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Abstract. Fire detection in dynamic environments faces continuous challenges, 

including the interference of illumination changes, many false detections or 

missed detections, and it is difficult to achieve both efficiency and accuracy. To 

address the problem of feature extraction limitation and information loss in the 

existing YOLO-based models, this study propose You Only Look Once for Fire 

Detection with Attention-guided Inverted Residual and \textbf{D}ual-pooling 

Downscale Fusion (YOLO-FireAD) with two core innovations: (1) Attention-

guided Inverted Residual Block (AIR) integrates hybrid channel-spatial attention 

with inverted residuals to adaptively enhance fire features and suppress environ-

mental noise; (2) Dual Pool Downscale Fusion Block (DPDF) preserves multi-

scale fire patterns through learnable fusion of max-average pooling outputs, mit-

igating small-fire detection failures. Extensive evaluation on two public datasets 

shows the efficient performance of our model. Our proposed model keeps the 

sum amount of parameters (1.45M, 51.8% lower than YOLOv8n) (4.6G, 43.2% 

lower than YOLOv8n), and mAP75 is higher than the mainstream real-time ob-

ject detection models YOLOv8n, YOL-Ov9t, YOLOv10n, YOLO11n, 

YOLOv12n and other YOLOv8 variants 1.3-5.5%. 

Keywords: Fire detection, Efficient models, YOLO, Attention mechanisms, 

Small object detection. 

1 Introduction 

Fire disasters pose significant threats to human safety, ecological systems, and critical 

infrastructure worldwide. With increasing urbanization and climate change impacts, 

developing rapid and reliable fire detection systems has become a crucial research fron-

tier in computer vision and public safety 1.  

Traditional sensor-based approaches often suffer from limited coverage and envi-

ronmental sensitivity, while emerging vision-based methods leveraging deep learning 

have demonstrated superior adaptability in complex scenarios 2. However, existing 



convolutional neural network (CNN) architectures for fire detection face three funda-

mental challenges in practical deployments: 1) Severe performance degradation under 

illumination variations and fire-like object interference, 2) The trade-off between ef-

fectiveness and efficiency, and 3) Information loss during feature downsampling par-

ticularly detrimental to small fire detection. 

Current YOLO-based solutions 3, while achieving notable real-time performance, 

exhibit critical limitations. The standard residual blocks in lightweight networks inad-

equately capture long-range contextual dependencies crucial for distinguishing fire fea-

tures from complex backgrounds. Furthermore, conventional pooling operations in fea-

ture pyramid networks tend to discard spatial details during downsampling, leading to 

suboptimal performance in detecting early-stage fires with limited visual signatures. 

Recent attempts incorporating attention mechanisms or multi-scale fusion either intro-

duce prohibitive computational overhead or fail to maintain feature integrity across 

scales 4,5,6,7. 

To address these challenges, this study propose YOLO-FireAD, a novel fire detec-

tion framework that synergistically integrates two specialized modules. Specifically, 

the contributions of this study are as follows.  

1. This study proposes the Attention-guided Inverted Residual Block (AIR), which 

synergistically embeds spatial-channel hybrid attention into inverted residual opera-

tions.  This design achieves adaptive fire feature amplification through gated position-

aware convolutions and channel reweighting, reducing false alarms from fire-like in-

terference while maintaining computational efficiency (39% parameter reduction vs. 

baseline). 

2. This study proposes the Dual Pool Downscale Fusion Block (DPDF) addresses 

small-fire detection failures through parallel max-average pooling fusion with learnable 

coefficients.   This strategy preserves both flame edge details and smoke continuity 

during downsampling, improving mAP50 by 1.7% compared to standard YOLOv8n 

while reducing GFLOPs by 15%. 

3. This study uses common evaluation metrics combined with cross-dataset testing 

(fire_detection dataset and fire dataset) for validation. Extensive experiments show that 

the model proposed in this study, YOLO-FireAD model, has a good precisionefficiency 

balance, achieving 34.6% mAP50-95 (1.8% higher than YOLOv8) with 51.8% param-

eter reduction. 

The remainder of this paper is organized as follows: Section 2 reviews related work 

in fire detection and lightweight CNN architectures. Section 3 details the technical im-

plementation of AIR and DPDF modules. Section 4 presents experimental setup and 

comparative analysis. Section 5 discusses practical implications and limitations, fol-

lowed by concluding remarks in Section 6. 

 

2 Methods 

In this section, we offer a comprehensive description of each module within the network 

model, clarifying their specific functions. We also provide an overall explanation of the 
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model, detailing the involved components and structures, including the AIR block and 

DPDF block. 

 

Fig. 1.  Overview of the YOLO-FireAD model architecture. 

2.1 Overview 

As shown in Figure 1, YOLO-FireAD adopts a "Backbone-Neck-Head" three-tier ar-

chitecture, which is optimised for early fire detection and high efficiency. Its core lies 

in combining the attention-guided feature enhancement of the AIR module and the 

multi-granularity feature retention mechanism of the DPDF module throughout the en-

tire network, which improves the mAP50-95 of fire detection to 34.6% (1.8% higher 

than that of YOLOv8 8) while maintaining high efficiency (53% lower than the number 

of YOLOv8 parameters). 

In the Backbone stage, based on the multi-stage feature extraction design, it consists 

of CBS base module, AIR attention module and DPDF downsampling module stacked 

alternately: the CBS module extracts the local texture features of the flame (such as 

edge flickering, smoke diffusion pattern) through 3×3 convolution; the AIR module 

embeds the attention mechanism, which enhances the response of the flame core region 

and suppresses the fire-like interference; and the DPDF module preserves the flame 

highlight details (maximum pooling) and smoke continuity (average pooling) simulta-

neously during resolution downscaling through a dual-pooling fusion strategy. 

A bi-directional feature pyramid structure is used in the neck stage to fuse deep se-

mantics with shallow details through UpSample and Concat operations. The DPDF 

module performs resolution alignment and noise filtering at the feature fusion nodes to 



remove feature blurring due to smoke occlusion. The AIR module inserts cross-layer 

connectors to dynamically calibrate the attentional distributions of features at different 

scales. 

The detection head, while maintaining multi-scale detection capability, achieves 

channel compression by stacking CBS modules and finally enters the loss function 

CIoU loss 9 as well as cross-entropy loss for localisation and classification. 

2.2 Attention-guided Inverted Residual Block (AIR) 

Aiming at the problem of confusion between fire-like interferences (such as light re-

flections) and real flames in flame detection, this study proposes the AIR module, 

which inherits and improves the classical inverted residual structure, and embeds the 

lightweight channel-spatial hybrid attention mechanism into the feature transformation 

process to achieve efficient feature discrimination through the three-stage design of 

feature decoupling-attention enhancement-lightweight compression. The module struc-

ture is shown in Figure 2. 

 

Fig. 2. Overview of the Attention-guided Inverted Residual Block structure. 

For the input features 𝑋𝑖𝑛 ∈ 𝑅𝐶×𝐻×𝑊 , firstly, the channel dimension reduction is 

achieved by reducing the convolution to reduce the amount of calculation: 

 𝑋𝑟𝑒𝑑𝑢𝑐𝑒 = ReLU (BN(Conv1×1(𝑋𝑖𝑛))). (1) 

The reduction rate r = 0.25 here is experimentally optimised to make a balance be-

tween reducing information loss and computational complexity. The deep feature ex-

traction stage uses a deep separable convolution 10 with more efficient parameterisa-

tion: 

𝑋𝑑𝑤 = ReLU (BN (DepthwiseConv
3×3

(𝑋𝑟𝑒𝑑𝑢𝑐𝑒))). (2) 

This operation extracts local features via a spatial convolution kernel 𝑘 × 𝑘 while 

maintaining channel independence, reducing the computational complexity from 

𝑂(𝑘2𝐶𝑒𝑥𝑝
2 ) 𝑡𝑜 𝑂(𝑘2𝐶𝑒𝑥𝑝). 

Then 𝑋𝑑𝑤  undergo convolutional additive self-attention 11 through the following 

process: First, the input features are decomposed into query (Q), key (K), and value (V) 

triples by 1×1 convolution: 

[𝑄, 𝐾, 𝑉] = Split(Conv1×1(𝑋)). (3) 
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Then the parallel processing strategy of space-channel decoupling is adopted: 

𝑄̂ = ℱ𝒸𝒽𝒶𝓃𝓃ℯℓ (ℱ𝓈𝓅𝒶𝓉𝒾𝒶ℓ(𝑄)), (4) 

𝐾  =  ℱ𝒸𝒽𝒶𝓃𝓃ℯℓ (ℱ𝓈𝓅𝒶𝓉𝒾𝒶ℓ(𝐾)), (5) 

where the spatial operation ℱ𝓈𝓅𝒶𝓉𝒾𝒶ℓ uses gated convolution to enhance position per-

ception:   

ℱ𝓈𝓅𝒶𝓉𝒾𝒶ℓ(𝑥) = 𝑥 ⊙ σ (Conv3×3(DepthwiseConv(𝑥))). (6) 

The channel operation ℱ𝒸𝒽𝒶𝓃𝓃ℯℓ establishes global dependencies through adaptive 

pooling:   

ℱ𝒸𝒽𝒶𝓃𝓃ℯℓ(𝑥) = 𝑥 ⊙ σ (MLP(GAP(𝑥))). (7) 

Then feature enhancement is achieved by additive fusion and deep convolution: 

𝑋𝑜𝑢𝑡 = Dropout (DepthwiseConv
3×3

((𝑄̂ + 𝐾) ⊙ 𝑉)), (8) 

where ⊙ denotes element-by-element multiplication, the design reduces 𝑂(𝐶2) param-

eter overhead while maintaining feature interaction capabilities. 

 

Fig. 3. Overview of the convolutional additive self-attention structure. 

Finally, the number of channels is restored to facilitate subsequent feature extraction. 

The module structure is shown in Figure 3. 



2.3 Dual Pool Downscale Fusion Block (DPDF) 

For the problems of small target leakage and dynamic blurring in flame detection, the 

DPDF module achieves multi-granularity information fusion through a dual-path fea-

ture retention mechanism. As shown in Figure 4, the module synchronously preserves 

flame edge details (via maximum pooling) and smoke diffusion features (via average 

pooling) during resolution downsampling. 

 

Fig. 4.  Overview of the Dual Pool Downscale Fusion Block structure. 

For dual path feature extraction, two pooling operations are first performed in paral-

lel to obtain complementary features: 

𝑋𝑚𝑎𝑥 = MaxPool2×2(𝑋𝑖𝑛),  (9) 

𝑋𝑎𝑣𝑔 = AvgPool2×2(𝑋𝑖𝑛). (10) 

The maximum pooling path reinforces the flame spike features (such as flickering 

highlight areas), and the average pooling path maintains the continuity of smoke diffu-

sion. 

Partial convolution (PConv) 12 is used to reduce the computational overhead: 

𝑋𝑚𝑎𝑥
′ = PConv(𝑋𝑚𝑎𝑥) = DepthwiseConv3×3(𝑋𝑚𝑎𝑥

[:𝑟:] ) ⊕ 𝑋𝑚𝑎𝑥
[𝑟∷]

, (11) 

where r=4 is the channel reduction rate, performing deep convolution for only 1/4 of 

the channels and passing through the rest. This design reduces FLOPs by 68% while 

maintaining 90% feature accuracy. 

Feature calibration is implemented via the SA (Spatial Attention) and CA (Channel 

Attention) modules: 

𝑋𝑚𝑎𝑥
′′ = CA(SA(𝑋𝑚𝑎𝑥

′ )),  (12) 

𝑋𝑎𝑣𝑔
′′ = CA (SA(𝑋𝑎𝑣𝑔

′ )). (13) 

Among them, the SA module enhances the flame edge response using cavity convo-

lution, and the CA module applies channel reweighting based on the flame chromaticity 

histogram. 
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Finally, adaptive weighted fusion is achieved through learnable coefficients: 

𝑋𝑓𝑢𝑠𝑖𝑜𝑛 = 𝛼 ⋅ 𝑋𝑚𝑎𝑥
′′ + (1 − 𝛼) ⋅ 𝑋𝑎𝑣𝑔

′′ . (14) 

3 Experimental setup 

In this section, a brief overview of the experimental setup and related resourceswill be 

given. In the following, this study introduce the experimental dataset, the experimental 

configuration, and the evaluation metric in turn. 

3.1 Dataset 

The two datasets used in this study, fire_detection dataset and fire dataset, are both from 

the Paddle community and contain a large number of multi-scale complex flame fire 

scenes and smoke. 

3.2 Configuration 

The experimental program was executed on ubuntu22.04 operating system with 

NVIDIA GeForce RTX 4090 graphics card driver. The deep learning framework was 

selected as pytorch with 2.1.0, jupyter notebook was used for the compiler, Python 3.10 

was used as the specified programming language, and all the algorithms used in the 

comparative analysis were operationally consistent and ran in the same computational 

setup. The image size was normalized to 640×640×3, and the batch size was 128, the 

optimizer was AdamW, the learning rate was set to 0.002, the momentum to 0.9, and 

the number of training periods was 200. 

3.3 Evaluation metric 

Model performance was evaluated using detection accuracy metrics (precision, recall, 

f1 score), comprehensive mAP scores (mAP50, mAP75, mAP50-95), and computa-

tional efficiency parameters (Params, GFLOPs, Model Size) for holistic assessment 13. 

4 Experimental details and analyses 

In order to validate the superior performance of the YOLO-FireAD detection model 

proposed in this paper, a series of validations are conducted on the above dataset and 

evaluated and analyzed using several evaluation metrics mentioned above. 

Firstly, the current mainstream object detection models and their variants are intro-

duced, and conducts comparison experiments with the model proposed in this paper to 

demonstrate the superiority of the proposed model. Then, the results of the model pro-



posed in this paper are evaluated, including comparative experimental analysis, gener-

alization experimental analysis, and ablation study analysis. Finally, the limitations of 

the model proposed in this paper are analyzed. 

 

Fig. 5.  YOLO-FireAD iterations on the fire_detection dataset. 

Figure 5 records the changes of the bounding box loss, classification loss, focus loss, 

model precision, recall, and average precision for different thresholds in each iteration 

of the model on the training set and the test set. According to the charts, it can be seen 

that in the early stage of training, the model has high values for each loss and converges 

quickly, while the model metrics rise rapidly, indicating that the model is learning ef-

ficiently at this time. As the number of iterations increases, the rate of change of each 

curve gradually decreases, and after about 40 iterations, the curves begin to stabilise, 

and finally about 200 iterations, the curves basically remain stable. 
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4.1 Comparative Experimental Analysis 

 

Fig. 6. Comparison of model metrics (F1 score, mAP50-95, Params) on fire_detection dataset. 

Table 1. Test results of all models on fire_detection dataset. 

Model P R F1 mAP50 mAP75 mAP50-95 Params GFLOPs Size 

YOLOv8n 64.6 62.4 63.5 64.2 31.9 32.8 3.01 8.1 6.1 

YOLOv9t 66.8 60.3 63.4 64.4 31.8 33.3 1.97 7.6 4.6 

YOLOv10n 68.2 55.5 61.2 60.0 30.0 31.5 2.70 8.2 5.6 

YOLO11n 66.5 58.7 62.4 64.3 31.5 33.6 2.58 6.3 5.4 

YOLOv12n 65.9 61.0 63.3 66.1 34.2 35.2 2.56 6.3 5.4 

YOLOv8n+SE 70.4 59.5 64.5 63.5 31.4 33.0 3.01 8.1 6.1 

YOLOv8n+HAM 3.3 63.3 63.3 64.8 32.7 33.7 3.01 8.1 6.1 

YOLOv8n+ASF 69.1 59.8 64.1 65.1 32.8 34.2 3.05 8.6 6.2 

YOLOv8n+BifPN 67.6 60.9 64.1 63.4 32.3 33.6 3.02 8.1 6.1 

YOLOv8n+WIoUv3 63.9 61.5 62.7 63.4 31.7 32.7 3.01 8.1 6.1 

YOLOv8n+MDPIoU 65.4 61.3 63.4 63.8 32.2 33.4 3.01 8.1 6.1 

YOLOv8n+PIoUv2 66.1 60.3 63.2 63.9 33.8 33.4 3.01 8.1 6.1 

Ours 75.3 53.3 64.3 64.9 35.5 34.6 1.45 4.6 3.3 

 

In order to verify the performance of YOLO-FireAD, the comparison experiment com-

pares YOLO-FireAD with YOLOv8n 8, YOLOv9t 14, YOLOv10n 15, YOLO11n 8, 

YOLOv12n, and the improved models of YOLOv8n 16,17,18,19,20,21,22 on fire_de-

tection dataset, and analyse the model performance in terms of P, R, F1score, mAP50, 

mAP50-75,mAP50-95, Params, FLOPs, Model Size to analyse the model performance, 



the experimental results are shown in Table 1, and Figure 6 is the visual graph of the 

experimental data of F1, mAP50 ,Params. It can be seen that the YOLO-FireAD model 

performs well in all performance indicators, and its P, R, F1, and mAP (mAP50, 

mAP75, and mAP50-90) are significantly better than the other models. The advantage 

of P is the most obvious, which is 10.7%, 9.4%, 12%, and 11.4% higher compared with 

YOLOv8n, YOLOv12n, YOLOv8n+HAM, and YOLOv8n+WIoUv3, respectively. In 

addition, YOLO-FireAD's mAP75 performs the best among all models, which indicates 

that YOLO-FireAD maintains high detection performance at different IoU thresholds, 

which gives it a strong advantage in complex bad detection tasks. While maintaining 

high accuracy, the complexity of YOLO-FireAD is also significantly lower than other 

models, with Params of 1.45M, which is only 48.2% of YOLOv8n, GFLOPs of 4.6G, 

and Model Size of 3.3MB, which are the lowest among all the compared models. 

 

 

Fig. 7. Sample visualisation of several competitive model identification results. 

Figure 7 shows several representative sets of detection results of several mainstream 

models and YOLO-FireAD in actual situations, in order to clearly see the differences 

in performance of different models in flame hazard detection. YOLOv8n is able to 

identify flames in most of the scenarios, but the recognition accuracy is slightly lower, 

and there is a certain leakage of detection in dense flame scenarios. Compared with 

YOLOv8n, YOLO11n and YOLOv12n have higher leakage rates in dense flames, 

which indicates that there are some limitations in their flame recognition in complex 

scenarios. Compared to the above three models YOLOv8n+ASF has a significantly 

lower leakage rate when the flame is dense, but there is a certain leakage for small 

flames, which indicates that it has some limitations when dealing with small-sized ob-

jects. Compared with the above models, YOLO-FireAD performs significantly better 
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with the attention mechanism of its AIR module, which can dynamically adjust the 

weights of the feature maps to make the network more focused on the flame targets, 

especially in multi-dense flame scenes.The DPDF module synchronously retains the 

flame highlight details during resolution downscaling through the dual-pooling fusion 

strategy, avoiding the loss of the small flame features during downsampling, thus 

achieving a more accurate recognition of small flames. 

 

Fig. 8. Heat map visualisation results, the first row is the original image, the second row is the 

YOLOv8n visualisation results and the third row is the YOLO-FireAD visualisation results. 

Figure 8 shows the heat map visualisation results of YOLOv8n and YOLO-FireAD 

in the flame recognition task. From the figure, it can be seen that although YOLOv8n 

is able to identify most of the flames, there are some false detections and the identifi-

cation of the flames is not obvious enough, and there are leakage detections. In contrast, 

YOLO-FireAD performs much better, accurately identifying the location of flames and 

more clearly identifying small flames. 

Furthermore, we verify the generalization of the model on the Fire dataset, and the 

results are shown in Table 2. It can be seen that YOLO-FireAD also performs well. The 

mAP50-95 has the best performance among all the comparison models, reaching 

8.12%, which is higher than YOLOv9t, YOLOv10n, YOLOv8n+HAM, 

YOLOv8n+WIoUv3, 1.39%, 1.13%, 1.37%, and 2.25%, respectively. 

In order to further demonstrate the effectiveness of the two modules proposed in 

YOLO-FireAD, we conducted ablation experiments on the fire_detection dataset with 

the AIR, DPDF modules using YOLOv8n as the baseline algorithm, and the results of 

the experiments are shown in Table 3. Although the mAP50-95 of YOLO-FireAD de-

creased slightly after only introducing the AIR module, P increased from 64.6% to 

68.0%, an increase of nearly 3.4%. At the same time, Params, FLOPs and Model Size 

were significantly reduced, especially Params was reduced from 3.01 to 1.84. That's a 

reduction of about 39 percent. This proves the role that AIR plays in lightweight. 

When only the DPDF module is introduced into YOLO-FireAD, compared with 

YOLOv8n, the P, R, mAP50, mAP50-95 of the model are all improved, among which 



the improvement of P is the most obvious, from 64.6% to 69.2%, and the reductions of 

Params, FLOPs, and Model Size are also achieved. This proves the usefulness of the 

DPDF module in improving the model recognition accuracy. 

Table 2. Test results of generalisability of all models verified at Fire dataset 

Model P R mAP50 mAP50-95 

YOLOv8n 37.0 28.8 25.6 7.83 

YOLOv9t 29.8 28.5 22.4 6.73 

YOLOv10n 34.4 29.4 22.7 6.99 

YOLO11n 40.7 31.6 27.2 7.85 

YOLOv12n 39.7 27.1 24.5 8.00 

YOLOv8n+SE 43.4 22.5 22.8 7.24 

YOLOv8n+HAM 35.5 28.6 22.5 6.75 

YOLOv8n+ASF 39.0 28.3 25.9 7.48 

YOLOv8n+BifPN 38.7 31.5 25.8 7.80 

YOLOv8n+WIoUv3 33.1 28.0 21.4 5.87 

YOLOv8n+MDPIoU 32.1 28.9 21.6 7.23 

YOLOv8n+PIoUv2 35.0 29.0 23.6 7.22 

Ours 35.9 25.7 25.0 8.12 

Table 3.  Test results of YOLO-FireAD ablation experiment on fire_detection dataset. 

AIR DPDF P R mAP50 mAP50-95 Params GFLOPs Size 

  64.6 62.4 64.2 32.8 3.01 8.1 6.1 

✓  68.0 56.3 63.0 32.6 1.84 5.4 3.9 

 ✓ 69.2 63.8 65.9 34.5 2.52 6.9 5.2 

✓ ✓ 75.3 53.3 64.9 34.6 1.45 4.6 3.3 

 

When the two are combined, the overall model performance is optimal, with P fur-

ther improved to 75.3%, which is 10.7% higher compared to YOLOv8n, while mAP50-

95 is improved from 32.8% to 34.6%. Params, FLOPs, and Model Size are all reduced 

to 1.45M, 4.6G, and 6.1MB respectively, which can be inferred that both AIR and 

DPDF play an indispensable role in YOLO-FireAD. The combination of the two makes 

YOLO-FireAD able to significantly increase the detection rate while guaranteeing the 

accuracy of the model through the enhancement of key features and the optimal fusion 

of multi-granularity features. 
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4.2 Limitation Analysis 

Although the YOLO-FireAD model performs well in flame detection tasks, it still has 

some limitations. For example, although the AIR module can effectively enhance the 

response in the flame core region, it may misdetect fire-like interferences in the back-

ground (such as light reflections, glare areas, etc.) under complex backgrounds or ex-

treme lighting conditions, leading to a decrease in detection accuracy. In addition, alt-

hough the DPDF module performs well in multi-granularity feature fusion, when deal-

ing with dynamic scenes (e.g., fast moving flames or fast spreading smoke), inaccurate 

feature fusion may occur, which affects the detection performance of dynamic flames. 

Meanwhile, due to the relatively small number of samples in the training data for some 

specific scenes (such as small target flames or smoke occlusion scenes), the model's 

detection capability in these scenes may be somewhat limited. 

5 Conclusion 

This study presents YOLO-FireAD, an efficient fire detection framework that addresses 

critical challenges in real-world deployment through two novel modules: the Attention-

guided Inverted Residual Block (AIR) and Dual Pool Downscale Fusion Block 

(DPDF). AIR integrates a lightweight channel-spatial hybrid attention mechanism into 

inverted residual learning, enabling adaptive feature recalibration while suppressing 

fire-like interference. DPDF mitigates feature degradation during downsampling by 

fusing max-pooling’s edge-preserving capability and average-pooling’s contextual 

consistency. Extensive experiments across two benchmarks demonstrate the frame-

work’s superiority, outperforming YOLOv8 by 1.8% mAP with 51.8% fewer parame-

ters.  

However, limitations persist in extreme lighting conditions and dynamic fire-spread 

scenarios due to residual feature ambiguity. Future work will focus on two directions: 

Integrating infrared-visible multimodal data to enhance detection reliability in smoke-

occluded scenarios, and optimizing cross-platform deployment for heterogeneous edge 

devices. 
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