicted and actual values. (4) Log Root Mean Square Error 

(RMSE log): Calculates errors in logarithmic space to balance near and far-field error 

contributions. (5) Threshold Accuracy (𝛿 < 1 2 , 𝛿 < 1 2 ², 𝛿 < 1 2 ³): Measures 

the percentage of pixels where the ratio between prediction and ground truth falls within 

Method Data 

Depth Error(↓) Depth Accuracy(↑) 

Abs 

Rel 

Sq 

Rel 
RMSE 

RMSE 

log 

𝛿 < 

1 2  

𝛿 < 

1 2 2 

𝛿 < 

1 2 3 

Monodepth2 [14] M 0.115 0.903 4.872 0.193 0.877 0.959 0.981 

Struct2Depth [41] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979 
SGDepth [31] M 0.117 0.907 4.844 0.196 0.875 0.958 0.980 

Li et al. [42] M 0.130 0.950 5.138 0.209 0.843 0.948 0.978 

Zhang et al. [43] M 0.173 1.153 4.979 0.249 0.752 0.916 0.968 
Heydrich et al. [44] M 0.145 1.154 5.775 0.238 0.792 0.924 0.969 

MonoDA [45] M 0.126 1.035 5.105 0.203 0.857 0.955 0.979 

Dynamo-Depth [46] M 0.120 0.864 4.850 0.195 0.858 0.956 0.982 
ColorDepth [47] M 0.114 0.846 4.839 0.196 0.853 0.953 0.982 

Ours M 0.118 0.839 4.748 0.192 0.871 0.960 0.982 

Monodepth2 [14] M† 0.132 1.044 5.142 0.210 0.845 0.948 0.977 

R-MSFM3 [18] M† 0.128 0.965 5.019 0.207 0.853 0.951 0.977 
Ours M† 0.132 0.935 5.007 0.208 0.841 0.949 0.978 



specified thresholds. These metrics evaluate model performance across error distribu-

tion, extreme value sensitivity, scale robustness, and confidence. 

 

Fig. 4. Qualitative results on KITTI. 

4.2 Implementation Details 

Training Configuration. Our implementation is based on PyTorch framework, trained 

for 20 epochs on KITTI. We used the Adam optimizer with a batch size of 8 on multiple 

RTX 3090 GPUs. Input images were resized to a standard resolution 640 × 192. The 

learning rate was set to 10⁻⁴ initially for the first 15 epochs, then reduced to 10⁻⁵ to 

ensure convergence.  

Data Augmentation. To improve model robustness, we followed previous methods 

[14,18,40], applying augmentation during preprocessing. Specifically, we randomly 

performed horizontal flipping, brightness adjustment (±0 2), saturation adjustment 

(±0 2), contrast adjustment (±0 2), and hue jittering (±0 1) with a 50% probability.   

4.3 Results 

Results on KITTI Dataset. As shown in Table 1, the comparison between HyperDe-

tailNet and current mainstream self-supervised monocular depth estimation methods on 

KITTI proves the superiority of our method. All methods used the same input resolution 

(640 × 192) and evaluation metrics for fair comparison. Our experiments were divided 

into two groups: without pre-trained weights (M) and with ImageNet pre-trained 

weights (M†). With pre-trained weights, our HyperDetailNet achieved comparable per-

formance to existing methods. In particular, our method improves the RMSE score by 

about 12.4 %  and Squared Relative Error by 6.4% over the classical method 

Monodepth2, indicating our method can generate more accurate depth boundaries and 
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structural details. Without ImageNet pre-trained weights, though overall performance 

declined, our method still showed competitiveness compared to others. On SqRel and 

RMSE metrics, our method achieved 0.935 and 5.007 respectively, showing competi-

tiveness compared to R-MSFM3. Fig. 4 shows qualitative results, clearly demonstrat-

ing the advantages of HyperDetailNet in preserving object edges and texture details. 

Especially in high-frequency detail areas like building outlines, road signs, and vegeta-

tion, our method generates depth maps with clearer boundaries and richer details. 

 

Table 3. Ablation study on model architectures. All the models are trained and tested on KITTI 

with the input size 640 × 192. 

Architecture 

Depth Error(↓) Depth Accuracy(↑) 

Abs 

Rel 
Sq Rel RMSE 

RMSE 

log 

𝛿 < 

1 2  

𝛿 < 

1 2 2 

𝛿 < 

1 2 3 

Full model 0.118 0.839 4.748 0.192 0.871 0.960 0.982 

w/o Dual-Branch DepthNet 0.120 0.924 4.917 0.197 0.865 0.958 0.980 

w/o Multi-attention Fusion 0.120 0.901 4.844 0.194 0.869 0.957 0.981 

 

Results on Make3D. To evaluate generalization capability, we directly applied our 

KITTI-trained model to the Make3D test set without fine-tuning. We trained our model 

on 640×192 resolution images on KITTI, then tested on Make3D. Table 2 presents 

zero-shot transfer results. Under zero-shot settings, HyperDetailNet demonstrated 

strong generalization capability, outperforming most baseline methods. This proves our 

model architecture can effectively adapt to depth estimation tasks in different real-

world scenarios. 

4.4 Ablation Study 

To verify the effectiveness of each component in HyperDetailNet, we conduct a series 

of ablation study. The results are shown in Table 3. We evaluate the impact of the dual-

branch detail-global feature extraction DepthNet and the multi-attention fusion module 

on model performance. 

The Benefit of Dual-Branch Detail-Global Feature Extraction DepthNet. As shown 

in Table 3, the complete HyperDetailNet achieves 0.118 in AbsRel, 0.839 in SqRel, 

and 4.748 in RMSE. When removing the dual-branch DepthNet and using only a single 

branch, performance drops significantly. Specifically, SqRel and RMSE errors increase 

by 10.1% and 3.6%, respectively. This result highlights the importance of the dual-

branch detail-global feature extraction structure in preserving depth details. 

The Benefit of Multi-Attention Fusion Module. When replacing the multi-attention 

fusion module with simple feature concatenation, performance declines further. The 

depth accuracy metric drops from 0.871 to 0.841, a 3.4% decrease. This demonstrates 

that different attention mechanisms can complement each other to improve depth esti-

mation accuracy. 



5 Conclusions 

In this paper, we propose HyperDetailNet, a self-supervised monocular depth estima-

tion network with a dual-branch DepthNet and multi-attention fusion. The dual-branch 

extraction of detail and global features helps resolve the issue of detail blurring in tra-

ditional methods. The proposed multi-attention fusion module integrates spatial atten-

tion, channel attention, and windowed self-attention to enhance and better fuse detail 

and global features. Experimental results show that HyperDetailNet achieves strong 

performance on the KITTI dataset. The generalization ability of the model is also vali-

dated on the Make3D dataset. Our work provides a compelling insight into the problems 

of blurred edges and missing details of depth maps in monocular depth estimation.  
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