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Abstract. The negative impacts of Deepfake technology have attracted wide-

spread attention in the multimedia forensics community. Due to the insufficient 

diversity of existing datasets, models tend to overly rely on forgery-specific fea-

tures, resulting in poor generalization. To address this issue, we propose a multi-

level visual perception network (MLVP-Net), which explores local, spatial, and 

semantic consistency from different perspectives to improve detection accuracy. 

Specifically, we first introduce a Multi-scale Spatial Perception Module (MSPM) 

that effectively captures both long-range and local information through parallel 

cascaded Hybrid State Space (HSS) blocks and multi-kernel convolution opera-

tions. Then, we present a Detail Feature Enhancement Module (DFEM), which 

employs multiple differential convolutions for multi-directional perception, ena-

bling the model to sense and weight details from different directions. Finally, we 

propose a Content-Adaptive Attention Module (CAAM), which enriches contex-

tual information by fusing multi-level features while guiding the model to focus 

on more useful information through combing channel and spatial attention mech-

anisms. Extensive experiments demonstrate that our MLVP-Net significantly 

outperforms all comparison methods across five benchmark datasets in Deepfake 

detection. 

Keywords: Deepfake Detection, Efficientnet, State Space Model, Differential 

Convolution Content, Adaptive Attention. 

1 Introduction 

With the continuous development of information technology, Deepfake technology has 

gained widespread attention in recent years. This technology enables the creation of 

highly realistic forged media, particularly images, videos, and audio, which has raised 

serious concerns in fields such as security, politics, entertainment, and social media. As 

Deepfake technology advances, the authenticity of forged content becomes increas-

ingly difficult to distinguish, posing significant threats to public trust, privacy protec-

tion, and national security. As a result, the detection of Deepfake content has become a 

critical task in the field of multimedia forensics. In recent years, numerous methods 

have been proposed to address this challenge. For example, Guo et al. [1] proposed  



 

Fig. 1. (a) Previous methods exhibit limited capability in learning forgery-specific features, 

which makes it difficult to distinguish unknown forgery types from authentic facial samples. (b) 

Existing methods demonstrate relatively strong feature learning abilities and can effectively sep-

arate unknown forgeries from real faces; however, they tend to develop a rigid reliance on spe-

cific forgery patterns. (c) Our method learns more generic and robust forgery representations 

through multi-level visual perception, without being constrained to fixed forgery types, thus ex-

hibiting superior generalization to unseen forgeries. 

LDFnet to tackle the issue of achieving an optimal balance between detection accuracy 

and model complexity. Li et al. [2] introduced BLR-Net, which improves object detec-

tion accuracy by jointly guiding feature representation through localization and bound-

ary information. Guo et al. [3] also proposed AdapGRnet, which enhances Deepfake 

detection accuracy by complementarily fusing spatial and residual domain features. 

Yan et al. [4] expanded the forgery space by modeling the internal and inter-feature 

variations of forgery characteristics in latent space, aiming to overcome the generaliza-

tion barriers faced by Deepfake detection. Additionally, Guo et al. [5] proposed 

SFIConv, which simulates the manipulation traces left by Deepfakes, enhancing the 

traditional backbone network’s ability to capture space-frequency interactions and 

thereby improving detection accuracy. Zhou et al. [6] proposed an unsupervised domain 

adaptation method for fine-grained open-set Deepfake detection, which enhances the 

model’ s generalization ability to unknown Deepfake classes through adaptive cluster-

ing and pseudo-label generation. 

 

Although existing methods have achieved remarkable success, several issues still 

need to be addressed. First, the lack of data diversity lead to overfitting, where the 

model tends to memorize specific forgery patterns rather than learning generalized fea-

tures. Second, an overreliance on local forgery features or features specific to certain 

forgery techniques results in a limited ability to handle new forgery methods. Lastly, 

the similarity between real and fake features is high, and forgery techniques often in-

volve fine manipulation of facial details. If the model fails to effectively capture these 

subtle differences, distinguishing authenticity becomes extremely challenging. 
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With the above thoughts in mind, we propose a novel multi-level visual perception 

network (MLVP-Net), as illustrated in Fig. 1. Our architecture enhances the discrimi-

nation capability against unknown forgery techniques by mapping features into differ-

ent feature spaces to perform multi-level visual perception, thereby learning the com-

mon characteristics shared across various forgeries. Specifically, we introduce a Multi-

scale Spatial Perception Module (MSPM) that effectively captures long-range depend-

encies and local details within images through parallel cascaded Hybrid State Space 

(HSS) blocks and multi-kernel convolution operations. Subsequently, we present a De-

tail Feature Enhancement Module (DFEM), which utilizes multi-directional differential 

convolutions to perceive and amplify subtle inconsistencies from multiple directions, 

thereby increasing sensitivity to forgery artifacts. Finally, we propose a Content-Adap-

tive Attention Module (CAAM), which dynamically adjusts and emphasizes critical 

information by integrating channel, spatial, and pixel attention mechanisms, thereby 

enriching the representation of contextual information. The proposed network not only 

significantly improves the accuracy of authenticity discrimination for facial images, but 

also effectively enhances robustness against unseen forgery attacks. The main contri-

butions of this paper include: 

– We present a novel MLVP-Net that significantly enhances Deepfake detec- 

tion accuracy by integrating multi-scale spatial perception, detail feature 

enhancement, and content-adaptive attention mechanisms. Extensive exper- 

iments conducted on five widely recognized benchmark datasets show that 

MLVP-Net significantly outperforms existing state-of-the-art methods in de- 

tection accuracy. 

– We propose a DFEM that utilizes multi-directional differential convolutions 

to perceive and amplify subtle inconsistencies from multiple directions. This 

approach increases sensitivity to forgery artifacts and enhances the model’s 

ability to detect Deepfakes effectively. 

– We propose a CAAM that integrates channel, spatial, and pixel attention 

mechanisms to perform dynamic adaptive adjustments. This enables effec- 

tive fusion of multi-level features and guides the model to focus on more 

informative and relevant information. 

– We propose a MSPM that effectively captures long-range dependencies and 

local details within images through parallel cascaded HSS blocks and multi- 

kernel convolution operations, thereby enhancing the robustness of feature 

extraction. 

2 Methodology 

2.1 Overview 

The structure of our proposed MLVP-Net is illustrated in Fig. 2. We utilize EfficientNet 

[7] as the backbone network to extract multi-level features from input images. To fully 

leverage the advantages of features at different levels while minimizing the interference 

of redundant information, we selectively use the features from the third, fifth, and final 

stages, denoted as f1, f2, and f3, respectively. Subsequently, we input f1 and f2 into the  



 

Fig. 2. The overall architecture of MLVP-Net. 

Detail Feature Enhancement Module (DFEM) to enhance their high-frequency features, 

resulting in enhanced features L and H. Then, L and H are input as low-level and high-

level features into the Content-Adaptive Attention Module (CAAM), respectively, 

which produces pixel-level weights Wp. These weights Wp are used to adaptively ad-

just the spatial and channel information, resulting in feature D. Finally, MSPM is ap-

plied to project feature D into a one-dimensional space, capturing sufficient contextual 

information and enhancing sensitivity to forged details for accurate prediction. 

 

2.2 Multi-scale Spatial Perception Module 

Forgery techniques typically focus on refining specific local facial regions to make the 

manipulated content appear more convincing. A lack of sensitivity to subtle forgery 

details increases the risk of misclassification. To address these challenges, we propose 

a MSPM to capture rich and sufficient contextual information while enhancing sensi-

tivity to subtle forgery details. As illustrated in Fig. 3. Specifically, the input feature D 

is fed into both the global and local branches of the MSPM module to extract rich global 

contextual information and refined local representations, respectively. We first intro-

duce the global branch. To accommodate the complexity of the Deepfake task, we adopt 

a cascaded hybrid state-space module strategy to ensure the acquisition of sufficient 

contextual information: 

 ( )( )( )HSS HSS HSS HSS

1 2 1 ( ) (1)n n iG B B B B X−=  
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Fig. 3. Multi-scale Spatial Perception Module (MSPM) 

Fig. 4 illustrates the principle of HSSM, which is a Mamba-based method with hy-

brid encoding. It utilizes a Zigzag scanning strategy to address the spatial continuity 

issue in the scanning process [8], offering excellent long-range modeling capability and 

linear computational complexity. The details are as follows: 

HSSM utilizes a Zigzag scanning strategy to perform an initial global scan of the 

input features. The input features are then divided into four equal patches, with local 

scanning performed on each patch. After merging the scanning results, they are concat-

enated with the global scan encoding to produce the original encoding. By applying 

various encoding operations to the original encoding, such as Inverse Encoding, Rota-

tion Encoding, and Transposition Encoding, we enhance the module’s multi-layer vis-

ual perception capability and robustness. These encoding results are then projected into 

a 1D space to model long-range dependencies. Finally, the spatial structure of the fea-

tures is restored using a decoding matrix, yielding the output results. 

 

Fig. 4. Hybrid State Space Module (HSSM) 
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It should be further noted that why HSSM is effective in capturing long-range de-

pendencies is explained by the following equations:  

 ( )1 (2)A t A t

t t th e h I e x 

−= + − B  

where A denotes the state transition matrix, and B denotes the projection matrix. ht de-

notes the state at the t-th time step, ht−1 denotes the state at the previous time step, and 

xt denotes the fixed-length one-dimensional sequence encoding input at the t-th time 

step. I is the identity matrix, and A is a negative definite matrix. ∆t denotes the time 

step, describing the interval between two time steps. Its value determines whether the 

current state ht is more influenced by the current input xt or the previous state ht−1. As 

a result, the current state ht is determined by both the current input and the historical 

states across different time steps. While traditional convolutions focus solely on local 

features within a single state, HSS demonstrates outstanding performance in capturing 

long-range dependencies, reducing reliance on specific patterns, and significantly en-

hancing the model’s generalization capability. 

We then introduce the local branch. The details are as follows: We perform efficient 

local feature extraction using multi-scale depthwise separable convolutions, and com-

bine BatchNorm2d and Silu to mitigate the vanishing gradient problem and enhance 

the network’s nonlinear modeling capability. 

 ( )( )1 1 1 1CBS DWBS CBS ( ) (3)k kL D  =  

The global features are fused with local features at different scales, and D is used as 

a residual connection to alleviate the vanishing gradient problem, resulting in the final 

output of MSPM: 

 ( )( )
3 5 71 1C Concat , , , (4)o k k kX G D= +L L L  

where CBS1×1 and DWBSk×k denotes the standard convolution and depthwise separable 

convolution, respectively, they both include a BatchNorm layer and a SiLU activation 

function. Concat(∗) refers to concatenation along the channel dimension. 

MSPM enriches contextual information by capturing long-range dependencies to en-

hance the global feature representation capability. Additionally, we capture fine-

grained local information through multi-scale convolutions. 

2.3 Detail Feature Enhancement Module 

Advanced Deepfake forgeries often manifest as subtle artifacts embedded in high-fre-

quency edge and texture details, making them difficult to detect. While standard con-

volution effectively captures pixel-level intensity, it tends to smooth local regions and 

overlook inter-pixel variations, leading to detail loss. To mitigate this, we propose a 

Detail Feature Enhancement Module (DFEM) that integrates multi-directional differ-

ential convolution for gradient-aware feature extraction with vanilla convolution (VC) 

to jointly enhance and preserve fine-grained details. 

Previous studies [9-12] have demonstrated the effectiveness of differential convolu-

tions in enhancing gradients and capturing intrinsic detailed patterns, particularly in 

edge detection and anti-spoofing tasks. As shown in Fig. 5, the DFEM consists of four 
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parallel differential convolutions: Central Difference Convolution (CDC), Angular Dif-

ference Convolution (ADC), Horizontal Difference Convolution (HDC), Vertical Dif-

ference Convolution (VDC), and VC. The Gradient-Enhanced Image clearly preserves 

richer detail information than that produced by vanilla convolution. 

 

Fig. 5. Detail-Feature Enhance Module(DFEM) 

 

Fig. 6. Kernel Design and Re-parameterization Process 

Fig. 6 illustrates the convolutional kernel design process using differential convolu-

tion, with vertical differential convolution as an example. PD denotes Pixel Difference, 

VC denotes Vanilla Convolution, and DC denotes Differential Convolution. xi and wi 

denotes the pixel values and convolutional kernel weights, respectively. Explicit pixel 

computation first captures inter-pixel differences via PD, followed by VC to model lo-

cal variations. Predefined kernels, exemplified by vertical differential convolution, en-

code gradient priors into convolutional layers through fixed kernels, enhancing the net-

work’s ability to capture gradient information.  pecifically, DC avoids explicit pixel 

difference computation while achieving the same effect. Similarly, we can design sev-

eral other types of differential convolutions. 

Fig. 6 also illustrates our reparameterization process. We apply the reparameteriza-

tion technique to simply sum the weights ki and biases bi of the five types of convolu-

tions to construct an equivalent convolution, thereby achieving the same effect as five 

              

                                           

  

              

   

                       

        

    

          

                                         

    
     

   

   

   

   

   

                           

    

          

  

               

            

           
        

                     

      

      

      
      

      

      
      

      

      

         

 

 

 

  

 

   

             



parallel convolutions with a single equivalent convolution. The specific process is as 

follows: 

 
5 5

out in in cvt cvt

1 1

* * (5)i i

i i

F F k b F K b
= =

 
= + = + 

 
   

Notably, during backpropagation, the computational graph automatically tracks the 

gradient flow, ensuring proper allocation for updating each convolution’s weights and 

biases. In forward propagation, the structure is re-parameterized into a single convolu-

tion with multi-directional perception, significantly reducing computational overhead. 

This unified representation enables efficient inference and accelerates the overall train-

ing process. Consequently, DFEM enhances multi-level detail perception while main-

taining high computational efficiency. 

2.4 Content-Adaptive Attention Module 

Deepfake detection requires rich and effective semantic information. Many stud- 

ies combine low-level features and high-level features from backbones to obtain 

multi-level information. Since a single pixel in high-level features originates from 

a pixel region in low-level features, it indicates that they possess different recep- 

tive fields. Previous works [13], [14], [15] employed simple element-wise addition 

for feature fusion. Subsequently, Wu et al. [16]. proposed adjusting the fusion 

ratio through self-learned weights, which offers greater flexibility compared to 

addition. However, the aforementioned methods still fail to adequately address 

the issue of receptive field mismatch. Research on Feature Attention Modules 

(FAM) [17] employs independent channel attention and spatial attention mech- 

anisms to guide the model in focusing on more informative features during the 

encoding process. 

 

Fig. 7. Content-Adaptive Attention Module (CAAM) 
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Inspired by the aforementioned studies, we designed the CAAM, which combines 

channel attention and spatial attention to guide the model in focusing on effective se-

mantic information. Besides, In Fig. 2, we developed an adaptive feature fusion mech-

anism based on CAAM, which effectively integrates features with different receptive 

fields while preserving rich semantic information. The design of CAAM is illustrated 

in Fig. 7, The details are as follows: 

We first obtain the channel-level weights and spatial-level weights separately. It can 

be formulated as: 

 ( )( )( )1 1 1 1 GAPC ReLU C (6)c

cW X =  

 ( )7 7 GAP GMPC (7)s s

sW X X=   

where Ck×k(∗) denotes a convolution layer with a kernel size of k, ⊕ denotes concate-

nation along the channel dimension, 
GMP

sX ,
GMP

sX and 
GAP

cX  denotes global average pool-

ing over the spatial dimension, global max pooling over the spatial dimension, and 

global average pooling over the channel dimension, respectively. To limit the model 

complexity, the first 1×1 convolution reduces the number of channels from C to Cr, and 

the second 1×1 convolution restores the number of channels back to C. To limit the 

model complexity, the first 1×1 convolution reduces the number of channels from C to 

Cr, and the second 1×1 convolution restores the number of channels back to C. 

Next, we integrate spatial weights and channel weights and perform adaptive per-

channel refinement guided by the input features, in order to enhance the model’s focus 

on effective semantic information. The specific process is as follows: 

 ( )( )( )7 7 initialSigmoid GC CS (8)pW X W=   

where Winitial is obtained by fusing Wc and Ws following the broadcasting principle. X 

denotes the input features, ⊕ denotes concatenation along the channel dimension. 

CS(∗) denotes channel shuffling, GCk×k(∗) refers to a grouped convolution with a kernel 

size of k × k. The number of channels in X and W is C. The group number is set to C, 

ensuring that the generated spatial importance weights are based on different channels. 

Wp denotes the pixel-level weights. 

We achieve adaptive fusion of low-level and high-level features by modulating the 

features with pixel-level weights generated by CAAM. Additionally, input features are 

added via skip connections to mitigate the gradient vanishing problem. The specific 

process is as follows: 

 ( ) ( )( )1 1C (9)p L p H H LFS W F W F F F=  + −  + +E  

where FL, FH, and FS denotes low-level features, high-level features, and the fused 

features, respectively. E denotes an all-ones matrix with the same size as Wp. C1×1 de-

notes a 1×1 convolution. 

Our CAAM performs adaptive adjustments by combining spatial-level and channel-

level information, emphasizing effective semantic information. In addition, the effi-

cient fusion mechanism based on CAAM preserves rich semantic information from dif-

ferent levels. 



3 Experiments 

The following section outlines the details of our experiments. 

3.1 Datesets 

We tested on five datasets to evaluate the generalization capability of our MLVP-Net, 

FaceForensics++ [18], DeepFake Detection Challenge(DFDC) [19], CelebDF- 

V2(CELEDFv2) [20], DeeperForensics-1.0(DFR) [21], WildDeepfake(WDF) [22]. 

3.2 Evaluation Metrics 

Evaluation Metrics: We use accuracy and the Area Under the ROC Curve (AUC) as the 

criteria to assess the model’s ability to distinguish between real and fake images.  igher 

values of these metrics indicate stronger performance in detecting forgery. 

3.3 Training Parameters 

Training Parameters: We use MTCNN [23] for face detection and alignment, resizing 

the images to 224 × 224 pixels to ensure the model focuses on face-related tasks. For 

each video, 20 frames are extracted. The Adam optimizer is employed with parameters 

(β  = 0.9, β2 = 0.999). The learning rate is set to 0.0001 and decays by a factor of 0.5 

after each epoch. All models are trained for 20 epochs. 

Table 1. Intra-dataset and cross-dataset evaluation. All models were trained on faceforensics++. 

‘*’ indicates intra-dataset evaluation. ‘†’ indicates cross-dataset evaluation. 

Method 
FF++C23* DFD † DF †  E EDFV2†  DF† AVG 
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

MAT [24] 93.72 97.26 61.96 65.88 65.59 83.78 70.79 73.87 65.03 73.33 65.84 74.22 
RECCE [25]  95.95 98.37 61.08 65.60 59.67 88.58 71.43 74.12 58.52 70.29 62.68 74.65 
F3-Net [26]  93.15 96.74 65.20 67.76 65.09 84.13 72.99 74.03 63.55 72.13 66.71 74.51 

SFIC [27]  92.98 93.32 64.83 67.96 56.67 78.82 68.76 70.36 63.01 69.92 63.32 71.77 
CADDM [28]  93.96 97.45 64.90 68.72 67.48 87.05 68.75 66.83 62.00 71.00 65.78 73.40 

IFFD [29]  92.62 94.36 63.61 69.63 67.18 81.78 71.68 72.07 65.78 65.82 67.06 72.33 
DFGAZE [30] 79.44 90.90 57.09 73.54 53.09 78.09 70.72 78.82 67.02 69.08 61.98 74.88 
UMFC [31]  91.61 95.48 63.71 68.64 56.72 83.44 69.63 70.68 64.62 69.81 63.67 73.14 

Ours 94.73 97.96 67.55 73.24 67.05 91.54 76.05 81.51 67.40 76.28 69.51 80.64 

3.4 Generalizability evaluation 

We evaluate the generalizability of our model by comparing it with recent state-of-the-

art (SOTA) methods. The comparison experiments include in-dataset evaluation, cross-

dataset evaluation, and cross-operation evaluation. 

1) Intra-dataset Evaluation: In Table 1, the best results are highlighted in bold, while 

the second-best results are underlined. From the in-dataset comparison conducted on 
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FF++C23, RECEE is identified as the best detector, while our MLVP-net achieves 

slightly lower performance but still outperforms most other methods. 

2) Cross-dataset Evaluation: In Table 1, Cross-dataset performance serves as an 

evaluation of generalization from the perspective of domain shift, highlighting the 

model’s robustness in real-world deployment scenarios. To verify the effectiveness of 

MLVP-Net, we conducted cross-dataset evaluations on four benchmark datasets. 

DFGAZE achieves a slightly higher AUC than our model on the DFDC dataset by 

0.3%. Our model performs slightly worse than CADDM and IFFD on the DFR dataset 

in terms of ACC, with a maximum gap of no more than 0.43%. Apart from these cases, 

our model consistently outperforms the compared methods across all datasets, demon-

strating impressive generalization capability. 

3) Multi-source Cross-manipulation Evaluation: In Table 2, Cross-manipulation 

evaluation assesses the model’s generalization ability from the perspective of attack 

type, emphasizing its robustness against unseen forgery attacks. we select three out of 

the four different forgery techniques in FF++ as the training set, with the remaining one 

reserved as the testing set. Although our model does not consistently achieve the highest 

accuracy (ACC) across all forgery types, it consistently outperforms other methods in 

terms of  U .  ince  U  reflects the model’s discriminative ability across all decision 

thresholds and is less sensitive to dataset-specific distributions, it provides a more reli-

able measure of generalization. In contrast, ACC can fluctuate due to changes in the 

test set distribution or threshold sensitivity. Therefore, the consistently superior AUC 

achieved by our model indicates strong generalization capability against unseen manip-

ulation methods. 

Table 2. Multi-source cross-manipulation evaluation in terms of acc (%) and auc (%). 

Method 
NT F2F FS NDEEP AVG 

ACC  AUC ACC  AUC ACC  AUC ACC  AUC ACC  AUC 
MAT 56.61 66.19 62.51 69.47 51.88 53.98 80.13 88.32 62.78 69.49 

F3-Net 57.85 63.29 63.85 70.00 49.68 54.04 82.31 89.50 63.42 69.21 

CADDM 55.36 64.62 59.56 68.25 50.85 52.90 70.39 84.92 59.04 67.67 

SFIC 58.70 63.72 63.53 71.56 50.72 55.81 75.08 90.04 62.01 70.28 

OURS 55.78 66.27 63.22 72.10 52.70 57.00 83.76 91.92 63.87 71.82 

Table 3. Comparison with ablation methods on the ff++, dfdc, dfr, celedfv2 and wdf datasets in 

acc and auc. 

Method 
FF++C23* DFD † DF †  E EDFV2†  DF† AVG 
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

Baseline 89.93 92.14 61.78 65.72 58.88 78.83 66.92 72.10 62.84 65.70 62.61 70.59 
Baseline /M 94.51 97.71 64.44 67.79 59.24 88.59 73.37 75.96 66.53 74.02 65.90 76.59 

Baseline /M C 93.45 97.48 65.81 70.48 64.92 91.01 75.31 80.12 67.50 75.13 68.39 79.19 
Baseline /M D 93.79 97.40 66.75 71.86 64.50 89.22 74.81 78.66 64.94 73.51 67.75 78.31 

Baseline /M D C 94.73 97.96 67.55 73.24 67.05 91.54 76.05 81.51 67.40 76.28 69.51 80.64 

3.5 Ablations 

To verify the reliability of our proposed method, we conducted extensive ablation ex-

periments on the five dataset. 



As shown in Table 3, we denote the Multi-scale Spatial Perception Module (MSPM) 

as M, the Detail Feature Enhancement Module (DFEM) as D, and the Content-Adaptive 

Attention Module (CAAM) as C. After applying MSPM to the baseline network, the 

detection accuracy (ACC) and generalization performance (AUC) are significantly im-

proved by 3.29% and 6% on average, respectively. Building upon this, we further in-

troduce CAAM and DFEM individually, both of which bring varying degrees of im-

provement in accuracy and generalization, demonstrating the effectiveness of each 

module in our network. Notably, when MSPM, CAAM, and DFEM are combined, the 

model achieves the best performance in authenticity classification. 

 

Fig. 8. t-SNE visualization 

 

Fig. 9. Grad-CAM++ visualization 

3.6 Visualization 

In this section, we present of feature distributions and saliency maps to illustrate the 

advantages of MLVP-Net. 
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4) T-SNE Feature Distribution: We employ T-SNE [32] to visualize and analyze 

both the baseline and our model on the FF++ dataset, As illustrated in Fig. 8. The base-

line network demonstrates its ability to effectively distinguish between different types 

of forgeries in the embedding space, indicating that it can learn distinct features specific 

to each forgery type. However, this tendency to overfit such unique characteristics may 

lead to rigid reliance, thereby weakening its ability to discern authenticity when en-

countering unseen forgery types. 

In contrast, our proposed MLVP-Net leverages multi-level visual perception to learn 

common patterns of forgery from multiple perspectives. Evidently, our network tends 

to group four different types of forgeries into a single cluster in the embedding space, 

rather than maintaining clear boundaries between them. This reveals a key principle 

behind our significant improvement in generalization: learning shared characteristics 

of forgeries helps break rigid reliance. 

5) saliency maps: We employed Grad-CAM++ to visualize the manipulated facial 

regions that are of interest to our network, thus demonstrating the effectiveness of our 

model. As illustrated in Fig. 9. Our model accurately localizes the manipulated regions 

and exhibits strong activations even in the absence of ground-truth annotations, while 

showing minimal responses in non-facial structural areas that are irrelevant to authen-

ticity classification. 

4 Conclusion 

This paper proposes a deepfake detection model, MLVP-Net, based on multi- level 

visual perception. Our method introduces an innovative integration across spatial, chan-

nel, and gradient dimensions, combined with feature space projection and updating, 

enabling the model to better focus on the shared characteristics of forgery techniques, 

thereby enhancing its adaptability and generalization capabilities. Additionally, 

through effective feature encoding, our model not only efficiently integrates the seman-

tic information from different levels of features but also guides the model to focus on 

the information most relevant to the deepfake detection task, significantly improving 

its generalization performance. This addresses the common challenge of limited gener-

alization faced by current deepfake detection models. While our work represents just 

one step toward advancing deepfake detection techniques, we believe it makes a sub-

stantial contribution to improving the adaptability and scalability of deepfake detection 

tools. 
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