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Abstract. As a cornerstone of computer vision, image segmentation decomposes 

visuals into semantically coherent regions to simplify subsequent analysis. U-

shaped models inspired by UNet have become the dominant architecture in this 

field, leveraging an encoder-decoder design with skip connections to retain spa-

tial details. Within this framework, despite their impressive performance, CNNs 

are constrained by local receptive fields, while Transformers incur substantial 

computational overhead when capturing long-range dependencies. Recently, 

Mamba has emerged as a powerful approach for modeling long-range dependen-

cies with linear complexity. However, existing efforts to integrate Mamba into 

U-Net primarily emphasize spatial feature extraction, largely overlooking the in-

tricate inter-channel relationships encapsulating diverse semantic patterns. In this 

paper, we propose Channel Mamba UNet (CMUNet), which explicitly captures 

channel dependencies with two key components: Channel Mamba (CMamba), a 

module that adaptively recalibrates channel-wise features in the encoder, and 

Skip Connection Mamba (SkiM), a mechanism that facilitates multi-level chan-

nel fusion to align semantic information between encoder and decoder layers. 

Comprehensive evaluations on MoNuSeg, GlaS and ISIC-2018 confirm the ef-

fectiveness of CMUNet, achieving Dice scores of 81.28, 92.18, and 91.13, along 

with superior IoU and HD95 metrics. 
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1 Introduction 

Image segmentation, a core challenge in computer vision, focuses on delineating co-

herent regions or object instances within an image to enable deeper structural interpre-

tation. [8]. In this field, U-shaped architectures inspired by U-Net[22] have become the 

de facto standard, with an encoder path to extract semantic features, a decoder path to 

restore spatial details, and skip connections to preserve fine-grained information across 

corresponding levels.Both CNN-based and transformer-based models have achieved 

impressive results with this framework, but they face their own challenges --- CNNs 

struggle with their limited receptive field [15], while transformers suffer the costly 

long-term modeling due to the self-attention mechanism [1].  

Recent advances in structured state space models (SSMs) [7], exemplified by 

Mamba [5], provide an efficient solution for long-range sequence modeling with input-

length–linear complexity. Many studies attempt to improve accuracy by directly 



plugging Mamba into UNet encoders or decoders, leveraging its efficiency in modeling 

long-range dependencies [30]. However, these efforts primarily focus on spatial feature 

extraction but largely ignore the intricate relationships between channels. Different 

channels usually focus on different semantic patterns [10], failing to explicitly model 

them limits the network’s ability to fully exploit the richness of multi-channel repre-

sentations, potentially constraining segmentation performance. 

In this paper, we focus on channel relationships and propose Channel Mamba UNet 

(CMUNet). Our approach introduces channel-wise modeling from two key perspec-

tives. First, in the encoder, we design Channel Mamba (CMamba), a module that adap-

tively recalibrates channel-wise features after spatial modeling, selectively enhancing 

informative representations while suppressing less relevant ones. Second, for skip con-

nections, we introduce Skip Connection Mamba (SkiM), a novel mechanism that ef-

fectively captures non-local semantic dependencies, enabling multi-level channel-wise 

information fusion to reduce the mismatch in abstraction levels between encoder out-

puts and decoder inputs. By jointly leveraging these two components, CMUNet fully 

exploits channel interactions, leading to enhanced segmentation performance. 

Main contributions of this paper are as follows: 

(1) Channel Mamba (CMamba): We propose CMamba, a novel module that dy-

namically adjusts channel-wise features in the encoder to refine semantic representa-

tions 

(2) Skip Connection Mamba (SkiM): To mitigate the disparity in semantic represen-

tation between the encoder and decoder, we propose SkiM, facilitating multi-level 

channel-wise feature fusion. 

(3) Channel Mamba UNet (CMUNet): We propose CMUNet, a U-Net architecture 

that utilizes CMamba and SkiM. Simulations on three benchmark datasets: GlaS[24], 

MoNuSeg [14], and ISIC-2018 [4] show that CMUNet achieves state-of-the-art perfor-

mance in terms of Dice scores, IoU, and HD95, highlighting its effectiveness in captur-

ing both spatial and channel-wise information for precise segmentation. 

 

2 Related Works 

2.1 Mamba in Image Segmentation 

In recent years, U-Net [22] variants integrating the Mamba architecture have achieved 

significant progress in image segmentation. For instance, VMUNet [23] pioneers the 

use of Mamba throughout both encoder and decoder stages by integrating VSS [17] 

modules, enabling enhanced extraction of spatially detailed features.  SwinUMamba 

[16], on the other hand, utilizes a Mamba backbone pre-trained on ImageNet within its 

encoder, leveraging large-scale pretraining to enhance performance. Meanwhile, 

LKMUNet [28] leverages the efficiency of Mamba to construct large-kernel variants, 

aiming to expand the receptive field and capture wider spatial dependencies. Despite 

these advancements, these models predominantly focus on spatial information, often 

neglecting the intricate and dynamic interactions within the channels. 
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2.2 Channel Attention Modules 

Channel-focused attention strategies have become a common tool in computer vision 

to strengthen representational power and boost segmentation accuracy. Classic ap-

proaches, such as Squeeze-and-Excitation (SE [10]), first transform an image into chan-

nel descriptors, which are then mapped to a set of channel weights using two fully con-

nected (FC) layers followed by a sigmoid activation function. Similarly, CBAM [29] 

combines spatial and channel attention, where channel-wise relations are modeled us-

ing an MLP. 

In these methods, channel sequences are typically processed using simple MLP [21] 

or FC layers, limiting their ability to capture complex dependencies. In contrast, 

Mamba excels in sequence modeling by efficiently capturing long-range dependencies 

[5], allowing for a more nuanced understanding of inter-channel relationships. This ad-

vantage makes Mamba particularly well-suited for effectively handling channel se-

quences. 

3 Method 

3.1 Overview of Channel Mamba UNet (CMUNet) 

An overview of our Channel Mamba UNet (CMUNet) is shown in Fig 1. Following the 

classic U-shape structure of UNet. Let  𝐹𝑙 represent the feature map at the l-th layer.  

Given an input image 𝐹𝑖𝑛 ∈ 𝑅𝐶×𝑊×𝐻, the convolutional STEM layer initial encodes it 

into the feature map  𝐹0 ∈ 𝑅64×
𝐻

2
×

𝑊

2 . At each successive level, the spatial dimensions 

of the feature map are halved, while the number of channels is progressively doubled. 

𝐹𝑙 ∈ 𝑅
(64×2𝑙)×

𝐻

2𝑙+1×
𝑊

2𝑙+1. 

To enhance feature representation at both the spatial-wise and channel-wise, we in-

troduce Spatial-and-Channel Mamba (SCMamba) in the encoder, which simultane-

ously captures fine-grained spatial dependencies and global channel interactions. 

SCMamba consists of two components: (1) VSS Block from VMamba [17], serving as 

the token-mixer to model spatial dependencies.  (2) Channel Mamba (CMamba) serves 

as the Channel-MLP, fine-tuning the channel-specific features by uncovering intricate 

inter-channel correlations. The process inside each encoder can be formulated as: 

𝐹𝑙
′ = 𝐿𝑁(𝑉𝑆𝑆(𝐹𝑙)) (1) 

𝐹𝑙
′′ = 𝐿𝑁(𝐶𝑀𝑎𝑚𝑏𝑎(𝐹𝑙

′)) (2) 

𝐹𝑙+1 = 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝐹𝑙
′′) (3) 

 



Fig.1.  The Overall architecture of CMUNet. 

 

Beyond the encoder, we further refine feature transmission using Skip Mamba 

(SkiM) in the skip connections, which consolidates multi-level channel information, 

ensuring smoother semantic transitions from the encoder to the decoder. At the l-th 

level, the process can be briefly formulated in: 

𝐹𝑙 = 𝐶𝑀𝑎𝑚𝑏𝑎 (𝐿𝑁 (𝑉𝑆𝑆(𝐿𝑁(𝐹𝑙−1
𝑒𝑛𝑐)))) (4) 

𝐹𝑙
𝑠𝑘𝑖𝑝

= 𝑆𝐾𝑖𝑀𝑙(𝐹1
𝑒𝑛𝑐 , 𝐹2

𝑒𝑛𝑐 , 𝐹3
𝑒𝑛𝑐 , 𝐹4

𝑒𝑛𝑐) (5) 

𝐹𝑙
𝑑𝑒𝑐 = 𝐶𝑜𝑛𝑣 (𝐶𝑜𝑛𝑐𝑎𝑡𝑒(𝐹𝑙

𝑠𝑘𝑖𝑝
, 𝐹𝑙−1

𝑑𝑒𝑐)) (6) 

 where 𝐹𝑙
𝑒𝑛𝑐,𝐹𝑙

𝑠𝑘𝑖𝑝
 ,𝐹𝑙

𝑑𝑒𝑐  represents the feature map in the encoder, skip connection 

and decoder of the l-th level 

3.2 Channel Mamba (CMamba) 

In this section, we introduce Channel Mamba (CMamba), which extracts a global chan-

nel vector using Global Average Pooling (GAP), processes it with Non-Causal Mamba, 

and subsequently recalibrates the feature map based on the refined channel vector. 
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Fig.2.  (a) the process of Channel Mamba (CMamba),  (b) the process of Non-Causual 

Mamba with a kernel size of 1 for the 1d conv step 

 

 

Channel Vector. Mamba models on sequence, so CMamba first extracts a global chan-

nel descriptor by applying Global Average Pooling (GAP) to the feature map.  Given a 

feature map 𝐹 ∈ 𝑅𝐶×𝐻×𝑊 

𝑉𝑐 = 𝐺𝐴𝑃(𝐹) =
1

𝐻 × 𝑊
 ∑ ∑ 𝐹(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

 (7) 

the Channel Vector 𝑉𝑐 ∈ 𝑅1×1×𝐶  , which represents a compressed representation of 

global context inside each channel. 

 

Non-Causality. In many sequences -- such as temporal or spatial ones - the order of 

elements inherently implies causality: neighboring elements are typically more strongly 

correlated because their positions encode valuable information. In contrast, the channel 

vector 𝑉𝑐 lacks this intrinsic ordering, meaning that its channels operate independently 

and do not reflect any sequential causality. 

 Inside Mamba [5], the standard 1D convolution tends to amplify local relationships, 

inadvertently introducing sequential causality into the channels. To mitigate this effect, 

as shown in Fig.2 (b), we configure the 1D convolution with a kernel size of 1, thereby 

eliminating the locality bias typically introduced by convolution. This modification 



ensures that CMamba focuses solely on capturing the global dependencies among chan-

nels. The process can be formulated as: 

𝑉𝑐
′ = 𝑛𝑜𝑛 − 𝑐𝑎𝑢𝑎𝑙 − 𝑀𝑎𝑚𝑏𝑎(𝑉𝑐) (8) 

where 𝑉𝑐
′ represents the processed Channel Vector. 

 

Feature Recalibration.  After non-causal Mamba, the processed Channel Vector  𝑉𝑐′. 
is applied to the original feature map F to recalibrate its channel responses. This is 

achieved by performing element-wise multiplication (Hadamard product), enabling the 

dynamic adjustment of channel activations by enhancing or suppressing them selec-

tively. The process can be formulated as: 

𝐹𝑜𝑢𝑡 = 𝐹 ⊙ 𝑉𝑐
′ (9) 

where ⊙ represents Hadamard product, and 𝐹𝑜𝑢𝑡 ∈ 𝑅𝐶×𝐻×𝑊is the output feature map 

with channel-wise attention. 

 

3.3 Skip connection Mamba (SkiM) 

 
Fig.3.  Illustation of Skip connection Mamba (SkiM) , taking 𝑆𝐾𝑖𝑀3 as example 

 

 Relying solely on channel operations in the encoder is insufficient, as semantic gaps 

still exist between the encoder and decoder. To bridge this, we introduce Skip Connec-

tion Mamba (SkiM), which enhances skip connections with multi-level channel-wise 

information. 

 At the l-th level, we first resize feature maps from different encoder levels to a uni-

form resolution and concatenate them: 

𝐹𝑖
′ = 𝑟𝑒𝑠𝑖𝑧𝑒𝑙(𝐹𝑖

𝑒𝑛𝑐) ∈ 𝑅
𝐶𝑖×

𝐻

2𝑙+1×
𝑊

2𝑙+1 (10) 

𝐹𝑙
𝑐𝑜𝑚𝑏 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐹1

′, 𝐹2
′, 𝐹3

′, 𝐹4
′) (11) 
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where 𝐹𝑙
𝑐𝑜𝑚𝑏 represents the combined feature map that aggregates channel information 

across multiple semantic levels. A convolution then reduces it to align with the channel 

dimensionality of the l-th encoder feature map: 

𝐹𝑙
𝑓𝑢𝑠𝑒𝑑

= 𝐶𝑜𝑛𝑣(𝐹𝑙
𝑐𝑜𝑚𝑏) (12) 

where 𝐹𝑙
𝑓𝑢𝑠𝑒𝑑

is the compressed feature map with 64 × 2𝑙 channels. 

 Next, CMamba extracts a channel vector to encode multi-level channel-wise depend-

encies: 

𝑉𝑐 = 𝐶𝑀𝑎𝑚𝑏𝑎(𝐹𝑙
𝑓𝑢𝑠𝑒𝑑

) (13) 

 Finally, this vector recalibrates the original encoder feature map: 

𝐹𝑙
𝑠𝑘𝑖𝑝

= 𝐹𝑙
𝑒𝑛𝑐 ⊙ 𝑉𝑐 (14) 

where 𝐹𝑙
𝑠𝑘𝑖𝑝

 represents the output of 𝑆𝐾𝑖𝑀  in the l-th level, which enhances feature 

transmission with richer channel interactions, and mitigating the misalignment of se-

mantic content between the encoding and decoding phases. 

4 Experiment  

4.1 Datasets and Implementation Details 

We benchmark CMUNet on three established segmentation benchmarks. The GlaS [24] 

collection offers 85 gland images for training and 80 for evaluation. MoNuSeg [14] 

provides 30 annotated slides for training and 14 held out for testing, targeting multi-

organ nuclei delineation. For skin lesion segmentation, we utilize the ISIC-2018[4] 

challenge set, which comprises 2,594 labeled images for model development. 

 All training and inference routines were executed on an NVIDIA RTX 4090 GPU. 

We assessed segmentation quality using the Dice score, Intersection over Union (IoU), 

and the 95th-percentile Hausdorff distance (HD95). To improve generalization, input 

images were subject to random flips (horizontal/vertical) and rotations [25]. Optimiza-

tion was handled by the Adam optimizer [13] with a Cosine Annealing learning-rate 

schedule [20], and we minimized a hybrid loss combining cross-entropy and Dice 

terms. Every image was uniformly resized to 224 × 224 pixels before feeding into the 

network [27]. 

 

4.2 Comparisons of Model Performances 

Table 1 shows the performance of CMUNet across three datasets, demonstrating its 

superior segmentation capabilities. CMUNet outperforms state-of-the-art methods in 

Dice, IoU, and HD95 metrics for all datasets. 

We organize the benchmarked approaches into two distinct paradigms: established 

architectures rooted in conventional designs, and recent Mamba-integrated frameworks 

tailored for long-sequence modeling. Traditional models encompass a variety of CNN-

based architectures (such as U-Net [22], MultiResUNet [12], and ACCUNet [11]), 

Transformer-based models (including SwinUNet [2], and MedT [26]), and hybrid mod-

els (e.g., UCTransNet [27], TransUNet [3]). In contrast, Mamba-based models, which 



emerged in 2024 and have demonstrated advanced capabilities in handling complex 

segmentation tasks, include VM-Unet [23], SwinUMamba [16], and LKM-Unet [28]. 

 Specifically, CMUNet surpasses the second-place CNN-based models by 3.45 in 

Dice score and the Transformer-based models by 2.00 on the GlaS dataset. When com-

pared to the latest Mamba networks, CMUNet achieves an additional 1.20 in Dice 

score. On the large-scale ISIC-2018 dataset, CMUNet outperforms CNN models by 

2.41 and Transformer-based models by 1.95 in Dice score. Additionally, CMUNet ex-

ceeds the Mamba networks by 1.14 in Dice, demonstrating its high consistency with 

the ground truth. 

 For IoU, which reflects object detection ability, CMUNet outperforms the second-

place model by 0.83 on MoNuSeg, 2.19 on GlaS, 0.26 on ISIC, indicating its superior 

object detection accuracy across all three datasets. And for edge detection, CMUNet 

attains the lowest HD95 values on all three datasets—2.61 on MoNuSeg, 6.44 on GlaS, 

and 10.21 on ISIC-2018—indicating its excellent capability in clearly delineating ob-

ject boundaries. Benefiting from its capacity to highlight salient representations while 

downplaying irrelevant signals, CMUNet consistently delivers strong results across da-

tasets of varying scales. This reflects not only its adaptability to differing data complex-

ities, but also its robustness and precision in diverse segmentation environments. 

 With 15.393G FLOPs and 6.748M parameters, CMUNet strikes an effective balance 

between computational overhead and segmentation quality, offering a resource-effi-

cient solution suitable for deployment in real-world scenarios.” 

 

Table 1. Comparison of Dice, IoU, and HD95 scores across MoNuSeg, GlaS, and 

ISIC-2018 datasets, and Flops, Param for different networks 

 
 

 

 

4.3 Ablation Study 

Effectiveness of CMUNet's Encoder. To promote richer feature abstraction across 

spatial layouts and cross-channel interactions, CMUNet integrates SCMamba in the 

encoder. Its performance is benchmarked against prevalent alternatives in Table 2. 

The compared encoders include popular and classic backbones. The UNet [22] en-

coder, ResNet34[9] and ConvNeXt [19] are convolutional backbones; ViT [6], Swin 

[18] are transformer-based backbones; VMamba [17] is the newly proposed Mamba 
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backbone. The baseline model for comparison is UNet, a widely adopted architecture 

in image segmentation. 

 As evidenced by Table 3, SCMamba yields the most favorable Dice scores—81.28, 

92.18, and 91.13 on MoNuSeg, GlaS, and ISIC respectively. These results demonstrate 

the superior performance of SCMamba compared to other backbones, highlighting its 

ability to model accurate spatial structure as well as the interdependencies between 

channels. 

 

Table 3. SCMamba encoder vs. other backbones 

 
 

Effectiveness of Channel-wise Components:  CMamba and SkiM. CMUNet han-

dles inter-channel relationships from two perspectives. On one hand, CMamba captures 

global inter-channel dependencies with negligible extra cost (+0.03G in Flops and 

+0.01M in param). On the other hand, SkiM mitigates the representational disparity 

between encoding and decoding stages through multi-level channel aggregation, with 

only a small additional cost. 

 To evaluate their effectiveness, we compare different configurations where the base-

line is equipped only with the spatial module (the VSS Block) in the SCMamba en-

coder. As presented in Table 4, the baseline yields Dice scores of 79.51, 91.28, and 

89.04 on MoNuSeg, GlaS, and ISIC-2018, respectively. Introducing CMamba alone 

elevates the performance to 81.15, 91.77, and 90.33, demonstrating its ability to effec-

tively model global inter-channel dependencies. Similarly, enabling SkiM alone im-

proves the Dice scores to 80.54, 92.09, and 90.75, confirming that multi-level skip 

channel aggregation enhances segmentation accuracy. When both CMamba and SkiM 

are employed, the model attains the best performance with Dice scores of 81.28 on 

MoNuSeg, 92.18 on GlaS, and 91.13 on ISIC-2018. 

 These results demonstrate that CMamba and SkiM contribute complementarily to 

refining channel representations and reducing the semantic gap, all with only marginal 

computational overhead. 

 

 

 

 

 

 



Table 4. Channel-wise Components 

 
 

Impact of Kernel Size on Non-Causality. As mentioned in the previous sections, the 

Channel Vector is inherently non-causal -- there is no distinction between adjacent 

channels and those far apart. To preserve this non-causal behavior, the 1D convolution 

in Mamba is ideally set with a kernel size of 1, thereby completely avoiding any locality 

bias. 

Reported in Tab 5, the result demonstrates how varying the kernel size affects per-

formance: 

Table 5. Impact of Kernel Size on Channel Mamba 

 
 

 Kernel size = 1: Each channel is modeled individually in the conv 1d steps of 

Mamba, maintaining non-causality and yielding the best performance. 

Kernel size = 4: Introducing a small kernel imposes strong locality. This results in 

a dramatic drop in performance (-5.23 on MoNuSeg, -4.25 on GlaS, and -2.62 on ISIC-

2018), indicating that the enforced locality disrupts the ideal channel modeling. 

Kernel sizes = 16 and 64: As the kernel size increases further, the harmful effects 

of locality diminish. With a kernel size of 16, performance partially recovers (-1.71 on 

MoNuSeg, -3.19 on GlaS, -1.49 on ISIC-2018), and with a kernel size of 64, the results 

improve further (-0.51, -0.85, and -0.88, respectively). 

 In conclusion, small kernels (except for size 1) introduce strong locality into channel 

modeling, inadvertently imposing causality on channels, which significantly degrades 

performance. As the kernel size increases, it gradually mitigates these negative effects 

by approximating global context at very large scales. However, overall, using a kernel 

size of 1 remains the optimal choice for preserving effective channel modeling. 

5 Conclusion 

In this paper, we have presented Channel Mamba UNet (CMUNet), a U-shaped frame-

work that brings channel-centric modeling to the forefront of image segmentation. By 

embedding Channel Mamba (CMamba) units in the encoder and augmenting skip links 

with Skip Connection Mamba (SkiM), our design captures both broad inter-channel 

relationships and nuanced multi-level feature interactions. Comprehensive testing on 

MoNuSeg, GlaS, and ISIC-2018 confirms that CMUNet consistently delivers top-tier 

segmentation quality—achieving Dice scores of 81.28, 92.18, and 91.13, 
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respectively—while also leading in IoU and HD95 benchmarks. These findings under-

score the value of explicit channel modeling via Mamba architectures for pushing the 

boundaries of segmentation accuracy. 
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