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Abstract. The classification of Tor traffic is of crucial importance in the identi-

fication of anonymous web applications and the defense against cybercrime. Pre-

vious studies have focused on the automatic extraction of raw traffic features by 

means of deep learning algorithms. However, these methods have neglected the 

global intrinsic relationship between local features at different data locations, 

which has resulted in limited classification performance. In this regard, a dark 

net traffic classification method based on burst feature aggregation, called burst 

matrix, is proposed. The proposed method involves the aggregation of temporal 

and length features of Tor traffic in terms of bursts, followed by the capture of 

local spatio-temporal features from the burst matrix using convolutional neural 

networks. The intrinsic relationships and hidden connections between the previ-

ously extracted spatio-temporal features are then mined using the self-attention 

mechanism. The efficacy of the burst matrix method is then evaluated using the 

ISCXTor2016 dataset. The experimental results demonstrate that the burst matrix 

significantly outperforms other contemporary methods, attaining an F1-score of 

over 95%.  

Keywords: Network Security, Encrypted Traffic Identification, Dark Web, On-

ion Routing, Deep Learning.  

1 Introduction 

With the development of Internet services, anonymous communication has become an 

important need to protect users’privacy. Tor [1,2], as a mainstream privacy-enhancing 

tool, hides users’identities and activities by encrypting and tunneling traffic through 

distributed nodes. However, its anonymity is also widely used for illegal activities, so 

identifying Tor traffic and its application types is important for fighting crime. Despite 

the fact that Tor traffic is encrypted, user interaction traffic when accessing applications 

can still expose service characteristics [3,4].  

Traditional traffic identification relies on packet load analysis, which makes it diffi-

cult to handle encrypted traffic effectively. Packet feature and machine learning-based 

approaches classify encrypted traffic by extracting features and using algorithms, but 

these methods rely on manual feature engineering or complex feature selection, and 

their performance is unstable in different network environments. In contrast, deep 



learning methods automatically extract high-level features from traffic without manual 

design. However, current deep learning mainly extracts local spatial or temporal fea-

tures without sufficiently considering the intrinsic dependencies of global features, re-

sulting in limited classification performance.  

In this regard, this paper focuses on the feature representation of Tor traffic, i.e., how 

to transform raw traffic features into effective features to fully express its global intrin-

sic connections. Through analysis, it is found that there are significant differences in 

burst level features among different Tor traffic types. Based on this, a Tor traffic char-

acterisation method based on burst features, burst matrix, is proposed. The method is 

divided into three steps: firstly, the Tor traffic feature sequence containing time and 

length information is extracted; secondly, the feature sequence is sliced into burst se-

quences according to the burst threshold; finally, each burst is converted into a burst 

matrix using the time and length features of the burst sequence.  

To identify different types of Tor traffic, a deep learning model combining CNN and 

self-attention mechanism is designed in this paper. CNN is used to extract local spatio-

temporal features from burst matrices, and the self-attention layer further mines the 

intrinsic relationships and hidden connections among these features. Experiments show 

that the method outperforms existing methods by nearly 6% on the ISCXTor-2016 da-

taset.  

This paper is structured as follows: section II introduces the related research on dark-

net traffic identification; section III details the burst matrix generation method and 

model framework; section IV evaluates the performance of the proposed method; sec-

tion V concludes the full paper.  

2 Related Work 

This section reviews related studies that focus on the categorization of encrypted traffic 

and the classification of Tor traffic.  

2.1 Encrypted traffic analysis 

Many researchers [5-10] have used machine learning approaches to handle encrypted 

traffic classification tasks, such as web page fingerprinting, IoT device identification, 

malicious communication detection [11], and encrypted application classification. Shen 

[12] et al. performed web page fingerprinting by extracting block features, sequence 

features, and statistical features, and generated fine-grained classifiers using a tradi-

tional machine learning model. Pinheiro [13] et al. achieved IoT and non-IoT device 

classification based on packet length statistics and transmission rates. Fang et al. pro-

posed aggregating network packets with the same destination IP and port as a commu-

nication channel, extracting distribution, consistency, and statistical features, and de-

tecting malicious HTTPS traffic by combining a genetic algorithm with random forest 

classification. Existing research tends to leverage the powerful nonlinear learning ca-

pabilities of deep learning to automatically obtain effective feature representations. For 

example, models such as 2D-CNN, 1D-CNN with Bi-GRU, LSTM [14] with a hierar-

chical attention mechanism, and graph neural networks (GNNs) have demonstrated 

good performance.  
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2.2 Tor traffic analysis 

In the last decade, there has been extensive progress in Tor traffic analysis research 

[14]. ETC-PS [15], uses a sequence of session packet lengths to construct traffic paths 

to represent the interaction between the client and the server, then performs path trans-

formations to show its structure and obtain different information, and finally computes 

multi-scale path signatures as a distinguishing feature to train traditional machine learn-

ing classifiers. Iliadis and Kaifas compared the effectiveness of different feature sets 

and classification models for darknet traffic prediction. Rao [16] et al. proposed an un-

supervised method based on gravitational clustering to identify Tor traffic from non-

anonymized network data. Sarwar et al. utilized modified CNN-LSTM and CNN-GRU 

models for dark web traffic classification and application identification. Additionally, 

Sirinam [17] et al. proposed combining triple networks and KNN classifiers to perform 

website fingerprinting for Tor systems. Habibi Lashkari [18] et al. introduced the Deep-

Image method, which converts optimized statistical features into grayscale images and 

combines them with 2D-CNNs to classify dark web traffic. Singh [19] et al. designed a 

deep transfer learning architecture that integrates pre-trained models and classifiers to 

distinguish between malicious and benign traffic. Lin et al. combined 1D-CNNs with 

stacked Bi-LSTM networks to automatically extract advanced features for the fine-

grained classification of Tor traffic.  

In summary, most current studies leverage deep learning to recognize Tor traffic, 

with inputs typically consisting of raw traffic features (e.g., length sequences, time se-

quences) or their simple preprocessing. Although deep learning can automatically ex-

tract deep discriminative features, classification accuracy is often limited because these 

methods fail to fully capture global dependencies and hidden connections among local 

features, which impacts the classification performance.  

Burst features, as localized features of traffic, are commonly utilized in statistical 

methods. Existing approaches to encrypted traffic identification based on burst features 

primarily adopt traditional machine learning methods. In this paper, significant differ-

ences in the burst features of various Tor traffic types are identified, and a method is 

proposed that combines burst features with deep learning to enhance Tor traffic recog-

nition.  

3 Tor Traffic Identification Based on Burst Characterization 

This section begins by analyzing the differences in burst-level features of Tor traffic, 

then introduces the preprocessing procedure for the burst feature fusion matrix, and 

finally presents the overall framework of the deep learning model.  

3.1 Burst Differences 

Since a packet sequence usually consists of multiple streams, the sequence needs to be 

first divided into individual streams based on the 5-tuple (source/destination IP address, 

source/destination port, and protocol). Subsequently, each stream is sliced into bursts. 

A burst is a group of packets that satisfies the following condition: the time interval 

between each packet and the previous packet is within a set bursting threshold T . If T 



is exceeded, a new burst group is generated. As shown in Fig. 1, the streams are cate-

gorized into bursts B1 and B2 by exceeding the threshold T. The difference in 

timestamps of the two groups of packets is greater than T.  

 

Fig. 1. Burst generation 

After segmenting the Tor streams into bursts based on the burst threshold, the 

<timestamp, length> records of packets within each burst can be extracted. Addition-

ally, the number of in-burst packets and the packet length characteristics for different 

types of flows can be analyzed. Fig. 2 illustrates the distribution of the number and 

length characteristics of intra-burst packets for CHAT and FILE types, clearly showing 

distinct differences in their burst characteristics. To represent these differences more 

comprehensively, a burst matrix is employed to fuse the extracted features, enabling 

the model to learn and utilize burst characteristics more effectively.  

3.2 Burst Matrix 

The burst matrix is defined as follows： 

  (1) 

Here, 𝑘×𝑘 represents the sub-matrix dimensions, 𝑚 is the number of bursts, and 

each sub-matrix is represented as follows.  

  (2) 

The algorithm for generating the sub-matrix is as follows: 

For any burst b=[⟨t1, l1⟩, . . . , ⟨tp, lp⟩], find the maximum packet length Lmax and the 

normalized maximum packet time interval Tmax, where Tmax=tp−t1.  

Define the minimum matrix time unit as t0=Lmax/k and the minimum matrix length 

unit as l0=Tmax / k.  

For each message pair in b, there are the following operations.  

  (3) 

  (4) 
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  (5) 

As shown in figure 3. The operation results in each element of the sub-matrix repre-

senting the number of packets in the corresponding time interval and length range. 

Where the timestamp features are normalised, i. e. each timestamp is subtracted from 

the timestamp of the first packet in the burst.  

 

(a) Distribution of packet numbers 

 
(b) Packet length distribution 

Fig. 2. Distribution of the number of packets and the length of packets in a burst 

The minimum matrix time unit and the minimum matrix length unit of each sub-matrix 

are calculated based on their corresponding burst characteristics and are not fixed. The 

sum of the element values in each sub-matrix equals the total number of packets in that 

burst. The first n burst sub-matrices of a flow are used as inputs to the model.  



 

Fig. 3. Burst Matrix Generation 

3.3 Modelling Design 

This subsection identifies the features in the burst matrix using deep learning models 

and specifies three neural network layer structures. The overall framework is illustrated 

in Fig. 4.  

 

Fig. 4. Modelling Framework 

The first layer is the convolutional layer, designed to capture the local features of the 

bursts. The output of the convolutional layer is referred to as the feature map, where 

each unit in the feature map is connected to a local region of the matrix via a set of 

convolutional kernels. To preserve the distinct length-distributed features of different 

matrices and maintain their temporal characteristics, different feature matrices are fed 

into separate convolutional neural networks. The burst matrix Mk of the k-th sample is 

processed through the convolutional layer to generate a new set of burst matrices Zk, 

which have a fixed number and reduced dimensions. These are then passed to the next 

layer for further processing.  

The second layer is the self-attention layer, which is used to learn bursty global fea-

tures and provide the basis of global contextual information for each feature point, in 

order to make up for the defect that convolutional neural networks can only perform 

local feature learning. The structure of the self-attention layer is represented as follows.  

Firstly, feature spreading is performed to generate the query vector Q, key vector K 

and value vector V as shown in equation (6).  

  （6） 

Next, calculate the attention scores to determine the importance of each feature point 

relative to the other feature points, as shown in equation (7).  

  （7） 
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Here, the similarity between each pair of feature points is calculated. The factor of 

QKT is used for numerical stability. Using function √D, the attention scores for each 

feature location can be normalized.  

Then, generate the self-attention features, which, when fused with the aforemen-

tioned convolutional features, can preserve the spatial structure of the features, as 

shown in equation (8).  

  (8) 

Finally, the self-attention features are fused with the convolutional features, as 

shown in equation (9).  

  (9) 

Here, αrepresents a learnable parameter used to balance the contributions of the two 

features, Zk and Zattention
k .  

After the self-attention layer, a fully connected layer is used to integrate all the cat-

egory-discriminative information from the self-attention layer. The features output by 

the fully connected layer are represented by vector Fk, which are then input into a 

softmax classifier to obtain the predicted probability vector Ak̂. This probability vector 

represents the likelihood that Mkbelongs to a certain traffic class, as shown in equation 

(10).  

  (10) 

The loss between the predicted label and the true label is calculated using the cross 

entropy function as a loss function as shown in Equation (11).  

  (11) 

Here, N represents the total number of samples, and I indicates whether the predicted 

label matches the true label.  

4 Experimental evaluatione 

This section is used to evaluate the validity of bursting matrices, describing the dataset 

and experimental setup, and evaluating bursting matrices experimentally on the same 

dataset with other methods.  

4.1 Experimental Setup 

In order to test the methodology proposed in this paper, a packet pacp file from UNB 

capture: ISCX Tor-nonTor dataset (ISCX-Tor) was used. ISCX-Tor contains seven 



types of captured traffic. and experimented on a service with an intel core i9-9900k 

CPU and NVIDIA GeForce RTX 2080 Ti GPU.  

In order to fully understand the effectiveness of the proposed method, it is compared 

with the following three methods. DIDarknet[18], which uses CICFlowMeter to extract 

80 statistical features from each network flow of darknet traffic, and then employs an 

RF-based feature selection method to select the most important features, which are then 

converted to grey-scale images and fed into a 2D-CNN for classification. Flow-Pic[4], 

which slices the flow sequences to generate grey scale images which are fed into a CNN 

model for classification. ETC-PS [15], uses a sequence of session packet lengths to 

construct traffic paths to represent the interaction between the client and the server, then 

performs path transformations to show its structure and obtain different information, 

and finally computes multi-scale path signatures as a distinguishing feature to train tra-

ditional machine learning classifiers.  

The goal of the classifier is to accurately identify more encrypted streams and avoid 

misclassification. The criteria used to measure the classifiers include Precision, Recall 

and F1. The mathematical metrics for the above metrics are as follows.   

  (12) 

  (13) 

  (14) 

where TP refers to the number of samples that tested positive and were actually pos-

itive; FP refers to the number of samples that tested negative and were actually positive 

FN refers to the number of samples that tested positive and were actually negative. 

Precision indicates the proportion of correctly predicted positive cases to the proportion 

of data predicted to be positive, Recall indicates the proportion of correctly predicted 

positive cases to the proportion of data that were actually positive, and F1 is the F1 is a 

combination of Precision and Recall.  

4.2 Performance Evaluations 

This subsection investigates the accuracy of different classifiers on the same dataset. 

Then the parameter settings of the burst matrix method are analysed in detail.  

Table 1 shows the performance metrics of burst matrix and other compared methods 

respectively. It can be seen that burst matrix outperforms the other methods and has the 

highest accuracy with an average F1 of 0.9570.7 Tor types are classified with an accu-

racy of more than 90%, 5 of which reach 95%.  

 

 

 

 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Table 1. Indicators of comparative methods 

Tor 
DIDarknet ETC-PS Flow-Pic Burst Matrix 

Precision Recall Precision Recall Precision Recall Precision Recall 

Audio 0.8615 0.7183 0.8629 0.8421 0.9955 0.9152 0.9618 0.9767 

Browsing 0.9702 0.8906 0.8806 0.8381 0.7440 0.4624 0.9733 0.9932 

Chat 0.7653 0.6902 0.8771 0.8647 0.9788 0.9762 0.9467 0.9930 

File 0.9498 0.9435 0.8850 0.8991 0.8398 0.8958 0.9267 0.9789 

Email 0.6811 0.8039 0.8912 0.8865 0.8150 0.9757 0.9521 0.8934 

P2P 0.6145 0.7682 0.9013 0.9268 0.5854 0.3590 0.9267 0.9205 

Video 0.9809 0.9778 0.9011 0.8714 0.9063 0.4205 0.9933 0.9241 

F1 score 0.8001 0.8802 0.8981 0.9570 

Among the compared methods, DIDarknet has the worst performance, with an aver-

age F1 of only 0.8001, due to the fact that most packets in Tor are transmitted with a 

fixed maximum length, making it difficult for packet statistical features to distinguish 

between different types of Tor traffic. While DIDarknet is 0.1179 more effective than 

ETC-PS, this is due to the difference in classifiers, deep learning methods can automat-

ically extract deeper discriminative features, which may include features that are not 

counted manually. Flow-Pic's average F1 reaches 0.8981, but it is poorly discriminative 

for some classes, such as Browsing's Precision and Recall are 0.7440 and 0.4624, re-

spectively, while P2P is 0.5854 and 0.3590.The results show the superiority of this 

method in the Tor flow classification problem.  

The reason why burst matrices work better is that by aggregating temporal and length 

features of Tor traffic and extracting them over local spatio-temporal features, the dy-

namic changes and patterns of traffic can be captured more effectively, can be adapted 

to the characteristics of fixed-length packets in Tor traffic, and can be used to find rec-

ognisable features in a wider range of traffic data.  

4.3 Parameter evaluation 

This subsection determines the number of bursts, matrix dimensions, and burst thresh-

olds for the burst matrix and evaluates the trade-off between classification accuracy and 

efficiency.  

Number of Bursts. Firstly, the matrix dimension is fixed to 30×30 and the number of 

bursts is varied at the same time. The model training results are shown in Table 2. The 

feature matrix generated using only the first 5 bursts achieves 88. 09% accuracy. As the 

number of bursts increases, both FET and CTT become larger accordingly and the ac-

curacy increases. The number of bursts is determined as 15 to achieve higher accuracy 

with appropriate time overhead.  

Matrix Dimension. Fixing the number of bursts and setting different matrix dimen-

sions, the training results are shown in Table 3. With the increase of matrix dimension, 

the growth rate of CTT is basically unchanged, the growth rate of FET is getting larger, 



and the accuracy is improving. It can be found that the optimal value of matrix dimen-

sion is 30, when the accuracy basically reaches the highest value, and the cost of FET 

and CTT is low.  

Burst Thresholds. Different burst thresholds were used to train the model (from 0.01 

to 0.06 with an interval of 0.01). The results are shown in Fig. 5, where F1, Precision 

and Recall increase with the increase of burst threshold and reach the maximum value 

at 0.04s and then start to decrease. Therefore, 0.04s is selected as the burst threshold.  

Training Rounds. Figure 6 shows the F1, Precision and Recall of the classifier for 

different rounds. The model achieves F1 of 0.8993 in only one round. Generally, in-

creasing the number of training rounds helps to improve the classification accuracy. 

When the number of training rounds is greater than 10, the increment of the three eval-

uation metrics becomes slow. Precision decreases after 15 training rounds. Therefore, 

epochs are determined to be 15.  

 

Fig. 5 Effect of burst threshold on F1, Precision and Recall 

 

Fig. 6 Effect of training rounds on F1, Precision and Recall 
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Table 2. Effect of number of bursts n on FET (Feature Extraction Time), CTT (Classifier 

Training Time), and Accuracy 

Table 3. Effect of feature matrix dimension m on FET (Feature Extraction Time), CTT (Classi-

fier Training Time), and Accuracy 

Dimension 10×10 15×15 20×20 25×25 30×30 35×35 

FET(s) 31. 23 44. 21 68. 77 123. 27 182. 07 339. 14 

CTT(s) 456. 64 458. 51 467. 29 473. 04 490.87 507. 04 

Accuracy 0.9162 0.9308 0.9357 0.9405 0.9570 0.9579 

5 Conclusions 

This paper proposes a burst feature-based method for Tor traffic identification, lever-

aging the distinct burst-level characteristics of various Tor traffic types. The approach 

integrates a deep learning model composed of a Convolutional Neural Network (CNN) 

and a self-attention layer to achieve accurate classification of Tor traffic. By addressing 

the limitations of previous models in capturing global features effectively, the method 

requires only temporal and length features of Tor traffic, along with a simple prepro-

cessing step. When evaluated on the ISCXTor2016 dataset, the method achieves an F1-

score exceeding 95%, outperforming existing Tor traffic identification technique.  
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Bursts 5 10 15 20 25 30 

FET(s) 77. 44 123. 11 182. 07 284. 12 333. 58 440.28 

CTT(s) 277. 71 400.73 490.87 576. 41 668, 90 800.26 

Accuracy 0.8809 0.9323 0.9570 0.9541 0.9501 0.9579 
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