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Abstract. In the task of indoor occupancy prediction from a single image, there 

is an issue where it is challenging to complement the semantic scene due to the 

small size and intricate nature of the predicted objects. Traditional methods strug-

gle to obtain rich and accurate semantic information, which results in the wors-

ening of the problem of semantic scene blurring. To solve the problem, we pro-

pose a novel approach accompanied by our proposed Multi-scale Context Cali-

bration Module (MCCM), Depth Calibrated Residual Network (DCRNet) and 

Kernel-split Depthwise Attention (KSDA) to enhance the scene semantic infor-

mation and alleviate the depth blurring problem of semantic scenes. Ablation ex-

periments confirm the effectiveness of our module. Comparative analysis with 

the SOTA model verifies the superiority and generalisation of our model. Com-

parison on the OccScanNet_mini dataset confirms the excellent generalisation of 

our method even with limited data. Specifically, our method reaches 47.94% and 

32.33% for IoU and mIoU on the NYUv2 dataset, and 42.81% and 29.59% for 

IoU and mIoU on the OccScanNet dataset, respectively. 

Keywords: Indoor occupancy prediction, Semantic scene completion, Com-

puter vision. 

1 Introduction 

The task of 3D semantic scene complementation (SSC) from a single RGB image plays 

a pivotal role in the domain of computer vision and 3D scene understanding. Its objec-

tive is to deduce the complete geometric structure of a 3D semantic scene from a single 



RGB image and to assign accurate semantic labels to each 3D voxel. In recent years, 

the rapid advancements in deep learning techniques and the availability of large-scale 

3D datasets have significantly propelled the development of 3D semantic segmenta-

tion[6, 18, 13, 8, 23, 11] and depth estimation[9, 15, 20, 14]. Nevertheless, despite 

the substantial progress in outdoor semantic scene complementation, there remains a 

pressing demand for an efficient method capable of performing indoor semantic scene 

complementation. Such a method would be essential for inferring a complete and se-

mantically rich 3D scene from a single RGB image. 

In contrast to methods that rely on depth sensors[12, 7, 5, 19, 1], 3D semantic scene 

complementation using a single RGB image only requires a standard camera, which is 

hardware-lightweight and more conducive to consumer-grade applications. However, 

the absence of stereo visual cues in such models results in scale ambiguity in depth 

prediction and errors in geometric reconstruction, particularly in complex occlusion 

scenarios. The existing method, MonoScene[2], achieves end-to-end complementation 

from monocular RGB images to dense 3D semantic scenes for the first time, overcom-

ing the reliance of traditional methods on depth input. NDCScene[21] extends this ap-

proach by introducing the normalized device coordinate (NDC) space, which helps ad-

dress feature size ambiguity and depth-related feature ambiguity. Additionally, the 

Depth Adaptive Dual Decoder (DADD) is introduced to tackle challenges associated 

with the use of a single decoder in the target 3D space, which makes multi-scale 2D 

and 3D feature fusion difficult and fails to adequately consider depth perception. 

ISO[22] significantly improves the handling of indoor scenes by employing the Depth-

Anything model to generate metric depth maps, performing multi-scale[28] feature fu-

sion, and introducing a novel projected dual-feature-implemented projection (D-FloSP) 

mechanism. This approach is designed to effectively manage the complexity and object 

size diversity inherent in indoor scenes. While the aforementioned ISO methods have 

demonstrated strong performance in the task of 3D semantic scene complementation 

from a single RGB image, establishing them as the state-of-the-art (SOTA) model for 

this task, they suffer from limitations. Specifically, the lack of dynamic calibration in 

the output of the 2D encoder results in poor multi-scale feature fusion, inadequate pro-

cessing of depth estimation information, an inability to obtain precise depth distribu-

tions, and insufficient depth inference in occluded regions, leading to depth blurring. 

In this paper, we present a novel framework for monocular occupancy prediction 

that integrates multi-scale semantic context calibration with depth information. Our ap-

proach is designed to address the key challenges of small object detection, semantic 

scene blurring, and depth misalignment, which are common in traditional monocular 

methods. To achieve this, we propose a Multi-scale Context Calibration Module 

(MCCM), Depth Calibrated Residual Network (DCRNet), and Kernel-split Depthwise 

Attention (KSDA). These components work synergistically to enrich the semantic un-

derstanding of indoor scenes and alleviate the depth blurring problem inherent in mo-

nocular vision. Among them, MCCM enhances the multi-scale key feature information 

for the 2D encoder. DCRNet is used to fully optimise the depth distribution information 

of the semantic scene. Finally, KSDA is used to efficiently capture long range depend-

encies while reducing the information loss caused by downsampling operations in the 

3D encoder. The core contributions of this paper are summarized as follows: 
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─ We propose the MCCM for calibrating multi-scale features and retaining key fea-

tures. 

─ We propose the DCRNet for refining depth information and alleviating the depth 

ambiguity problem. 

─ We propose the KSDA module for efficiently capturing long-distance dependencies 

and enhancing depth information while recovering the fine geometry of the scene. 

 

Fig. 1. The overview of the proposed MDKOcc. 

2 Methodology 

In the indoor occupancy prediction tasks, significant challenges arise from scene se-

mantic information scarcity and depth ambiguity. Compared to outdoor scenarios, this 

task is further characterized by the need to predict objects with smaller dimensions and 

greater categorical diversity. These challenges collectively amplify the difficulty of 

achieving accurate semantic scene completion. This paper proposes an innovative 

methodology termed Multi-scale Depth-Calibrated Kernel-split Network for Monocu-

lar Occupancy Prediction (MDKOcc) to address these issues. Specifically, we intro-

duce three core components, including Multi-scale Context Calibration Module 

(MCCM), Depth Calibrated Residual Network (DCRNet), and Kernel-split Depthwise 

Attention (KSDA). These modules synergistically enhance scene semantics, mitigate 

depth estimation uncertainties, while simultaneously strengthening multi-scale feature 

representation in 2D encoders and preserving fine-grained detail information in 3D 

shallow encoders. The comprehensive architectural schematic is illustrated in Fig.1. 

The following section describes the proposed modules one by one.  



2.1 Multi-scale Context Calibration Module 

In the process of performing 2D visual feature extraction, 2D Unet passes encoder fea-

tures directly to the decoder through jump connections, but the low-level features[24-

27] contain noise and redundant information. This not only leads to noise amplification 

of the model as well as flooding of the extracted multi-size key features, resulting in 

the lack of key feature information, which affects the processing effect of the subse-

quent 3D feature projection as well as the refinement of the depth information, but also 

makes the 3D decoder lack of sufficient semantic information, which in turn exacer-

bates the problem of depth ambiguity. 

 

Fig. 2. Detailed structure of MCCM. 

In order to solve the above problem, we designed Multi-scale Context Calibration 

Module for calibrating the 2D encoder's output to retain important features and suppress 

irrelevant information. The specific structure of the module is shown in Fig.2. We can 

see that the output features are firstly adjusted by a PWConv. The feature processing is 

then performed via Multi-scale Conv (MSConv), which specifically includes the use of 

a 7×7 DWConv to capture local to medium-range contextual information, and a 9×9 

DWDConv to extract long-range dependencies and strengthen the decoder's ability to 

understand the global structure. The channel weights are dynamically adjusted using 

PWConv to enhance key features. Finally, the features before and after MSConv pro-

cessing are fused and output after adjustment by PWConv. With this approach, we re-

tain the key feature information in the encoder, enhance the subsequent 3D feature pro-

jection as well as depth information refinement, and alleviate the problem of depth am-

biguity. At the same time, the model's understanding of the global context will be en-

hanced by extracting the long-range dependencies, making the model more accurate in 

complementing the occluded regions and improving the performance of the network. 

The structure of the module can be represented as: 

𝑋2𝐷′ = 𝐹𝑝𝑤(𝐹𝑝𝑤(𝑋
2𝐷) ∗ 𝐹𝑚𝑠(𝐹𝑝𝑤(𝑋

2𝐷)))                              (1) 
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where 𝑋2𝐷 is the input tensor and 𝑋2𝐷′ is the output tensor. 𝐹𝑝𝑤, 𝐹𝑚𝑠 represent the op-

erations PWConv, and MSConv respectively. 

2.2 Depth Calibrated Residual Network 

In the indoor occupancy prediction task, the ambiguity of depth information is a great 

challenge in this task. The original DepthNet optimises the coarse depth information 

generated by a pre-trained depth model and fuses it with 2D image features (𝑋2𝐷) to 

generate a more accurate depth distribution. However, DepthNet is weak in refining the 

depth information sufficiently, resulting in inaccurate depth distributions obtained for 

calculating the depth probabilities after projecting the 3D voxel centres to the pixel 

coordinate system. 

 

Fig. 3. Detailed structure of DCRNet. 

In order to solve the above problem, we designed Depth Calibrated Residual Net-

work (DCRNet), which is used to fully optimise the depth information and improve the 

accuracy of calculating the depth probability after projecting the centre of 3D voxels to 

the pixel coordinate system. The structure of the module is shown in Fig.3. It can be 

seen that firstly, the MLP operation is performed on the 𝐷𝑚𝑒𝑡𝑟𝑖𝑐 , and then secondly 

with the image features that have been processed by the CBR module processed 𝑋2𝐷 

after SELayer fusion, and then after Depth Calibrated Residual Block (DCR Block), 

the recalibration of the features is performed after residual processing. Finally, the out-

put channel is adjusted by convolution to obtain the depth distribution after efficient 

refinement. This method performs the generation of weights as well as feature recali-

bration on the residual processed features as compared to the original method. In this 

way, DCRNet processes the depth information efficiently, alleviates the problem of 

ambiguous depth information to some extent, and improves the overall performance of 

the network. The module can be represented as: 



𝐷𝑠=𝑘
𝑑𝑖𝑠𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑐𝑜𝑛𝑣(𝐹𝑑𝑐𝑟(𝐹𝑠𝑒(𝐹𝑚𝑙𝑝(𝐷

𝑚𝑒𝑡𝑟𝑖𝑐), 𝐹𝑐𝑏𝑟(𝑋
2𝐷)))))         (2) 

where 𝐹𝑚𝑙𝑝, 𝐹𝑚𝑙𝑝, 𝐹𝑠𝑒, 𝐹𝑑𝑐𝑟 , 𝐹𝑐𝑜𝑛𝑣, softmax represent the operations MLP, CBR, SE-

Layer, DCR Block, Conv2d, and softmax respectively. 𝐷𝑚𝑒𝑡𝑟𝑖𝑐, 𝑋2𝐷 represent the in-

puts to DCRNet, and 𝐷𝑠=𝑘
𝑑𝑖𝑠𝑡  represents the depth distribution after the refinement pro-

cess. 

2.3 Kernel-split Depthwise Attention 

As 3D data is required to model the spatial continuity between voxels, the local convo-

lution of the shallow 3D encoder is difficult to capture long distance dependencies, and 

the lack of depth inference for occluded regions makes the voxel prediction confidence 

in deeply ambiguous regions decrease. Meanwhile, in indoor scenes, the details of ob-

jects may be over-smoothed in shallow downsampling, resulting in the downsampling 

of the shallow encoder often losing the detail information, making it difficult for the 

decoder to recover the fine geometry. In addition, in the indoor occupancy prediction 

task, the scale complexity of the scene with large differences in object sizes makes it 

difficult for the model to accurately complement the semantic scene. 

 

Fig. 4. Detailed structure of KSDA. 

To solve the above problems, we designed Kernel-Split Depthwise Attention for ef-

ficiently capturing long range dependencies. At the same time, it reduces the missing 

information during the downsampling operation, and the structure of this module is 

shown in Fig.4. It can be seen that, due to the complexity of the large kernel convolution 

calculation in the 3D scene, we slice the input feature voxels, and then process them by 

using four DWConv, and finally, we concat five feature voxels. This method not only 

captures long range dependencies efficiently, but also reduces the number of parame-

ters and computational effort while maintaining a large receptive field, avoiding the 

problem of cubic-level computational complexity growth in 3D scenarios. In addition, 
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four DWConv obtain feature voxels at different scales, which are finally fused to en-

hance the richness of feature semantics. By using the method in conjunction with 

downsampling, it not only solves the problem of the shallow encoder's difficulty in 

capturing long-range dependencies and avoids the complexity of cubic-level computa-

tion in 3D scenarios, but also improves the model's ability of extracting wide-area con-

textual and edge information, and enhances the depth information of the network. Over-

all, the method mitigates the problems caused by the complexity of the scene scale and 

the large differences in object sizes. While maintaining computational efficiency, it also 

solves the problem of shallow encoders losing detail information during downsampling. 

The principle of the module can be expressed by the following equation: 

𝑋ℎ𝑤𝑑 , 𝑋𝑤𝑑 , 𝑋ℎ𝑑 , 𝑋ℎ𝑑 , 𝑋𝑖𝑑 = 𝑠𝑝𝑙𝑖𝑡(𝑋3𝐷)                              (3) 

𝑋1
3𝐷 = 𝑋𝑖𝑑                                                        (4) 

𝑋2
3𝐷 = 𝐷𝑊𝐶𝑜𝑛𝑣𝐾×1×1

𝑐 (𝑋ℎ𝑤)                                          (5) 

𝑋3
3𝐷 = 𝐷𝑊𝐶𝑜𝑛𝑣1×𝐾×1

𝑐 (𝑋ℎ𝑑)                                           (6) 

𝑋4
3𝐷 = 𝐷𝑊𝐶𝑜𝑛𝑣1×1×𝐾

𝑐 (𝑋𝑤𝑑)                                          (7) 

𝑋5
3𝐷 = 𝐷𝑊𝐶𝑜𝑛𝑣3×3×3

𝑐 (𝑋ℎ𝑤𝑑)                                         (8) 

𝑋3𝐷′ = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑋1
3𝐷, 𝑋2

3𝐷, 𝑋3
3𝐷 , 𝑋4

3𝐷, 𝑋5
3𝐷)                             (9) 

where c represents the number of channels in DWConv and K denotes the kernel size 

of the DWConv. 

3 Experiments 

3.1 Experimental setup 

Dataset. In this paper, we conducted experiments using the NYUv2[17] dataset and the 

OccScanNet[22] dataset to validate the effectiveness of our method for the indoor mo-

nocular occupancy prediction task. The NYUv2 dataset contains a total of 1,449 RGB 

images containing 464 different indoor scenes covering 26 indoor scene types, with a 

total of 35,064 instances of objects labeled as 11 semantic categories (ceiling, floor, 

wall, window, chair, bed, sofa, table, televisions, furniture, objects), and was sampled 

in the experiments with 795 and 654 samples in the training and validation sets, respec-

tively. The OccScanNet dataset was built based on the large-scale ScanNet[4] dataset 

to provide a richer and more scalable indoor scene than NYUv2, which focuses on 3D 



indoor occupancy of the scenes. It contains 45,755 training samples and 19,764 valida-

tion samples, which is 40 times more than NYUv2, and contains 11 semantic categories 

as NYUv2. In addition, OccScanNet_mini is a mini version of the OccScanNet dataset 

with 10% of the sample size of the OccScanNet dataset, containing 4639 training sam-

ples and 2007 validation samples. 

Metric. In order to fully validate the effectiveness of our approach, we used the Inter-

section over Union of voxels (IoU) to evaluate the effect of semantic scene completion, 

the IoUs of each category of semantic scene completion to evaluate the prediction effect 

of each category, and the mean of the IoUs of each category of semantic scene comple-

tion (mIoU) to evaluate the overall performance of the model's semantic scene comple-

tion. 

Experimental Details. We performed experiments on the NYUv2 dataset with an ex-

perimental epoch of 30 and a learning rate of 1e-4. Comparison experiments with the 

SOTA model on the Occscannet dataset were performed with an experimental epoch 

of 10 and a learning rate of 1e-4. All experiments were performed on a set of high 

performance GPUs equipped with Intel(R) Xeon(R) CPUs, 128 GB RAM, and 

NVIDIA V100 GPUs on a Linux server. 

3.2 Ablation study 

In this section, in order to demonstrate the effectiveness of our proposed MCCM, 

DCRNet, and KSDA modules, we conducted ablation experiments, and the experi-

mental results are shown in Table 1. 

Table 1. Ablation experiment on the NYUv2 dataset. 

It can be observed that, compared to the baseline model, the model trained with the 

MCCM module demonstrates significant improvements in the categories of ceiling, 

window, table, furniture, and objects. This is because the MCCM module calibrates the 

output of the 2D encoder, preserving multi-scale important features extracted through 

visual feature extraction while suppressing irrelevant information. Through this mod-

ule, the network incorporates more multi-scale critical feature information during the 

2D decoding process. This enhancement is particularly pronounced for highly complex 

categories like objects, and also yields substantial improvements for categories with 

significant scale variations such as ceiling, window, table, and furniture. However, the 

reduced IoU for chair, bed, and televisions categories stems from the MCCM module's 

emphasis on strengthening the 2D decoder's ability to comprehend global structures. 

Baseline MCCM DCRNet KSDA IoU ceiling floor wall window chair bed sofa table televisions furniture objects mIoU 

√    47.11 14.21 93.47 15.89 15.14 18.35 50.01 40.82 18.25 25.90 34.08 17.67 31.25 

√ √   47.45 16.46 93.48 16.10 16.64 17.46 49.30 41.00 19.24 24.20 35.54 19.02 31.68 

√  √  47.53 15.00 93.24 16.76 13.99 17.39 49.20 42.65 18.23 28.76 34.60 18.87 31.70 

√   √ 47.68 17.40 93.49 16.31 15.90 17.52 49.39 40.60 18.66 24.75 35.02 19.48 31.68 

√ √ √  47.82 16.22 93.42 16.86 15.53 18.02 49.84 41.97 18.99 25.29 35.19 19.05 31.85 

√ √  √ 47.61 16.23 93.54 16.79 16.52 17.30 49.94 42.67 18.46 26.10 35.75 18.23 31.95 

√  √ √ 47.68 17.57 93.45 16.73 14.05 17.23 51.11 42.71 17.74 30.39 34.40 18.36 32.16 

√ √ √ √ 47.94 16.33 93.16 17.20 15.78 17.90 51.32 42.02 18.98 28.30 35.25 19.37 32.33 
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While this addresses the challenge of accurately completing objects with varying scales, 

it inadvertently diminishes the model's perception capability for categories with scale 

similarities like chair, bed, and televisions, thereby reducing their prediction effective-

ness. However, the model achieves notable overall improvements in both IoU and 

mIoU, effectively validating the efficacy of the proposed module. 

In addition, after integrating the DCRNet module into the baseline model, the overall 

performance of the model is improved. Analyzing the IoU of individual categories, 

significant enhancements are observed in semantic scene completion for ceiling, wall, 

sofa, televisions, furniture, and objects categories, while performance declines for win-

dow, chair, and bed classes. This improvement comes from our module’s recalibration 

of depth information, which produces a more refined depth distribution, thereby boost-

ing the model’s holistic capabilities. In particular, substantial gains are achieved for 

categories with smoother surfaces, such as ceiling and wall, as well as highly complex 

ones, such as objects. However, for indoor furniture categories such as window, chair, 

and bed, the model tends to misclassify them as similar categories such as sofa, televi-

sions, or furniture. This confusion reduces the IoU for the window, chair, and bed while 

increasing the IoU for their similar counterparts. However, the overall IoU and mIoU 

of the model increase, which validates the effectiveness of the proposed module. 

Third, after incorporating the KSDA module into the baseline model, we observe 

exceptionally significant improvements in the categories of ceiling, wall, window, fur-

niture, and objects. This is because our module effectively captures long-range depend-

encies while reducing information loss during downsampling, thereby alleviating the 

challenges of scene completion caused by complex scene scales and significant varia-

tions in object sizes during the semantic scene completion process. Through this mod-

ule, the semantic information in the 3D encoder becomes more enriched, leading to 

remarkable enhancements for complex categories like furniture and objects, which rely 

heavily on detailed semantic understanding. However, in the categories of chair, bed, 

and televisions, performance degrades, due to the fact that the network lacks semantic 

information for small volume targets. However, the overall IoU and mIoU of the model 

show substantial improvements, sufficiently validating the efficacy of the proposed 

module. 

Finally, each of our modules is not isolated, and each of them has its own focus. It 

can be seen that after adding the proposed MCCM, DCRNet, and KSDA modules at 

the same time, for the categories of chair, bed, televisions, and window, which are dif-

ficult to be improved by a single module, the new model has a great improvement in 

these categories. In conclusion, our method is targeted at occupying the prediction task 

in monocular indoor occupancy, and we have achieved good results in the experiments, 

verifying the effectiveness of the method. 



3.3 Comparison and analysis with SOTA models 

Performance on the NYUv2 dataset. We first conduct a performance comparison ex-

periment with the SOTA model on the NYUv2 dataset, and the results obtained are 

shown in Table 2. As we can see, MDKOcc outperforms the SOTA model ISO in the 

evaluation metrics for categories including ceiling, wall, window, bed, sofa, table, tel-

evisions, furniture, and objects. Although MDKOcc achieves lower scores than the 

NDC-Scene model on the floor category and underperforms ISO in the chair category, 

it surpasses ISO overall when considering all evaluation metrics. Notably, MDKOcc 

achieves an IoU of 47.94% and an mIoU of 32.33%, exceeding ISO by 0.83% and 

1.08%, respectively, which validates the superiority of MDKOcc. 

In addition, we performed a visual analysis of ISO and MDKOcc, with results illus-

trated in Fig.5. Comparing the visualizations with ground truth, MDKOcc exhibits 

richer detail, smoother and more natural object surfaces, and more accurate category 

identification. This indicates that MDKOcc achieves finer detail processing in semantic 

scene completion, stronger global contextual relationships, and more precise semantic 

information, further validating its superiority. 

Table 2. Performance comparison of SOTA models on the NYUv2 dataset. 

Method Input IoU ceiling floor wall window chair bed sofa table televisions furniture objects mIoU 

LMSCNetrgb[16] Inputocc 33.93 4.49 88.41 4.63 0.25 3.94 32.03 15.44 6.57 0.02 14.51 4.39 15.88 

AICNetrgb[10] Input rgb  , Inputdep th  30.03 7.58 82.97 9.15 0.05 6.93 35.87 22.92 11.11 0.71 15.90 6.45 18.15 

3DSketchrgb[3] Input r g b  ,  InputT S D F  38.64 8.53 90.45 9.94 5.67 10.64 42.29 29.21 13.88 9.38 23.83 8.19 22.91 

Monoscene[2] Input rg b  42.51 8.89 93.50 12.06 12.57 13.72 48.19 36.11 15.13 15.22 27.96 12.94 26.94 

NDC-Scene[21] Input rg b  44.17 12.02 93.51 13.11 13.77 15.83 49.57 39.87 17.17 24.57 31.00 14.96 29.03 

ISO[22] Input rg b  47.11 14.21 93.47 15.89 15.14 18.35 50.01 40.82 18.25 25.90 34.08 17.67 31.25 

MDKOcc Input rg b
 47.94 16.33 93.16 17.20 15.78 17.90 51.32 42.02 18.98 28.30 35.25 19.37 32.33 

Performance on the OccScanNet dataset. We also conducted performance compari-

son experiments with the SOTA model on the OccScanNet dataset and the results ob-

tained are shown in Table 3. It can be seen that MDKOcc outperforms the ISO model 

in terms of evaluation metrics on the categories of wall, window, bed, sofa, table, tele-

visions, furniture, and objects. However, it is lower than the ISO model on the ceiling 

category and lower than the Monoscene model on the floor category. Although 

MDKOcc is lower than other methods in some of the categories, overall MDKOcc out-

performs the SOTA model, as reflected in its IoU and mIoU, which reach 42.81% and 

29.59%, respectively, which proves that MDKOcc is still superior on large datasets and 

confirms that MDKOcc has excellent generalisation performance. 

In addition, we have also visualised ISO and MDKOcc separately, and the results 

are shown in Fig.6. It can be seen that in the four scenarios, the semantic scene com-

plementation of MDKOcc is better than that of the ISO model, which further confirms 

that the MDKOcc model has excellent generalisation. 

Table 3. Performance comparison of SOTA models on the OccScanNet dataset. 

Method Input IoU ceiling floor wall window chair bed sofa table televisions furniture objects mIoU 

Monoscene[2] Input rg b
 41.16 15.17 44.71 22.41 12.55 26.11 27.03 35.91 28.32 6.57 32.16 19.84 24.62 

ISO[22] Input rg b
 42.16 19.88 41.88 22.37 16.98 29.09 42.43 42.00 29.60 10.62 36.36 24.61 28.71 

MDKOcc Input rg b
 42.81 19.23 42.16 23.04 19.52 28.96 43.59 43.20 30.13 13.14 36.42 26.07 29.59 
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Fig. 5. Visual comparison of SOTA models on the NYUv2 dataset. 

 



 

Fig. 6. Visual comparison of SOTA models on the OccScanNet dataset. 

4 Discussion 

4.1 Generalisability with limited data 

In order to test the generalisation performance of MDKOcc on a finite dataset, we con-

ducted experiments on the OccScanNet_mini dataset, and the experimental results are 

shown in Table 4. It can be seen that the IoU and mIoU of MDKOcc are still higher 

than that of ISO, which verifies that MDKOcc still has excellent generalisation on a 

finite dataset. 

Table 4. Performance comparison on the OccScanNet_mini dataset. 

Method Input IoU mIoU 

ISO[22] Input rg b
 51.03 39.08 

MDKOcc Input rg b
 51.56 39.43 
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4.2 Limitations and future work 

Although the MDKOcc model is rich in semantic information and reinforces the long-

range dependency, which effectively mitigates the depth ambiguity problem, the effect 

on the OccScanNet dataset, which contains multi-view and multi-scale scenes, can be 

improved. This may be due to the fact that the scene categories of OccScanNet are 

complex and cover a wider range, and MDKOcc is more weak in learning these com-

plex scenes, resulting in poor results. In the future, we will pay more attention to the 

situation in the real world and conduct research on more complex and extensive scenes 

to enhance the understanding of semantic information and better complement the se-

mantic scenes. 

5 Conclusion 

In this paper, we propose a novel approach for mitigating the problem of semantic scene 

depth ambiguity in an indoor monocular occupancy prediction task. Our proposed 

MDKOcc method enhances the ability to complement the semantic scene. Ablation ex-

periments confirm the effectiveness of our proposed Multi-scale Context Calibration 

Module, Depth Calibrated Residual Network and Kernel-split Depthwise Attention. In 

addition, comparison and analysis experiments with the SOTA model on the NYUv2 

dataset confirm the superiority of our approach, as well as comparison and analysis 

experiments with the SOTA model on the OccScanNet dataset validate the generalisa-

tion of our approach. Finally, the comparison and analysis with the SOTA model on the 

OccScanNet_mini dataset verifies the excellent generalisation of our method even with 

limited data. In the future, we will focus on understanding semantic information and 

enhancing the complementation ability in complex semantic scenarios. 
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