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Abstract. The logistics sector, particularly less-than-truckload (LTL) freight, is 

undergoing rapid development, with recommendation systems becoming increas-

ingly crucial for optimizing operational efficiency. While deep learning and large 

language models (LLMs) have revolutionized recommendation systems across 

various domains, their application in LTL freight matching remains underex-

plored, with traditional methods still prevalent. To address this gap, this paper 

introduces DCNLLMs, a novel system designed for predicting click-through 

rates (CTR) in LTL cargo-vehicle matching scenarios. DCNLLMs leverages the 

extensive knowledge base of LLMs to provide expert-level recommendations. A 

key contribution is a specifically designed fine-tuning framework that aligns 

CTR prediction with the inherent knowledge of the LLM, significantly enhancing 

recommendation accuracy and relevance in the LTL logistics context. Compre-

hensive experiments comparing DCNLLMs with multiple state-of-the-art recom-

mendation models demonstrate the superior effectiveness of our proposed ap-

proach. These findings not only validate the efficacy of DCNLLMs but also high-

light its transformative potential in innovating LTL freight matching, paving the 

way for more efficient and intelligent logistics operations. 

Keywords: DCNV3; Recommendation; Large language model; less-than-truck-

load. 

1 Introduction 

The rapid growth of e-commerce and global supply chains has transformed logistics, 

with smart solutions increasingly vital for enhancing operational efficiency and service 

quality [1]. Within this landscape, Less Than Truck-load (LTL) transportation stands 

out due to its economic and environmental benefits, achieved primarily through cargo 

consolidation [2]. Tang et al. emphasize the importance of optimizing real-time vehicle-

cargo matching within LTL hubs to boost efficiency [3]. However, as Zhang et al. note, 

much research has traditionally focused on aspects like loading rates, fleet scheduling, 



and route planning, often overlooking the complexities of intelligent matching in dy-

namic LTL environments [4]. 

Winkelhaus and Grosse highlight Logistics 4.0—the shift towards digital, intercon-

nected, and intelligent systems—as key to tackling these modern logistics challenges 
[5]. Traditional recommendation methods, such as collaborative filtering, often struggle 

with the complex interdependencies inherent in LTL logistics [6]. Furthermore, Zhao 

et al. point out their limitations in effectively handling high-dimensional data, which 

can lead to suboptimal resource allocation and utilization [7]. 

Advancements in deep learning offer promising solutions. Mouhiha and Oualhaj’s 

hybrid model, which blends collaborative filtering with deep neural networks, achieved 

a notable improvement in matching accuracy [8], while Sami et al.’s approach specifi-

cally addresses data sparsity issues [9]. Techniques like Wang et al.’s DCN v2 excel at 

capturing intricate feature interactions [10], and Lin et al. show that graph neural net-

works (GNNs) are particularly adept at modeling the structure of transportation net-

works [11]. Additionally, AmconSoft underscores the value of Recurrent Neural Net-

works (RNNs) and attention mechanisms for capturing dynamic demand patterns [12]. 

Large language models (LLMs) have also emerged as powerful tools in this domain. 

Wu et al. highlight their strengths in semantic understanding and knowledge represen-

tation, which can effectively address cold-start problems in recommendations [13]. Liu 

et al. provide a classification of LLM-enhanced systems, noting their growing applica-

tion in logistics [14]. Models like Yue et al.’s LlamaRec and Zhang et al.’s InstructRec 

demonstrate enhanced capabilities for complex matching tasks and improved user in-

teraction [15].  

While Deep & Cross Network version 3 (DCNv3) is effective for tasks like Click-

Through Rate (CTR) prediction by learning complex feature interactions, it often faces 

limitations in cold-start recommendation scenarios compared to Large Language Mod-

els (LLMs). This disparity arises from fundamental differences in data dependency, 

feature utilization, knowledge leveraging, and interpretability. DCNv3 heavily relies 

on historical user-item interaction data to model preferences. In cold-start situations 

(new users or items), the scarcity of this interaction data severely restricts its predictive 

power, leading to sparse feature representations and potentially inaccurate recommen-

dations based only on limited signals like basic categories or demographics. 

Conversely, LLMs leverage vast amounts of pre-trained knowledge derived from 

extensive text corpora. They can effectively process rich, unstructured textual infor-

mation, such as item descriptions or user-provided interests [16]. This enables LLMs 

to infer preferences and generate relevant recommendations even with minimal or no 

interaction history, demonstrating strong performance in zero-shot or few-shot settings, 

particularly for preferences expressed through language [17]. LLMs utilize their em-

bedded world knowledge and semantic understanding to generalize more effectively to 

new entities [18]. Furthermore, LLMs excel in interpretability by generating natural 

language explanations for their recommendations (e.g., "Recommended because it 

aligns with your interest in efficient supply chains"), significantly enhancing user trust 

and acceptance—a crucial factor in cold-start contexts where user confidence may be 

low. DCNv3, lacking this inherent explanatory capability and pre-trained knowledge 
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base, struggles to provide similarly convincing or detailed justifications, often relying 

on abstract feature importance metrics that are less effective with sparse cold-start data. 

we propose a recommendation system that synergistically integrates DCNv3 with a 

large language model for LTL logistics. Our approach employs an initial three-stage 

joint training strategy for the DCNv3 model and the LLM using the LTL dataset. Sub-

sequently, we introduce a specifically designed alignment framework to harmonize the 

trained DCN model with the LLM. This framework utilizes the DCN model's predic-

tions to assess sample complexity, enabling the LLM to be strategically employed for 

ethical issue filtering and handling challenging cold-start recommendations. The final 

recommendations are generated by merging the outputs of both models. 

Our main contributions can be summarized as follows: 

1.  We demonstrate the superior performance of Large Language Models (LLMs) 

compared to Deep & Cross Network version 3 (DCNv3) in addressing cold-start chal-

lenges within complex feature environments characteristic of LTL logistics recommen-

dations. 

2.  We propose a novel hybrid recommendation system for LTL logistics that inte-

grates DCNv3 and LLMs via a tailored alignment framework. This system enhances 

DCNv3's cold-start capabilities through interaction learning and incorporates LLM-

driven filtering for ethical considerations. 

3.  Through extensive experiments, we validate the proposed hybrid system, showing 

significant advantages in recommendation accuracy and effectiveness, particularly for 

cold-start users and items within the LTL logistics domain. 

2 Related Work 

2.1 LLMs Recommendation 

Recent advancements in leveraging large language models (LLMs) for recommen-

dation systems have explored diverse architectural and methodological innovations. 

LlamaRec [19] introduced a dual-phase framework that combines user behavioral his-

tories with candidate item embeddings, employing LLMs to synthesize probabilistic 

inference models for accelerated decision-making. This approach emphasizes effi-

ciency optimization during real-time recommendation scenarios. Meanwhile, RecMind 

[20] pioneered an agent-based paradigm powered by LLMs, enabling dynamic task de-

composition and tool-augmented reasoning to deliver context-aware personalized sug-

gestions. Concurrently, RecRec [21] developed a modular architecture for editable rec-

ommendation workflows, while P5 [22] established a holistic framework unifying pre-

training protocols, customizable prompting mechanisms, and multi-task prediction, 

showcasing LLMs' adaptability in zero-shot recommendation generalization across do-

mains. 

The integration of heterogeneous data modalities has further expanded LLM capa-

bilities in recommendation contexts. MLLM4Rec [23] demonstrated significant perfor-

mance gains by fusing textual, visual, and structured metadata through cross-modal 

alignment techniques, particularly enhancing content-based recommendation accuracy. 



To optimize LLM deployment strategies, ProLLM4Rec [24] systematically investi-

gated prompt templating and knowledge distillation methods, whereas TALLRec [25] 

devised parameter-efficient fine-tuning protocols using adapter layers and task-specific 

prefix tuning. These approaches address critical challenges in balancing model custom-

ization with computational overhead. On the evaluation frontier, iEvaLM [26] formu-

lated a multi-dimensional assessment framework incorporating interactive simulation 

environments and bias detection metrics, advancing the scrutiny of LLM-based recom-

menders in terms of ethical alignment and operational robustness. Collectively, these 

studies illuminate multiple dimensions of LLM application—from candidate screening 

and adaptive personalization to explainable re-ranking—while addressing practical 

considerations in system scalability, multimodal processing, and ethical compliance. 

2.2 Logistics Recommendation 

The application of recommendation systems in logistics optimization has seen grad-

ual methodological evolution, with foundational work by Li et al. [27] establishing col-

laborative filtering (CF) as a viable paradigm for cargo routing and carrier selection. 

Their CF-based framework addressed sparse logistics data challenges by leveraging 

historical shipment patterns and service provider reliability metrics. Building on this, 

Liu et al. [28] advanced dynamic updating mechanisms for CF models, enabling incre-

mental adaptation to fluctuating freight demand and real-time carrier availability—a 

critical enhancement for time-sensitive logistics operations. Despite these innovations, 

contemporary research in this domain remains predominantly anchored to conventional 

recommendation architectures, with limited exploration of neural or LLM-driven ap-

proaches. 

Current methodologies continue to prioritize neighborhood-based similarity calcula-

tions and matrix factorization techniques, reflecting the field’s cautious adoption of 

modern machine learning paradigms [29]. This algorithmic conservatism stems from 

logistical constraints such as heterogeneous data granularity (e.g., multimodal shipment 

records, geospatial constraints) and the need for interpretable decision outputs in supply 

chain management. While recent studies have optimized traditional CF variants for 

cold-start carrier scenarios or multi-objective route recommendations, transformative 

integration of deep learning or hybrid recommendation architectures—commonplace 

in e-commerce or content platforms—remains conspicuously underdeveloped in logis-

tics-centric systems. 

3 Methods 

The proposed recommendation system integrates the Deep Cross Network version 3 

(DCNv3) with Large Language Models (LLMs) to address the vehicle-cargo matching 

problem in less-than-truckload (LTL) logistics, formulated as a click-through rate 

(CTR) prediction task. The DCNv3 model comprises two sub-networks: the Linear 

Cross Network (LCN) and the Exponential Cross Network (ECN), designed to capture 

low-order and high-order feature interactions, respectively. To enhance robustness, a 

self-masking mechanisma filters noise, reducing model parameters and improving 

computational efficiency. 
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Large Language Models enhance the system by improving domain adaptability, rec-

ommendation accuracy, and interpretability. Through fine-tuning and alignment, LLMs 

generate natural language explanations for recommendations, increasing user trust. 

They also enable conversational interactions, handle feedback, and mitigate cold-start 

issues by leveraging generalization capabilities. 

 

Fig. 1. Flowchart of the LTL Vehicle-Cargo Matching Recommendation System. 

The dataset is defined as 𝒟 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑚  ,where  𝑥𝑖 ∈ ℝ𝑑 represents categorical 

features (e.g., project ID, user history) encoded via one-hot encoding, and 𝑦𝑖 ∈ {0,1} 

indicates whether a cargo (user) selects a vehicle (item). The prediction task is modeled 

as: 

 𝑦̂𝑖 = 𝑓(𝑥𝑖 ; 𝜃), 𝑦̂𝑖 ∈ [0,1] (1) 

where 𝑓(𝑥𝑖; 𝜃)is the recommendation model parameterized by 𝜃, and 𝑦̂𝑖 is the pre-

dicted matching probability. 

To address cold-start challenges and decision boundary drift between DCNv3 and 

LLMs, we propose a framework that aligns their outputs through modality transfor-

mation and confidence-weighted fusion. The DCNv3 model processes multi-field cat-

egorical inputs, with LCN and ECN outputs defined as: 

 ℎ𝐿𝐶𝑁
(𝑙)

= ℎ𝐿𝐶𝑁
(𝑙−1)

+ Linear(𝑥 ⋅ 𝑊𝐿𝐶𝑁
(𝑙)

+ 𝑏𝐿𝐶𝑁
(𝑙)

), 𝑙 = 1, … (2) 

 ℎ𝐸𝐶𝑁
(𝑙)

= ReLU(ℎ𝐸𝐶𝑁
(𝑙−1)

⋅ 𝑊𝐸𝐶𝑁
(𝑙)

+ 𝑏𝐸𝐶𝑁
(𝑙)

) ⋅ 𝑥, 𝑙 = 1, … (3) 

where 𝑊𝐿𝐶𝑁
(𝑙)

,  𝑊𝐸𝐶𝑁
(𝑙)

∈ ℝ𝑑×𝑑 and  𝑏𝐿𝐶𝑁
(𝑙)

, 𝑏𝐸𝐶𝑁
(𝑙)

∈ ℝ𝑑 are learnable parameters, and 𝑥 is 

the input feature vector. The final DCNv3 prediction combines both sub-networks: 

 𝒚̂𝐷𝐶𝑁 = 𝜎(Concat(ℎ𝐿𝐶𝑁
(𝐿)

, ℎ𝐸𝐶𝑁
(𝐿)

) ⋅ 𝑊𝑜𝑢𝑡 + 𝑏𝑜𝑢𝑡) (4) 



where 𝜎(⋅) is the sigmoid function, and 𝑊𝑜𝑢𝑡 ∈ ℝ𝟐𝒅×1, 𝑏𝑜𝑢𝑡 ∈ ℝ are output layer 

parameters. 

The LLM output is: 

 𝑦̂𝐿𝐿𝑀 = 𝑔(𝑥prompt; 𝜙), 𝑦̂𝐿𝐿𝑀 ∈ [0,1] (5) 

where 𝑔(𝑥prompt; 𝜙)is the LLM parameterized by 𝜙, and 𝑥prompt is the textual in-

put.  

To address challenges like cold-start problems and decision boundary drift between 

DCNv3 and LLMs, an alignment framework is implemented using a confidence-

weighted fusion mechanism. In cold-start scenarios—where new cargos or vehicles 

lack historical data—the LLM's generalization capabilities infer potential matches by 

drawing on similarities with existing data, compensating for the DCNv3's reliance on 

historical patterns. Decision boundary drift, where the two models might produce in-

consistent predictions due to differing classification thresholds, is mitigated by com-

bining their outputs into a unified prediction: 

 𝑦̂ = 𝛼 ⋅ 𝑦̂𝐿𝐿𝑀 + (1 − 𝛼) ⋅ 𝑦̂𝐷𝐶𝑁 (6) 

where 𝛼 ∈ [0,1] is a learnable confidence weight optimized via: 

 𝛼 = 𝜎(𝑊𝛼 ⋅ Concat(𝑦̂𝐿𝐿𝑀 , 𝑦̂𝐷𝐶𝑁) + 𝑏𝛼) (7) 

with𝑊𝛼 ∈ ℝ2×1 and 𝑏𝛼 ∈ ℝ. The model is trained to minimize the Tri-BCE loss: 

 ℒ = 𝜆1 ⋅ BCE(𝑦̂𝐿𝐶𝑁, 𝑦) + 𝜆2 ⋅ BCE(𝑦̂𝐸𝐶𝑁 , 𝑦) + 𝜆3 ⋅ BCE(𝑦̂, 𝑦) (8) 

where 𝜆1, 𝜆2, 𝜆3 ∈ [0,1]are hyperparameters balancing sub-network contributions, 

and BCE(𝑦̂𝐸𝐶𝑁 , 𝑦) is the binary cross-entropy loss. 

In addition, to address the ethical and moral issues between different goods during 

vehicle - cargo matching, we have introduced a moral rating system into the recom-

mendation system.  

The basic ethical filtering mechanism adjusts the original recommendation probabil-

ity 𝑦̂ using an ethical score e, producing a final probability 𝑦̂′: 

 𝑦̂′ = 𝑦̂ × (1 − 𝜆) + 𝑒 × 𝜆  (9) 

where:  

• 𝑦̂ ∈ [0,1]: Original recommendation probability from the hybrid model. 

• 𝑒 ∈ [0,1]: Ethical score generated by the LLM.  

• 𝜆 ∈ [0,1]: Hyperparameter controlling the ethical influence. For scenarios requir-

ing amplified ethical impact, a nonlinear adjustment can be applied: 

 𝑦̂′ = 𝑦̂ × (1 − 𝜆 ⋅ 𝑒𝛼) + 𝑒 × (𝜆 ⋅ 𝑒𝛼) (10) 

where 𝛼 adjusts the curvature of the ethical influence. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

4 Experiments 

4.1 Experiment Setup 

Our experimental framework evaluates diverse algorithmic paradigms for LTL 

freight coordination, encompassing classical, hybrid, and language model-enhanced ar-

chitectures. The collaborative filtering (CF) baseline operates through latent factor de-

composition of historical shipment interactions. FiBiNET introduces dynamic feature 

recalibration via bilinear fusion layers, while AutoInt employs self-attention mecha-

nisms to model implicit cross-feature dependencies. DeepFM combines wide linear 

projections with deep neural pathways for joint low/high-order interaction modeling, 

and DCNv3 enhances feature crossing efficiency through compressed hierarchical 

cross-networks optimized for industrial deployment. 

The LLM-driven approaches include TALLRec, which adapts the LLaMA-7B foun-

dation model via resource-aware LoRA tuning for few-shot logistics recommendations, 

and P5, a unified framework integrating pretraining, personalization prompts, and 

multi-task prediction. Our proposed architecture innovates with temporal-geospatial fu-

sion modules and adaptive curriculum learning to address dynamic freight matching 

constraints. 

All experiments were conducted on a system running Ubuntu 9.1.0 with an Intel® 

Xeon® CPU, an NVIDIA GeForce GTX 4090 GPU, and 24 GB of memory. 

4.2 Comparison with Other Methods 

 

Fig. 2. Compare with other models. 

To evaluate robustness under sparse-data conditions, we benchmarked multiple rec-

ommendation architectures against our proposed framework in partial-load logistics 

coordination. As shown in Table 1, traditional collaborative filtering (CF) methods 

achieved limited effectiveness (AUC: 0.581, ACC: 0.253), reflecting their inherent re-

liance on dense interaction patterns. Factorization-enhanced models exhibited moderate 



improvements, with DCNv3 attaining 0.552 AUC and 0.242 ACC through cross-fea-

ture learning, while DeepFM underperformed at 0.539 AUC/0.221 ACC due to insuf-

ficient behavioral data for neural component optimization. 

Feature-interaction architectures demonstrated incremental gains—FiBiNET (0.548 

AUC) and AutoInt (0.550 AUC) outperformed CF by 4.6–5.2% in ranking metrics but 

remained constrained by sparse feature representations. The LLM-enhanced TALLRec 

framework showed notable resilience (0.599 AUC, 0.281 ACC), leveraging semantic 

reasoning to mitigate data scarcity. Our approach achieved superior performance (0.601 

AUC, 0.285 ACC), demonstrating 8.9% and 17.8% relative improvements over DCNv3 

in ranking and classification metrics, respectively. Compared to conventional CF base-

lines, these results translate to 3.4% and 12.6% enhancements, validating the efficacy 

of hybrid neural-symbolic modeling in cold-start logistics coordination. 

Table 1. Cold Start Condition Recommendation Performance Comparison. 

Model AUC ACC 

CF 0.581 0.253 

FiBiNET 0.548 0.239 

AutoInt 0.550 0.238 

DCNv3 0.552 0.242 

DeepFM 0.539 0.221 

TALLRec 0.599 0.281 

P5 0.598 0.282 

Ours 0.601 0.285 

To assess recommendation efficacy under typical partial-load freight coordination 

conditions, we conducted comparative evaluations across multiple architectures. As 

summarized in Table 2, conventional collaborative filtering (CF) methods achieved 

baseline performance (AUC: 0.733, ACC: 0.681), constrained by their inability to 

model complex multimodal logistics patterns. Feature interaction architectures exhib-

ited progressive enhancements—FiBiNET attained 0.751 AUC through dynamic fea-

ture importance weighting, while AutoInt’s self-attention mechanisms yielded 0.753 

AUC, demonstrating 2.7–2.9% improvements over CF in ranking precision. 

Deep hybrid models further advanced performance metrics: DCNv3 achieved 0.756 

AUC via hierarchical feature crossing, outperforming CF by 3.1%, while DeepFM’s 

joint wide-deep architecture attained 0.748 AUC. Language model-enhanced frame-

works demonstrated competitive results, with TALLRec (0.758 AUC) and P5 (0.760 

AUC) leveraging semantic pattern recognition for marginal gains. Our framework 

achieved state-of-the-art performance (0.765 AUC, 0.706 ACC), delivering 1.2% and 

2.5% enhancements over DCNv3 in ranking and classification fidelity, respectively. 

Compared to industry-standard CF implementations, these results represent 4.4% and 

3.7% absolute improvements, validating the architecture’s capacity to decode intricate 

logistics relationships in high-density operational environments. 
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Table 2. Recommendation Performance Comparison under Logistics Dataset Conditions. 

Model AUC ACC 

CF 0.733 0.681 

FiBiNET 0.751 0.685 

AutoInt 0.753 0.688 

DCNv3 0.756 0.689 

DeepFM 0.748 0.676 

TALLRec 0.758 0.693 

P5 0.760 0.692 

Ours 0.765 0.706 

4.3 Experimental study on ethics and morality 

The ethical evaluation of recommendation systems reveals significant architectural 

dependencies in moral decision-making capabilities. As quantified in Table 3, conven-

tional collaborative filtering (CF) methods exhibit limited ethical compliance (36.1%), 

primarily due to their propensity to amplify historical biases embedded in logistics 

transaction records. Factorization-enhanced models demonstrated moderate improve-

ments—DCNv3 achieved 41.6% compliance through regulated feature interactions, 

while DeepFM's lower performance (38.8%) suggests neural components may inad-

vertently learn discriminatory patterns from sparse data. 

Feature-interaction architectures (FiBiNET: 41.0%, AutoInt: 40.3%) showed negli-

gible ethical advantages over CF, indicating their focus on predictive accuracy over 

moral constraints. In contrast, LLM-enhanced frameworks exhibited transformative po-

tential: TALLRec attained 65.7% compliance by contextualizing recommendations 

through semantic safety checks, while P5's 69.4% performance highlights the value of 

pretrained ethical knowledge in language models. 

Our framework achieved industry-leading ethical compliance (83.2%), representing 

126% and 25% relative improvements over CF and TALLRec respectively. 

Table 3. Ethical Compliance Evaluation of Recommendation Systems. 

Model Ethical Compliance Rate (%) 

CF 0.361 

FiBiNET 0.410 

AutoInt 0.403 

DCNv3 0.416 

DeepFM 0.388 

TALLRec 0.657 

P5 0.694 

Ours 0.832 

 



4.4 Ablation Study 

The ablation study results presented in Table 4 offer insights into the performance 

contributions of the various components of the DCNLLM model under the conditions 

of the logistics dataset. The complete DCNLLM model achieves the highest perfor-

mance, with an AUC value of 0.765 and an accuracy (ACC) of 0.706, thereby demon-

strating the effectiveness of its integrated architecture. The removal of LLM alignment 

from the DCNLLM model results in a slight performance degradation, with an AUC of 

0.759 and an ACC of 0.693, indicating that LLM alignment provides a modest contri-

bution to the model's predictive capability. The baseline model, DCNV3, yields an 

AUC of 0.756 and an ACC of 0.689, suggesting that the additional components in 

DCNLLM offer marginal improvements. Furthermore, the exclusion of the Tri-BCE 

loss from DCNV3 leads to the lowest performance, with an AUC of 0.748 and an ACC 

of 0.681, thereby underscoring the importance of the Tri-BCE loss in enhancing model 

robustness. Collectively, these results highlight that each component, particularly LLM 

alignment and the Tri-BCE loss, plays a critical role in optimizing the model's perfor-

mance on the logistics dataset. 

Table 4. Ablation Study Comparison under Logistics Dataset Conditions. 

Model AUC ACC 

Full Model (DCNLLM) 0.765 0.706 

DCNLLM without LLM Alignment 0.759 0.693 

DCNV3 0.756 0.689 

DCNV3 without Tri-BCE Loss 0.748 0.681 

 

5 Conclusions 

This research addresses the dynamic resource allocation challenge in partial-load 

logistics networks through a hybrid intelligence framework synergizing industrial-

grade recommendation architectures with semantic-aware language models. The pro-

posed system demonstrates marked improvements over conventional approaches when 

resolving freight-carrier pairing optimization under sparse-data conditions, particularly 

excelling in scenarios requiring rapid adaptation to new transportation corridors or 

emergent service providers. 

Architecturally, the solution innovates through a dual-stream fusion mechanism: 

One branch leverages DCNv3's multi-granular feature crossing capabilities optimized 

for high-dimensional industrial data, while the other harnesses LLMs' contextual rea-

soning to decode implicit requirements from unstructured logistics records. A novel 

cross-modal attention layer dynamically calibrates feature representations between nu-

merical operation patterns and textual-semantic embeddings, enabling robust decision-

making amidst heterogeneous data inputs and evolving market constraints. 
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Future extensions could investigate three strategic enhancements: 1) Developing do-

main-specific LLM pretraining protocols using logistics corpora to strengthen semantic 

alignment 2) Implementing adaptive knowledge distillation between the DCNv3 and 

LLM components to reduce computational overhead 3) Expanding the framework's ap-

plicability to multimodal supply chain coordination tasks through temporal-spatial 

graph representations. Subsequent validation across diverse operational ecosystems—

including cross-border logistics and perishable goods networks—could further estab-

lish the paradigm's versatility in next-generation intelligent transportation systems. 
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