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Abstract. The increasing adoption of electric vehicles (EVs) in logistics and 

transportation has led to critical challenges, including long charging times and 

range limitations. Battery swapping offers an effective solution for reducing en-

ergy replenishment time at stations. In this paper, we tackle the Electric Vehicle 

Routing Problem with Battery Swapping Station (EVRP-BSS) by proposing a 

Deep Reinforcement Learning (DRL)-based approach. Our approach trains a pol-

icy network with an encoder-decoder architecture to sequentially construct vehi-

cle routes. To improve the network ability to capture complex node and edge 

relationships, we design a graph convolutional network (GCN)-based encoder 

that separately embeds node features and edge features (e.g., distance, slope), 

further fusing them through self-attention to generate global representations. This 

approach enhances the node information, ultimately leading to high-quality solu-

tions. During training, we update the model parameters using the multiple-start 

sampling trajectory method. Experimental results demonstrate that our method 

achieves superior performance compared to both traditional heuristics and neural 

baselines. 

Keywords: Deep Reinforcement Learning, Graph Convolutional Network, 

Electric Vehicle Routing Problem. 

1 Introduction 

As electric vehicles (EVs) continue to transform the transportation sector, their wide-

spread adoption presents both opportunities and challenges [1]. Although EVs offer a 

sustainable alternative to traditional vehicles, their limited battery capacity and lengthy 

charging times remain significant barriers, particularly for long-distance transportation. 

To overcome these limitations, the efficient planning of EV fleet routes has become 

critical. This need has given rise to the Electric Vehicle Routing Problem (EVRP) [2], 

an extension of the classic VRP. Unlike traditional VRP, which focuses solely on opti-

mizing routes, EVRP must also address the unique challenges posed by EVs, such as 

battery range constraints and the strategic placement of charging stations, ensuring that 

routes are both feasible and operationally efficient. 

Fuel-powered vehicles benefit from rapid refueling, whereas electric vehicles (EVs) 

often experience extended charging times, posing challenges to operational efficiency 



and limiting their broader adoption. To mitigate this issue, the battery swapping station 

(BSS) model has emerged as a promising alternative [3]. By enabling quick battery 

replacement, BSS significantly reduce energy replenishment time and improve delivery 

performance. This study focuses on the Electric Vehicle Routing Problem with Battery 

Swapping Stations (EVRP-BSS), where EVs start with full batteries from a depot and 

may require battery swaps during the route. The objective is to minimize the total time, 

including both travel and swapping time, while meeting all operational constraints. 

Solving the EVRP poses substantial computational challenges due to its combinato-

rial complexity and NP-hard nature, where the solution space expands rapidly with in-

stance size. Traditional approaches, including exact algorithms and handcrafted heuris-

tics, often struggle to scale efficiently in large problem settings [4]. In contrast, recent 

progress in deep reinforcement learning (DRL) has opened new avenues for tackling 

such problems. By learning optimization policies through interaction with the environ-

ment, DRL methods can produce high-quality solutions with significantly improved 

computational efficiency, demonstrating notable advantages over classical methods in 

both speed and performance. 

Recent advances in deep learning have significantly impacted routing optimization. 

The Pointer Network [5] first demonstrated the potential of neural networks in solving 

the TSP. Building on this foundation, Kool et al. [6] introduced the Attention Model 

(AM), a Transformer-based architecture capable of solving TSP and CVRP with per-

formance comparable to classical heuristics. Kwon et al. [7] further improved AM 

through Policy Optimization with Multiple Optima (POMO), which stabilizes training 

by sampling multiple trajectories. Subsequent works have extended this line of re-

search: Wu et al. [8] proposed an iterative DRL optimization framework, while Ma et 

al. [9] developed the Dual-Aspect Collaborative Transformer (DACT) to enhance so-

lution quality. To address energy-constrained routing challenges, Tang et al. [10] em-

ployed a DRL framework enhanced with a Transformer architecture to reduce energy 

consumption in electric vehicle applications. 

This paper presents a DRL-based neural heuristic for solving the EVRP-BSS. We 

formulate EVRP-BSS as a graph optimization task and construct solutions by sequen-

tially selecting nodes through an encoder-decoder policy network. To effectively cap-

ture spatial and relational information, a graph convolutional network (GCN)-based 

encoder is employed: node features are embedded via linear projection, while edge fea-

tures (e.g., distance and slope) are extracted using GCN layers. These are integrated 

using a self-attention mechanism to produce global representations. A tailored masking 

strategy is introduced to ensure solution feasibility. The entire network is trained using 

the REINFORCE algorithm. Extensive experiments show that our approach consist-

ently outperforms traditional heuristics and neural baselines. 

The rest of the paper is organized as follows: Section 2 defines the problem of 

EVRP-BSS; Section 3 describes our DRL-based solution method; Section 4 presents 

the experimental results; and Section 5 concludes the paper and outlines potential di-

rections for future research. 
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2 Problem Statement 

2.1 Problem Description 
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Fig. 1. Examples of the EVEP-BSS 

EVRP-BSS can be defined as a directed graph ( ),G V E= , as shown in Fig. 1, where 

 , ,V D F C=  is the set of all nodes and ( ) , , ,E i j i j V i j=    is the set of arcs 

between nodes. Since the routing problem in this paper involves only one depot, the 

depot set D is both the starting and the ending point. The total number of nodes in the 

graph is 1 F CN N N= + + , where  1,2, , FF N=  represents the set of battery swap 

stations and  1, 2, ,F F F CC N N N N= + + +  represents the set of customer nodes.  

In the EVRP-BSS, a fleet of K homogeneous electric vehicles distributes goods to 

CN  customers with demand iq  in a directed graph G. Each vehicle departs from the 

depot with a maximum load Q and battery level U. During distribution, vehicles may 

visit any of the FN  battery swapping stations to replace depleted batteries before con-

tinuing service. The objective is to minimize total time while ensuring that all customer 

demands are fulfilled before returning to the depot. Meanwhile, this paper adopts the 

energy consumption model proposed by [10], which considers multiple factors to better 

reflect real-world driving conditions. During the travelling, the following conditions 

must be met: 

⚫ Each EV can only serve customers with demand less than or equal to its current 

load capacity; 

⚫ A customer receives service from only one EV; 

⚫ EVs can visit battery swapping stations multiple times as needed. 

2.2 Mathematical Formulation 

The notation used in the EVRP-BSS model is shown in Table 1.  



Table 1. The notation definition of the EVRP-BSS model. 

Notation Definition 

K  Set of vehicles. 

V  Set of all nodes. 

D  Set of depot node. 

F  Set of battery swapping station nodes. 

C  Set of customers. 
k

ijt  The travel time of vehicle k from node i to node j. 

k

ijE  The energy consumption of vehicle k from node i to node j. 

k

ijw  Load of vehicle 𝑘 when traveling from node 𝑖 to node 𝑗.  

k

je  The remaining battery level of vehicle k at node j. 

jq  Demand of node j. 

st  Battery swapping time. 

Q  Vehicle load capacity. 

U  Vehicle battery capacity. 

k

ijx  
Binary indicator: 1 if vehicle 𝑘 travels from node 𝑖 to node 𝑗; 0 

otherwise.  

Based on the above notation, EVRP-BSS can be represented as the following nonlinear 

mixed integer programming model: 

 
, ,

min k k

O ij ij s

k K i j V i j k K j F

t t x t
    

= +     (1) 

 1, ,k

ij

j V

x i C k K


=      (2) 

 1, ,k

ij

j V

x i F k K


      (3) 

 0, ,k k

ij ji

j V j V

x x i C F k K
 

− =      (4) 

 ( )1 , , , ,k k k k

i i ij ij jw q x Q x w i j V i j k K− + −        (5) 

 0w Q=   (6) 

 0 , , , ,k

iw Q i j V i j k K        (7) 

 ( )1 , , , ,k k k k

i ij ij ije E U x e i j V i j k K− − −        (8) 
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ie U i V k K       (9) 
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  , 0 ,k

ie U i F k K=      (10) 

  0,1 , , , ,k

ijx i j V i j k K       (11) 

Specifically, the objective function in Eq. (1) minimizes the total travel time. Con-

straint (2) guarantees that every customer is visited by exactly one vehicle. Constraint 

(3) allows that visiting battery swapping stations is optional. Constraint (4) ensures flow 

conservation between nodes. Constraint (5) calculates the remaining vehicle load. Con-

straints (6) and (7) specify the vehicle initial load upon departure from the depot and 

ensure it stays within the weight limit during travel. Constraint (8) tracks the remaining 

battery charge. Constraint (9) keeps the battery charge within the allowable range. Con-

straint (10) requires vehicles to leave the depot or a swapping station with a full battery, 

and Constraint (11) specifies binary decision variables.  

3 Methodology 

In this section, we present the DRL framework for solving the EVRP-BSS, as shown 

in Fig. 2. The EVRP-BSS is first modeled as an MDP, and the policy is learned via an 

encoder-decoder neural network.  
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Fig. 2. Framework of the DRL Method. 

3.1 Markov Decision Process 

To model EVRP-BSS as MDP, we treat it as a sequential decision-making problem, 

where routes are progressively constructed at each step. Specifically, the solution can 

be represented as a sequence  0 1, , , Ta a a = , where ta N  and both 0 0ta a= = . 



In the MDP framework, the state is represented by the partial solution 
0: 1ta −

, and an 

action involves visiting the node    0: 1\ 0t ta V a F− . The reward is represented 

by 1

1

t
T a

Ot
R t −

=
=  , where 1ta

Ot
−  indicates the travel time at step t, and the state transition 

is described by  0: 0: 1,t t ta a a−= . The policy ( )p G  maps the graph G to a solution π. 

It is expressed as ( ) ( )0: 11
,

T

t tt
p G a a G  −=

=  , where ( )0: 1,t ta a G −
 denotes the 

node selection probabilities. 

3.2 Policy Network with GCN and Edge Feature Integration 

A GCN-based policy network is used to process edge features and extract information 

from both nodes and edges, enabling the learning of the strategy  , The encoder gen-

erates partial embeddings for nodes and edges, which are then combined using a self-

attention mechanism. During decoding, the model incorporates node embeddings and 

contextual information at each step to generate a probability distribution, based on 

which the next node is selected. This process repeats until all customers have been vis-

ited. 

Encoder. The encoder extracts the node features ( ),i i ix v q=  using linear projection 

into a 
hd -dimensional space ( 128hd = ), while the edge features ( ),ij ij ije d s=  using 

a GCN to generate the corresponding embeddings. Here, 
iv  represents the coordinates 

of the node, iq denotes the customer demand, 
ijd  and 

ijs  represent the distance and 

slope between nodes, respectively. The process is as follows: 

 

0

0 0 0 0

0

GCN( ) GCN( )

,

i

i

e ij ij

i N i N e

h d s

h W x b h W b

= +

 = + + 

 (12) 

Where 0

NW , 
Nb , 0W , and 

0b  are trainable parameters. The encoder is processed 

through L (L=3) sublayers. Specifically, for the l-th sublayer, its input 1lh −  first com-

putes the attention value through a multi-head attention (MHA)layer with M (M=8) 

heads. Each attention head 1lh −  computes the query Q, key K, and value V. The outputs 

of all heads are concatenated to form the final MHA output, preserving the input shape. 

This process can be expressed as: 

 
( )

( )  

1 1 1

1

1 2

, , , ,

max

MHA , ,

Q l K l V l

lm lm lm lm lm lm

T

lm lm

lm lm

k

l O

l l lM l

Q K V W h W h W h

Q K
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d

h H H H W

− − −

−

=

 
 =
 
 
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where  1, ,m M  ,  1, ,l L  , and /q k v hd d d d M= = = . The trainable pa-

rameters are 1Q l

lmW h − , 1K l

lmW h − , 1V l

lmW h − , and O

lW . The output of the ( )1MHA lh −  is then 

further processed through skip connections[11], followed by instance normalization 

(IN) [12]and the feed-forward (FF) layer, resulting in the output of the current layer 

node embedding. The specific process is as follows. 

 
( )( )

( )( )

1 1IN MHA

IN FF

l l l l

l l l l

h h h

h h h

− −= +

= +
 (14) 

The graph embedding h  is the average of the node embeddings Lh . 

Decoder. After receiving the encoder output, the decoder calculates the node selection 

probabilities, thereby determining the nodes to visit at each step. It utilizes the graph 

embedding h , the embedding of the previously visited node 
1

L

th −
, and the current vehi-

cle state tv  as contextual information c

tH , and computes an attention glimpse over this 

context using a multi-head attention mechanism. The specific process is as follows: 

 

( )

( )

1 1 1FF ,

,

MHA , ,

t L

t t

c

t t

g Q c K L V L

t g t g g

Q W v b h

H h Q

H W H W h W h

−
 = + 

 =  

=

 (15) 

The parameters 
1W , 

Q

gW , 
K

gW , 
V

gW  and 
1b  are trainable. The vehicle state 

,t t tv w e =  
, where tw  and te  represent the vehicle load capacity and remaining bat-

tery level respectively. Then, the compatibility 
tu  between g

tH  and all vertices is com-

puted using single-head attention. 

 

( )
tanh ,  1

inf ,  

T
c c

t t i

ti

t k

Q K
C mask

u d

otherwise

  
  • =

 = 
 

 −

 (16) 

Where c Q g

t c tQ W H= , c K L

t cK W h= , 10C = . When 1i

tmask = , it indicates that the fea-

sible node i is not masked at step t. Finally, the softmax function is applied to compute 

the probability distribution for selecting a node at step 𝑡, as follows: 

 ( )t

tP softmax u=  (17) 

The decoder will perform node selection at each step until the demands of all nodes are 

met and all vehicles return to the depot. 



3.3 Policy Optimization 

To improve training stability and efficiency, multiple sampling tracks inspired by 

POMO [7] are used, each starting from a different customer to generate 
CN  distinct 

solutions. Policy optimization follows the REINFORCE algorithm [13], using gradient 

ascent to maximize reward (i.e., minimize total time). The baseline ( )b s , shared across 

trajectories, is the average reward over all tracks. This process is illustrated below. 

 

( ) ( ) ( )( ) ( )

( ) ( )

1

1

1
log

1

C

C

N

C

N

C

J R b s P a s
N

b s R
N

 

   







 



=

=

 = − 

=





 (18) 

Where ( )J   represents the gradient of the loss function, and ( )R 

  denotes the 

reward of the λ-th trajectory. The overall training process is shown in Algorithm 1. 

Algorithm 1 Training of our policy network 

 Input: Instance with a set of nodes V, number of epochs E, batched size B, 

step limits T; 

 Initialization: initial parameters for policy network 

  for sub-track λ; 

1. for 1,2, ,epoch E=  do  

2.  for 1,2, ,batch B=  do 

3.   Select multiple starting nodes 1

1 1 1, , , , CNa a a ; 

4.   for 1,2, , CN =  do 

5.    while t < T do 

6. 
    Calculate the action ( )t ta a s 

 , 1t t + ; 

7.    end 

8.    Calculate the reward ( )R 
 ; 

9.   end  

10. 
  ( ) ( )( )maxR R 

  = − ; 

11.   Update baseline ( )b s  and Calculate gradient ( )J  ; 

12.   Update θ by ( )J    +  . 

13.  end 

14. end 
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4 Experimentally 

In this section, we evaluate the proposed DRL method for EVRP-BSS. All experiments 

are conducted on a device with a 10-core Intel i7 CPU and a single RTX 4090 GPU. 

4.1 Experimental Settings 

Following prior studies [10], we generate four types of stochastic instances with 10, 20, 

50, and 100 customer nodes, denoted as C10, C20, C50, and C100, respectively. Each 

instance includes 4 (for 10/20 customers) or 8 (for 50/100 customers) battery swapping 

stations. Customer and swapping station coordinates are uniformly sampled within [0, 

100]×[0, 100], and the depot is placed within [25, 75]×[25, 75]. Customer demand val-

ues are randomly sampled from the discrete set 0.25,  0.5,  0.75,  1 . The vehicle phys-

ical parameters are set according to the literature [14]. Meanwhile, the vehicle average 

traveling speed is set to 50 km/h, and the battery swapping time is set to 5 min. 

During training, the model is trained for 100 epochs using 10,000 dynamically gen-

erated instances per epoch and optimized with Adam (learning rate 410 −= ). For test-

ing, 200 random instances are generated per problem size, following the same distribu-

tion as training. 

4.2 Comparison Analysis 

The proposed DRL model is compared with six baseline methods, including: exact 

solver (GUROBI [15]), classical heuristics (ACO [16], ALNS [14]), and DRL-based 

models (AM [6], POMO [7], EV-RL [10]). We adopt three decoding strategies: greedy 

(g.); sampling (s.), with s.1280 indicating 1,280 samples per instance; and coordinate 

augmentation (aug.8), involving seven geometric transformations to diversify solu-

tions. Fig. 3 shows the training process of EVRP-BSS, where the average negative re-

ward (total time) decreases steadily, and the loss gradually stabilizes, indicating con-

vergence to a stable policy. 

 

  

 
(a) Training reward   (b) Training loss 

Fig. 3. training curves for different problem sizes 



Table 2 and Table 3 report the experimental results on randomized instances of varying 

sizes, including average objective values, gaps, and running times. Due to the exponen-

tial increase in computation time, GUROBI is only applied to smaller instances (C10 

and C20). Overall, the proposed DRL method achieves superior solution quality and 

computational efficiency. Compared with traditional heuristics and other DRL base-

lines, it consistently yields better results, and the performance advantage becomes more 

pronounced as problem size increases. For example, the gap between our method and 

POMO grows from 0.29% to 0.96% as the number of customers increases from 10 to 

100. 

Table 2. Comparison of EVRP-BSS on C10-4 and C20-4. 

Method 
C10 C20 

Obj. Gap Time(s) Obj. Gap Time(s) 

GUROBI 6.92 0.00% 0.47 10.74 0.00% 21.50 

ALNS 7.65 10.55% 1.47 12.32 14.71% 20.78 

ACO 7.42 7.22% 2.39 11.53 7.36% 6.12 

AM (aug.8, g.) 8.73 16.97% 0.10 13.18 22.72% 0.18 

AM (s.1280) 7.71 11.42% 0.10 11.98 11.55% 0.14 

EV-RL (aug.8, g.) 8.06 16.47% 0.12 13.09 21.88% 0.21 

EV-RL (s.1280) 7.44 7.52% 0.07 11.90 10.80% 0.13 

POMO (aug.8, g.) 7.43 7.37% 0.06 11.58 7.82% 0.12 

Ours (aug.8, g.) 7.41 7.08% 0.07 11.50 7.08% 0.12 

Table 3. Comparison of EVRP-BSS on C50-8 and C100-8. 

Method 
C50 C100 

Obj. Gap Time(s) Obj. Gap Time(s) 

GUROBI - - - - - - 

ALNS 31.02 39.98% 236.91 - - - 

ACO 24.59 10.97% 23.52 46.33 19.84% 75.69 

AM (aug.8, g.) 26.61 20.08% 0.59 46.47 20.20% 1.34 

AM (s.1280) 25.67 15.84% 0.32 46.28 19.71% 0.71 

EV-RL (aug.8, g.) 26.48 19.50% 0.44 45.19 16.89% 1.08 

EV-RL (s.1280) 25.49 15.03% 0.33 45.01 16.43% 0.69 

POMO (aug.8, g.) 22.37 0.95% 0.30 39.03 0.96% 0.70 

Ours (aug.8, g.) 22.16 0.00% 0.30 38.66 0.00% 0.71 

4.3 Generalization on Benchmark Datasets 

We evaluated the generalization performance of our method on larger-scale benchmark 

instances. Instances were selected from the Solomon benchmark [17] and the Gehring 

and Homberger benchmark [18], and modified to construct the test dataset. Specifically, 

each customer node retains its coordinates and demand-to-capacity ratio, while the co-

ordinates of battery swapping stations are randomly generated within predefined 

bounds. Each instance is defined by its name (“Ins.”), the number of swapping stations 
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(“Sta.”), and customers (“Cus.”). 

To evaluate generalization, we use the four models trained in Section 4.2 to solve 

benchmark instances and compare the proposed DRL method with POMO (aug.8, g.) 

and EV-RL (s.1280). Table 4 and Table 5 report the optimal and average objective 

values, along with the corresponding gaps. Although the proposed DRL method is 

slightly outperformed by POMO on C221 and C241 in terms of average objective val-

ues, it consistently surpasses other DRL-based baselines across all benchmark in-

stances, demonstrating robust generalization ability. 

Table 4. Best results on benchmark instances. 

Ins. Sta. Cus. 
Ours (aug.8, g.) POMO (aug.8, g.) EV-RL (s.1280) 

B.O. B.G. B.O. B.G. B.O. B.G. 

C101 8 100 19.20 0.00% 19.93 3.80% 23.08 20.21% 

R101 8 100 19.62 0.00% 19.86 1.22% 28.26 44.04% 

RC101 8 100 22.48 0.00% 23.74 5.61% 27.22 21.09% 

C121 12 200 39.98 0.00% 40.75 1.93% 106.02 165.18% 

C221 12 200 42.90 0.00% 44.66 4.10% 94.30 119.81% 

C141 16 400 161.28 0.00% 166.67 3.34% 360.27 123.38% 

C241 16 400 101.90 0.00% 102.88 0.96% 368.47 261.60% 

Average 58.19 0.00% 59.78 2.73% 143.95 147.35% 

Table 5. Average results on benchmark instances. 

Ins. Cus. Best 
Ours (aug.8, g) POMO (aug.8, g) EV-RL (s.1280) 

A.O. A.G. A.O. A.G. A.O. A.G. 

C101 100 19.20 20.15 4.95% 20.80 8.33% 31.29 62.97% 

R101 100 19.62 20.14 2.65% 20.38 3.87% 39.06 99.08% 

RC101 100 22.48 23.55 4.76% 24.48 8.90% 35.22 56.67% 

C121 200 39.98 41.36 3.45% 42.31 5.83% 116.61 191.67% 

C221 200 42.90 46.19 7.67% 46.07 7.39% 102.86 139.77% 

C141 400 161.28 176.78 9.61% 178.11 10.44% 561.67 248.26% 

C241 400 101.90 109.75 7.70% 109.19 7.15% 571.46 460.80% 

Average 58.19 62.56 7.50% 63.05 8.34% 208.31 257.96% 

5 Conclusion 

A novel deep reinforcement learning method is proposed in this paper for solving the 

EVRP-BSS using an encoder–decoder framework. The encoder integrates GCN and 

self-attention to extract edge features and embed richer information, while the decoder 

employs a masking scheme to ensure solution feasibility. Experiments on both random 

and benchmark instances show that the method consistently outperforms traditional 

heuristics and neural baselines. Future research will explore alternative optimization 

techniques for addressing EVRP and its variants [19–21]. 
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