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Abstract. In low illumination environments, the image quality of eagle- eye sur-

veillance devices is significantly degraded by high-density random noise and in-

homogeneous illumination. In addition, the change targets in the surveillance 

area are usually small, which further increases the difficulty of change detection 

(CD), and is prone to false positives and negatives. In this paper, we propose a 

new unsupervised CD method for small targets. Specifically, under low illumi-

nation, the image is pre enhanced using the bright channel prior and Single-Scale 

Retinex (SSR) algorithm to improve image quality; two difference images (DIs) 

are generated by the arctangent operator and the Chi-Square Transform (CST), 

and the difference information is fused using the improved multiplicative fusion 

(MTF) technique to ensure the completeness of the details in the change region 

and suppress the noise. Particularly, for areas with few changes or no changes, 

we propose a threshold segmentation method based on Log-Normal Distribution 

Histogram Fitting Error Minimization (LNDFEM) to achieve the segmentation 

of change regions. Experimental results demonstrate that the proposed method 

outperforms comparison algorithms in terms of overall error, F1-Score, and 

Kappa coefficient, and exhibits stronger robustness. 

Keywords: Low Illumination Change Detection, Wide Field of View, Security 

Surveillance, Log-normal Distribution, Image Enhancement. 

1 Introduction 

Change detection (CD) technology is widely used in remote sensing, security monitor-

ing, urban planning, and other fields, playing a crucial role in decision-making and 

resource management. In low-light conditions, the primary task is to detect subtle 

changes between multi-temporal video frames captured by the Eagle Eye visual sensor. 

Due to the wide field of view and insufficient illumination in Eagle Eye surveillance, 

image quality deteriorates, leading to an increased risk of false positives and missed 

detections, which adversely impacts the precision and efficiency of monitoring systems 

[1]. Therefore, developing a small-target CD method that is adapted to low-light envi-

ronments is essential to enhancing the performance of monitoring systems in complex 

scenarios. This study aims to propose a novel CD technique for low-light conditions to 

improve monitoring efficiency and accuracy in such environments. 



Change detection technology is classified into supervised and unsupervised methods 

based on whether it relies on ground truth annotation data. Supervised methods depend 

on manually labeled data for processing, which is labor-intensive and time-consuming 

[2]. Therefore, unsupervised CD methods have been developed in the literature [3]. The 

process of unsupervised CD typically involves three steps: 1) preprocessing; 2) Differ-

ence Image (DI) extraction; and 3) DI binarization. Currently, there is limited research 

on CD for low-light, wide-field video images with preprocessing enhancement, with 

most studies focusing on image enhancement[4] and denoising[5] under low-light con-

ditions, such as methods based on joint filtering[6], the Retinex model[7], and deep 

learning approaches[8]. However, these methods have limitations in noise handling and 

illumination balancing, making them difficult to fully meet the needs of low-light sur-

veillance. 

Methods for extracting change information from DIs include clustering and thresh-

olding techniques. However, clustering algorithms exhibit significant limitations in 

low-light or noisy environments. They are often sensitive to the selection of initial pa-

rameters, noise, and outliers. For example, unsupervised algorithms like k-means and 

hierarchical clustering can lead to misclassification and unstable detection results in 

low-light or noisy scenarios. Thresholding algorithms, such as the Otsu[9] algorithm, 

Expectation-Maximization (EM)[10] algorithm, and Kittler-Illingworth (KI)[11] 

threshold selection algorithm, generally rely on the significant statistical probability of 

changed pixels, ensuring that the change class can be modeled in the histogram of the 

difference image. This guarantees the reliability and accuracy of the threshold selection. 

However, under low-light, wide-field conditions, where the number of changed pixels 

is very small or even nonexistent, existing thresholding algorithms are prone to failure. 

To address the above issues, this paper proposes an image enhancement method 

based on the bright channel prior and Single-Scale Retinex (SSR) algorithm, and uti-

lizes the Log-Normal Distribution Histogram Fitting Error Minimization (LNDFEM) 

method for unsupervised CD. 

The main innovations of this work can be summarized as follows: 

·A preprocessing enhancement method combining the bright channel prior and SSR 

algorithm is proposed, effectively improving the low visibility and removing noise in 

the image. 

·To improve the fusion accuracy of the DI, a threshold-based multiplicative fusion 

technique is introduced, significantly enhancing the quality of the DI. 

· An unsupervised thresholding method based on LNDFEM is proposed. This method 

is suitable for images with few change pixels and no-change scenes under wide-field 

conditions, improving detection accuracy and robustness. 

2 Method 

2.1 Overview 

As shown in Fig. 1, for the video images captured by surveillance devices under low-

light conditions, two frames T1 and T2 of the same scene at different times are extracted 
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for CD. In this section, we first introduce the preprocessing of low illumination image, 

then describe the generation of difference image, and finally generate change detection 

image based on log-normal distribution histogram fitting error minimization. 

 

Fig. 1. Flowchart of the proposed method. 

2.2 Preprocessing Enhancement 

Enhancement can improve the visibility of an image while preserving its visual natu-

ralness. The traditional SSR algorithm uses the center-surround theory to estimate the 

illumination map, which leads to blurred image edges. Therefore, a globally adaptive 

illumination map [12] is used instead of Gaussian filtering to obtain the reflection com-

ponent 𝑅(𝑥, 𝑦), where 𝐿𝑤(𝑥, 𝑦) represents the brightness value of the low-light image, 

𝐿𝑔(𝑥, 𝑦) represents the globally adaptive brightness value, and 𝜎 is a small positive 

constant. The formula is as follows: 

                                                  𝑅(𝑥, 𝑦) = 𝑙𝑜 𝑔 (
𝐿𝑤(𝑥, 𝑦)

𝐿𝑔(𝑥, 𝑦)
+ 𝜎)                                          (1) 

Inspired by the dark channel prior dehazing method [13], experimental observations 

show that the bright channel prior theory is also applicable to low-light images. This 

theory suggests that in most areas, at least one color channel has a high intensity. There-

fore, the bright channel image under low light can be expressed by the following for-

mula: 

                                           𝐼𝑙𝑖𝑔ℎ𝑡(𝑥) = 𝑚𝑎𝑥
𝑦∈Ω(𝑥)

( 𝑚𝑎𝑥
𝑐∈{𝑅,𝐺,𝐵}

(𝐼𝑐(𝑦)))                                       (2) 



where 𝐼𝑐 represents the image of a particular color channel of image 𝐼; Ω(𝑥) represents 

the local region centered at pixel 𝑥, 𝑚𝑎𝑥
𝑦∈Ω(𝑥)

 indicating the region maximum value filter-

ing. 

After performing SSR enhancement on the low-light image, it is fused with the 

bright channel image using Principal Component Analysis (PCA) to improve the qual-

ity of the enhanced image. 

2.3 Generation of the Difference lmages and Improved Multiplication Fusion 

The logarithmic operator performs well in handling high brightness changes but has 

issues with numerical stability and accurately reflecting real change trends. The mean 

ratio excels at enhancing the contours of change areas and preventing information loss, 

but it may introduce noise and affect the preservation of details. The extreme pixel ratio 

operator [14] has advantages in suppressing background information and enhancing 

change area information, but it is overly sensitive to changes in small pixel values. 

To overcome these limitations, this study adopts an improved arctangent operator to 

generate DI. The arctangent operator can compress difference values when pixel dif-

ferences are large, preventing excessive amplification of differences, balancing the dif-

ferences in high dynamic range images, and smoothing abrupt changes in the image, 

thereby reducing sharp jumps in the difference map. The formula is as follows: 

                            𝐷𝐼1(𝑥, 𝑦) = |arctan (
(𝐼2(𝑥, 𝑦) − 𝐼1(𝑥, 𝑦) + 1)

(𝐼2(𝑥, 𝑦) + 𝐼1(𝑥, 𝑦) + 1)
)|

𝑚𝑠𝑒

                       (3) 

where the Mean Squared Error (𝑚𝑠𝑒) adaptively adjusts the sensitivity to differences 

in different regions, ensuring that the response in high-change areas is not overly dras-

tic, while low-change areas remain sensitive. 

Furthermore, the Chi-Square Transformation (CST) effectively distinguishes actual 

changes from random noise when generating the DI by leveraging its statistical prop-

erties. It quantifies significant changes in pixel intensity, providing an accurate measure 

of change for each pixel. The robustness of CST reduces the influence of non-change 

factors such as lighting and shadows, while its sensitivity to outliers enhances the abil-

ity to identify changing objects. Therefore, using CST to generate the DI is an effective 

strategy. The principle of CST is based on Mahalanobis Distance, and the calculation 

formula is as follows: 

                                   𝐷𝐼2(𝑥, 𝑦) = √∑ (
𝐷𝐼1𝑘

(𝑥, 𝑦) − 𝜇𝑘

𝜎𝑘

)

2
𝐾

𝑘=1

                                       (4) 

where K is the number of color channels, 𝐷𝐼1𝑘
(𝑥, 𝑦) is the difference value in the k-th 

channel at pixel (𝑥, 𝑦), 𝜇𝑘 is the mean of the k-th channel difference image, and 𝜎𝑘 is 

the standard deviation of the k-th channel difference image. 

The change information provided by a single difference image is still affected by 

residual noise.  Although the multiscale transform method[14,15,16] can improve the 
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accuracy of CD, it often introduces redundant decompositions, leading to detail loss 

and increased computational complexity. 

To further improve the quality of the DI, an improved multiplicative fusion (MTF) 

technique is proposed by combining the advantages of CST and the arctangent operator. 

The formula is as follows: 

                                𝐹 = {

𝐷𝐼1 ∗ 𝐷𝐼2

max(𝐷𝐼2)
，|𝐼2(𝑥, 𝑦) − 𝐼1(𝑥, 𝑦)| ≥ 𝑇𝑑

𝐷𝐼2，             |𝐼2(𝑥, 𝑦) − 𝐼1(𝑥, 𝑦)| < 𝑇𝑑

                      (5) 

where 𝑇𝑑 represents the threshold for possible changes in the image. If 𝑇𝑑 is set too 

large, some pixels that may change will not be MTF. Conversely, if 𝑇𝑑 is set too small, 

some unchanged pixels will be mistakenly detected as changed pixels. Specifically, 

when 𝑇𝑑  equals 0, the improved fusion method is equivalent to MTF.  

 

Fig. 2. Pre-enhancement and histogram diagram (a) Original gray image, (b) Histogram of (a), 

(c) Enhance image, (d) Histogram of (c). 

For the issue of determining the optimal threshold 𝑇𝑑, this paper proposes an approx-

imation method based on the log-normal distribution to obtain the value of 𝑇𝑑. Since 

the grayscale distribution of low-light images after pre-enhancement approximately fol-

lows a log-normal distribution, as shown in Fig. 2, we can significantly reduce the com-

putational complexity of determining 𝑇𝑑 by utilizing this probabilistic statistical prop-

erty. Let 𝑚i, 𝜎i (i = 1,2) represent the statistical mean and standard deviation of the two 

frames 𝐼1 and 𝐼2, respectively. The interval 𝑚i − 𝜎i, 𝑚i − 3𝜎i denotes the partial sam-

ple set of the two frames  𝐼1 and 𝐼2, and then 𝑇𝑑 is defined as: 

      𝑇𝑑 = 0.5[(𝑚𝑎𝑥(𝑚1 + 3𝜎1, 𝑚2 + 3𝜎2) − 𝑚𝑖𝑛(|𝑚1 − 𝜎1|, |𝑚2 − 𝜎2|)) + 0]     (6) 

where (𝑚𝑎𝑥(𝑚1 + 3𝜎1, 𝑚2 + 3𝜎2) − 𝑚𝑖𝑛(|𝑚1 − 𝜎1|, |𝑚2 − 𝜎2|))  is the maximum 

possible grayscale difference between the partial sample sets of the two frames, and 0 

is the minimum possible grayscale difference. Thus, 𝑇𝑑 is approximately the average 



grayscale difference between these two partial sample sets. In most cases, the defined 

interval contains more than half of the pixels in each frame, so 𝑇𝑑 can be approximated 

as the threshold for possible changes across the entire image. 

2.4 Histogram Fitting Error Minimization Based on Log-Normal Distribution 

Inspired by Histogram Fitting Error Minimization [14], LNDFEM is derived under the 

assumption that the pixel values in the DI are independent, with the unchanged class 

approximately following a log-normal distribution and the changed class following a 

Gaussian distribution. Let 𝑝(𝑓|𝜔𝑢) represent the conditional probability density func-

tion (PDF) of unchanged pixels in the DI, and 𝑝(𝑓|𝜔𝑐) represent the conditional PDF 

of changed pixels in the DI. 𝜎𝑐 and 𝜎𝑢represent the weights of the changed and un-

changed classes, respectively. Therefore, 𝑝(𝑓|𝜔𝑢) and 𝑝(𝑓|𝜔𝑐) are defined as follows: 

                            

𝑝(𝑓|𝜔𝑢) =
1

𝑓𝜎𝑢√2𝜋
exp (−

(ln 𝑓 − 𝜇𝑢)2

2𝜎𝑢
2

), 𝑓 > 0

𝑝(𝑓|𝜔𝑐) =
1

√2𝜋𝜎𝑐

exp (−
(𝑓 − 𝜇𝑐)2

2𝜎𝑐
2

)

                             (7) 

where 𝜎𝑢  represents the standard deviation of unchanged pixels, 𝜎𝑐  represents the 

standard deviation of changed pixels, 𝜇𝑢 represents the mean of unchanged pixels, and 

𝜇𝑐 represents the mean of changed pixels. 

Finally, according to the law of total probability, the PDF of the DI can be modeled 

as a mixture density distribution consisting of two density components associated with 

𝜔𝑐 and 𝜔𝑢. There are two cases: the first case is when there are changes in the multi-

temporal images, and the second case is when there are no changes. Therefore, let 𝑝1(𝑓) 

and 𝑝2(𝑓) represent the PDFs in these two cases, respectively. If there are changes in 

the multi-temporal images, 𝑝1(𝑓) can be expressed as: 

                              𝑝1(𝑓) = 𝑝(𝑓|𝜔𝑢)𝑃(𝜔𝑢) + 𝑝(𝑓|𝜔𝑐)𝑃(𝜔𝑐), 𝑓 ∈ (0,255]                  (8) 

where 𝑃(𝜔𝑢) and 𝑃(𝜔𝑐) represent the prior probabilities of the unchanged class and 

the changed class, respectively. 

If there is no change in the multi-temporal images, the PDF of the DI follows a log-

normal distribution. The expression for 𝑝2(𝑓) is: 

                            𝑝2(𝑓) =
1

𝑓𝜎√2𝜋
exp (−

(ln 𝑓 − 𝜇)2

2𝜎2
) , 𝑓 > 0                                      (9) 

where 𝜇 represents the mean of all pixels and 𝜎 represents the standard deviation of all 

pixels. 

The objective function used in this method is to minimize the histogram fitting error, 

where ℎ(𝑓) represents the histogram of the DI. 

                                       𝐸1(𝑓) = 𝑚𝑖𝑛
𝑓

∑(𝑝1(𝑓) − ℎ(𝑓))
2

255

𝑓=1

                                             (10) 

According to the Bayesian minimum error criterion (maximum posterior probability 

criterion), that is: 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

                                   𝜔
^

= arg 𝑚𝑎𝑥
𝜔=[𝜔𝑢,𝜔𝑐]

 𝑝(𝜔|𝑓)

                                                    = arg 𝑚𝑎𝑥
𝜔=[𝜔𝑢,𝜔𝑐]

 (𝑝(𝑓|𝜔)𝑝(𝜔))
                                   (11) 

To minimize the error probability, each pixel in DI should be assigned to the class 

with the maximum posterior conditional probability, that is: 

                                              {
𝑝(𝜔𝑐|𝑓) > 𝑝(𝜔𝑢|𝑓), 𝑓 > 𝑇

𝑝(𝜔𝑐|𝑓) ≤ 𝑝(𝜔𝑢|𝑓), 𝑓 ≤ 𝑇
                                           (12) 

To find the optimal threshold T, that is, when f = T,  𝑝(𝜔𝑐|𝑓) = 𝑝(𝜔𝑢|𝑓) , we con-

clude that: 

                                                       
𝑃(𝜔𝑐)

𝑃(𝜔𝑢)
=

𝑝(𝑓|𝜔𝑢)

𝑝(𝑓|𝜔𝑐)
                                                       (13) 

If there are changes in the multi-temporal images, the fitting of 𝑝1(𝑓) should be bet-

ter than that of 𝑝2(𝑓). The optimized fitting criterion is defined as follows: 

                              ∑(𝑝1(𝑓) − ℎ(𝑓))2

255

𝑓=1

< ∑(𝑝2(𝑓) − ℎ(𝑓))2

255

𝑓=1

                                     (14) 

In summary, our objective function is to minimize the fitting error under the condi-

tions of equations (13) and (14). Therefore, the optimization model for solving the 

threshold T is defined as: 

𝑇 = arg 𝑚𝑖𝑛
𝑓

∑(𝑝1(𝑓) − ℎ(𝑓))2

255

𝑓=1

s.t.|
𝑃(𝜔𝑐)

𝑃(𝜔𝑢)
−

𝑝(𝑓 ∣ 𝜔𝑢)

𝑝(𝑓 ∣ 𝜔𝑐)
| < 𝑡

                                          ∑(𝑝1(𝑓) − ℎ(𝑓))2

255

𝑓=1

< ∑(𝑝2(𝑓) − ℎ(𝑓))2

255

𝑓=1

                          (15) 

where the parameter t is a positive number with a relatively small absolute value. The 

parameters in equations (7) to (9) are estimated using equation group (16): 



                                           

𝑃(𝜔𝑢) = ∑ ℎ(𝑓)

𝑇

𝑓=1

,

𝑃(𝜔𝑐) = 1 − 𝑃(𝜔𝑢),

𝜇 = ∑ ℎ(𝑓)ln 𝑓

255

𝑓=1

,

𝜎2 = ∑ ℎ(𝑓)(ln 𝑓 − 𝜇)2

255

𝑓=1

,

𝜇𝑢 =
1

𝑃(𝜔𝑢)
∑ ℎ(𝑓)ln 𝑓,

𝑇

𝑓=1

𝜎𝑢
2 =

1

𝑃(𝜔𝑢)
∑ ℎ(𝑓)(ln 𝑓 − 𝜇𝑢)2

𝑇

𝑓=1

,

𝜇𝑐 =
1

𝑃(𝜔𝑐)
∑ ℎ(𝑓)𝑓

255

𝑓=𝑇+1

,

𝜎𝑐
2 =

1

𝑃(𝜔𝑐)
∑ ℎ(𝑓)(𝑓 − 𝜇𝑐)2

255

𝑓=𝑇+1

.

                                      (16) 

3 Experiments 

3.1 Dataset and Evaluation Metrics 

The scarcity of low-light wide-field video image datasets is mainly due to the chal-

lenges of data acquisition and annotation under complex illumination and diverse noise 

in real-world scenes. This significantly limits existing datasets and results in a lack of 

resources for change detection under low-light conditions. 

To address this, we have constructed the Low-Light Wide-Field (LLWF) dataset, 

which includes 11 types of monitoring scenes such as building entrances, campus roads, 

and parking lots. Each scene contains video footage lasting 3–10 minutes with a reso-

lution of 4096×1800. Representative frames are extracted from the original videos, re-

sulting in 84 pairs of high-quality images and corresponding reference images. To min-

imize registration errors and avoid illumination variation interference, all image pairs 

are registered and downsampled to 500×380 pixels. Based on scene complexity, the 

dataset is divided into simple and complex scenes. Some representative scenes are 

shown in Fig. 3. The LLWF dataset features small targets, varying target sizes, and 

diverse noise types, providing ample testing and validation conditions for change de-

tection algorithms in low-light wide-field environments. It helps comprehensively eval-

uate the robustness and accuracy of algorithms in complex scenarios, leading to more 

precise change detection results. 
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Fig. 3. LLWF dataset. 

To evaluate the performance of the algorithm, two quantitative metrics from the re-

ceiver operating characteristic (ROC) curve were employed to assess the quality of DI: 

the area under the curve (AUC) and the diagonal distance (Ddist) [18]. Higher values 

of these metrics indicate better detection performance. The objective evaluation metrics 

for CD results include overall error (OE), percentage correct classification (PCC), 

kappa coefficient, and F1-Score. 

3.2 Comparison Experiment 

To demonstrate the effectiveness of the proposed methods, we selected eight methods 

for comparison on the LLWF dataset, including OKC_AF[14], NPSG [19], MSF_NF 

[20], INLPG[21], CWNN[22], ASEA[23], IRG-MCS[24] and AGSCC [18]. The ex-

perimental results were also analyzed by subjective and objective indicators. 

3.3 Performance Analysis of Different Methods for Generating Difference 

Image 

We conducted experiments on six datasets from different scenes, calculated the average 

evaluation metrics, and compared the quality of difference images generated by 

PCA[25], EWF[20] and ADEL[14] fusion methods with those generated by our pro-

posed MTF. As shown in Table 1, our method outperforms the others in terms of AUC 

and Ddist, indicating superior performance of the difference images generated by our 

approach. 

Table 1. Quantitative Criteria AUC and Ddist for Different Fusion Methods. 

Method 𝐴𝑈𝐶 𝐷𝑑𝑖𝑠𝑡 

PCA 0.9892 1.3538 

EWF 0.9880 1.3495 

ADEL 0.9810 1.3426 

MTF 0.9963 1.3745 

 



 

Fig. 4. Objective Evaluation Indexes of Experimental. 

3.4 Accuracy Analysis of Change Detection Algorithms 

As shown in Fig. 4, our results are closer to the reference image, indicating a lower 

false alarm rate compared to other methods. Additionally, methods like NPSG, CWNN, 

IRG-MCS, AGSCC, and INLPG, which did not take measures to suppress high-density 

random noise under low-light conditions, resulted in numerous false change points in 

the unchanged regions. ASEA, MSF_NF, and OKC_AF effectively overcome the noise 

impact but, to some extent, expand the range of the valid change areas. Our method, 

similar to MSF_NF and OKC_AF in its framework, improves the image contrast 

through preprocessing enhancement, followed by the use of an improved MTF to gen-

erate high-quality DI, effectively suppressing noise. Traditional binarization processing 

lacks robustness in regions with minimal pixel changes. LNDFEM takes the overall 

probability distribution into account and compares the histogram fitting errors of 𝑝1(𝑓) 

and 𝑝2(𝑓). In cases with no change or minimal changes, the histogram fitting error of 

𝑝2(𝑓) is smaller than that of 𝑝1(𝑓), which drives the optimal threshold to gradually 

increase until the optimization model satisfies the constraints. According to the evalu-

ation metrics in Table 2, our method outperforms other algorithms in terms of Kappa 

coefficient, F1-Score, and PCC. 
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Table 2. Objective Evaluation Indexes of Experimental 

Algorthms OE PCC Kappa F1-Score 

NPSG 7302 0.9615 0.0109 0.0113 

INLPG 320 0.9983 0.2076 0.2079 

CWNN 11539 0.9392 0.0102 0.0109 

ASEA 35 0.9998 0.6601 0.6601 

IRG-MCS 8001 0.9578 0.0092 0.0096 

MSF_NF 18 0.9999 0.7999 0.8000 

OKC_AF 11 0.9999 0.8533 0.8533 

AGSCC 599 0.9968 0.0651 0.0655 

Proposed 6 0.9999 0.9318 0.9318 

 

Table 3. Indicators of Average Evaluation of Experimental Data 

Agorthms 𝑂𝐸̅̅ ̅̅  𝑃𝐶𝐶̅̅ ̅̅ ̅̅  𝐾𝑎𝑝𝑝𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅ F1 − Score̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

NPSG 3482.4 0.9644 0.1197 0.0913 

INLPG 153.1 0.9992 0.3529 0.3530 

CWNN 24410.3 0.8715 0.0066 0.0086 

ASEA 29982.7 0.8422 0.1973 0.1975 

IRG-MCS 8001 0.9603 0.0071 0.0075 

MSF_NF 16.5 0.9999 0.5583 0.5583 

OKC_AF 9.2 0.9999 0.8130 0.8130 

AGSCC 1097.5 0.9943 0.0326 0.0328 

Proposed 5.1 0.9999 0.9135 0.9135 

 

Table 4. Average Evaluation Metrics of Detection Results for Unchanged Scenes 

Algorthms NPSG INLPG ASEA IRG-MCS OKC_AF Proposed 

𝑂𝐸̅̅ ̅̅  1517.4 3665.6 51330.3 8191.1 6 1 

𝑃𝐶𝐶̅̅ ̅̅ ̅̅  0.9920 0.9807 0.7300 0.9569 0.9999 0.9999 

 

3.5 Analysis of Change Detection Methods 

To demonstrate the stability and robustness of the algorithm, we selected 84 sets of 

different change scenarios from the LLWF dataset for multi-temporal video image pairs 

and conducted experiments with our method and the comparison methods. The average 

CD results are shown in Table 3. The results indicate that our algorithm outperforms 

the other algorithms in terms of Kappa coefficient and F1-Score, achieving an increase 

of at least 12.30% compared to other methods, and a decrease in OE of at least 44.57%. 



Especially under low-light and wide-field conditions, our method meets the CD require-

ments, showcasing outstanding performance advantages. 

For the unchanged scenes, we selected 15 different scene datasets for experiments to 

assess the stability of the algorithm. The average evaluation metrics of the experimental 

results are listed in Table 4. The data shows the lowest OE value, indicating that the 

proposed algorithm demonstrates superior robustness in no-change scenarios, effec-

tively reducing the occurrence of false detections. 

4 Conclusion 

In this paper, a novel CD method for monitoring video images in low-light, wide-field 

conditions with subtle or no changes is proposed. First, multi-temporal monitoring im-

ages are enhanced using a combination of the bright channel prior and SSR. Then, an 

improved multiplicative fusion method is applied, leveraging the complementary infor-

mation from adaptive arctangent ratio and CST. Finally, the fused DI is classified using 

the histogram fitting error minimization method based on log-normal distribution to 

accurately extract change areas. Experimental results show that the proposed algorithm 

effectively detects subtle changes in low-light environments and outperforms existing 

comparison algorithms in terms of accuracy and robustness, demonstrating superior 

detection performance and noise resistance. 
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