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Abstract. A yaw spoofing heading correction method utilizing a consensus 

force field is introduced to address the issue of drone swarm heading deviation 

during Global Navigation Satellite System (GNSS) spoofing attacks. Firstly, a 

noisy environment based on asymmetric information environment is established 

to simulate the attack and defense scenario of unmanned aerial vehicle clusters 

against yaw deception attacks under environmental noise interference. Then, 

based on the attack principle, the yaw correction problem is transformed into an 

artificial potential field problem where the repulsive field is invisible, and the 

repulsive source is predicted based on spatial relationships to achieve prelimi-

nary correction of the yaw direction; Finally, by designing a lightweight gamma 

Consensus mechanism and further correcting the yaw direction through credi-

bility calculation and consensus mechanism, collaborative defense against yaw 

deception attacks is achieved. The experimental results indicate that, Under the 

CPF method, the cluster achieved a destination error of 10.32 meters, a trajecto-

ry deviation of 13.35 meters, and a task completion rate of 90.45%. Compared 

with game models, random decision, and other methods, there is a significant 

improvement, which verifies the effectiveness and robustness of the method in 

the face of yaw deception attacks in long-distance flight missions.  

Keywords: UAV swarm, artificial potential field, consensus mechanism, GNSS 

spoofing defense 

1 Introduction 

Unmanned aerial vehicle (UAV) swarms are a groundbreaking technology used in 

various fields such as intelligent transportation and disaster response [1–3]. These 

swarms heavily depend on global navigation satellite systems (GNSS) for accurate 

positioning and synchronized navigation. However, the vulnerability to GNSS spoof-

ing attacks, where false signals are broadcasted to disrupt trajectories, poses a signifi-

cant risk to swarm autonomy [4, 5]. The Black Sea swarm incident in 2023 exempli-



fies the susceptibility of even sophisticated systems to yaw spoofing, resulting in mis-

sion failures. Conventional defense mechanisms like redundant antenna arrays and 

inertial navigation systems (INS) come with drawbacks such as increased payload and 

error accumulation, constraining their applicability in large-scale swarms [6–8]. 

Designing a lightweight distributed defense mechanism is crucial for addressing 

heading bias while preserving group agility. Current data-driven techniques, like 

game theory deception games [9] and particle swarm optimization (PSO) [10], lack 

real-time spatial awareness and do not adequately capture the dynamic interactions 

between deception sources and population dynamics. Machine learning methods [11] 

necessitate substantial training data and encounter difficulties in adapting to new at-

tack patterns. Additionally, potential field models [12] often overlook the consensus-

driven efforts essential for ensuring group consistency. 

To fill these gaps, we have introduced a Consensus Force Field (CPF) model. This 

model is a distributed, model-free framework that integrates spatial relational reason-

ing and consensus-based work to counter GNSS spoofing. In contrast to previous 

approaches, CPF views spoofing attacks as unknown repulsive sources within artifi-

cial potential fields. This allows group members to collectively forecast disturbance 

trajectories and compute corrective forces in real-time. The novelty of this model lies 

in three key components: (1) a spatiotemporal potential field model that represents 

attack-defense interactions as dynamic repulsive forces; (2) a spatial relationship-

aware prediction algorithm that utilizes relative position updates to predict the move-

ment of spoofing sources; and (3) a consensus-driven collaborative defense strategy 

that harmonizes individual heading corrections by aggregating forces in a distributed 

manner to maintain trajectory consistency without centralized control. 

This study enhances drone swarm navigation by proposing a lightweight and scal-

able defense framework that overcomes key limitations of existing approaches, such 

as payload constraints, error buildup, and centralized control bottlenecks. By concep-

tualizing deception as a dynamic force field and promoting consensus-driven process-

es, the CPF enables autonomous clustering operations in challenging adversarial set-

tings, thereby facilitating the development of advanced intelligent systems. 

2 Related Work 

The defense measures against yaw angle attacks are mainly divided into detection 

stage and defense stage. [13] Wei et al. developed PerDet, a perceptual data-driven 

framework using accelerometers, gyroscopes, and GPS data. By fusing heterogeneous 

sensor input, PerDet achieves a detection rate of 99.69% through an optimized ML 

classifier. Recent progress includes [14] Khoei et al., who applied capsule networks to 

fraud classifications, increasing accuracy to 99.1%, while reducing computational 

over-head. These efforts highlight the effectiveness of machine learning in leveraging 

rich sensor data for spoof detection. Collaborative strategies leverage swarm intelli-

gence and external networks. [15] proposed a deep ensemble learning framework for 

cellular connected drones that uses path loss analysis between base stations to detect 

trajectory deviations. Even in the case of limited infrastructure, the method achieves 
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97% accuracy in a dual-base-station configuration. But this method is only applicable 

to the anomaly detection problem of a single aircraft 

For drone swarms, Meng et al. [16] developed ASD, which is a two-stage algo-

rithm: (1) SSD for single-source attacks through cooperative positioning, and (2) 

RSOM for multi-source scenarios. ASD ensures lightweight real-time detection in 

dynamic crowd environments. Signal level analysis is the basis for attack modeling 

and countermeasures. [17] Ma et al. analyzed the spoofing effect on the receiver loop 

and demonstrated that amplitude-gain manipulation can lure UAVs to a specified 

location while evading detection. On this basis,[18] Wang et al. introduced the Dop-

pler and Clock Drift Double Difference method for stationary spoofing source loca-

tion, which was verified by field experiments. These efforts have revealed physical 

layer vulnerabilities in GPS receivers. 

The action decision against deception attacks is a key factor that directly deter-

mines the continuity and integrity of cluster tasksGame theory simulates the interac-

tion of attackers and defenders to achieve the best defense. [19] Eldosouky et al. for-

mulated a Stackelberg game in which drones use cooperative positioning to counter 

spoofers, analyzing to derive an equilibrium strategy to minimize capture risk. In our 

previous work [20], we designed a vector adversarial method for asymmetric infor-

mation environments, implemented cluster based col-elaborative defense based on 

flight vectors, and verified the effectiveness of the environment and method. [21] Guo 

et al. designed a SINS/GPS anti-spoofing method that uses Kalman filter to dynami-

cally adjust false satellite signals to achieve accurate directional departure under inte-

grated navigation. Early layered systems, such as [22] Sedjelmaci et al., combined 

signal analysis and net-work monitoring for multi-layered drone security to jointly 

address spoofing and jamming. 

3 Heading Correction Method Based on the CPF 

3.1 Kinematics and scenario model 

Since most drones are equipped with barometric altimeters when deployed, these 

physically-driven altitude measurement sensors are nearly immune to effective at-

tacks. Therefore, during the mission, the reliability of altitude signals does not need to 

be considered, and only the 2D motion changes need to be taken into account. For 

aircraft i, its kinematic model can be expressed as equation (1). 
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According to Newton's dynamics, the acceleration of the aircraft ( )i ta  satisfies the 

mechanical relationship: 
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Where 
th
iF  is the two-dimensional component of the rotor thrust in the horizontal 

direction of the aircraft, iF  is the maximum power scalar of the aircraft, ( )t  is the 

yaw angle of the aircraft at the current moment, 
dr
iF  is the two-dimensional nonlinear 

resistance, and ( )( ), ,iGauss t  v  is the environmental noise generator, which ap-

plies Gaussian noise with a noise coefficient   to the velocity ( )i tv  of the aircraft at 

time t. The effect of    is represented by the range of random fluctuations of ( )i tv  

in the two-dimensional direction. The update process of the aircraft's motion state can 

be expressed as:  
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Fig. 1. CPF verification environment and principles 

Figure 1 shows the CPF model operating environment and defense principles. At time 

t, aircraft i is located at position ( )i tP . According to the planned flight trajectory, the 

aircraft should fly to the destination 
e
iP  at speed ( )i tv . However, at this moment, an 

attacker launches a position spoofing attack on the aircraft, intending to make the 

aircraft receive an incorrect position, mistakenly believing it is at ( )i tP , and chang-

ing its flight direction to ( )t tv , heading towards the hijacking location 
h
iP . 

Throughout the entire flight process, all aircraft in the swarm are unable to detect the 

true position of 
h
iP , while the attacker is able to obtain all the aircraft's information, 
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thus creating an asymmetrical attack-defense scenario [20]. Based on current research 

on UAV GNSS spoofing signal detection methods [13-19], we assume that all swarm 

members are equipped with advanced detection algorithms, capable of detecting ab-

normal signals within a unit of time.  

 

3.2 Heading correction based on the CPF 

After the aircraft detects a malicious signal, it will no longer trust its own position 

information ( )i tP . Based on equation (3), it will use the position from the previous 

moment ( )i t t− P  and velocity information ( )i t t− v  to calculate the estimated 

position ( )i tP  at time t .  

Based on the principle of yaw attack, in space, ⊿α and ⊿β have a similar relation-

ship. With the coordinates of ( )i tP  and ( )i tP  known, and combining ( )i tP  with 

the similarity theory based on equation (4), the estimation of 
h
iP  is performed to ob-

tain the estimated hijacking point 
h
iP . In the equation, 

2

x
a,b  represents the Euclide-

an distance in the x-direction between two vectors a and b in 2D space, and 
2

y
a,b  

represents the Euclidean distance in the y-direction. 
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Based on the estimated coordinates of the hijacking point, the artificial potential field 

theory is used to formulate a hijacking course correction problem based on an un-

known repulsive field. Specifically, the target coordinates are treated as an attractive 

source, while the estimated coordinates are treated as a repulsive source. The resultant 

force is calculated based on equation (5), where attk  and repk  represent the attraction 

and repulsion factors, respectively. After 
total

iF  is calculated, it will be incorporated 

into the acceleration calculation process in equation (2) and used to compute the po-

tential field velocity ( )APF
t tv  based on equation (3). 
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After the initial heading calibration of a single aircraft, it requests healthy heading 

information from partners within its communication range. Each member has a built-

in trustworthiness calculator as shown in equation (6), where ( )j  represents the 

number of times the aircraft has detected spoofing attacks from the start of the mis-



sion to time t. A higher jc  value indicates that the member’s vector information is 

more reliable. Upon receiving the request, the member sends its flight vector infor-

mation along with its trustworthiness value to the requester. 
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To reduce the computational burden on the aircraft, a heading correction algorithm 

based on a sparse consensus mechanism—γ-Consensus—is designed. Upon receiv-

ing messages from members, the requester retains only the top 100%   vector in-

formation based on trustworthiness ranking. Let h be the number of healthy nodes 

within the communication range, h =     be the number of retained members. 

1 2

T

c c c 
 =  c  denotes the trustworthiness vector, and the velocity vector matrix 

is denoted as ( ) ( ) ( ) ( )1 2

T

ht t tt =   V v v v . The final calibrated velocity obtained 

by the affected aircraft is expressed as: 

 ( )( ) ( )( )con APF1
diag

2

T
i t  = +v v V c 1  (7) 

Based on CPF, the swarm can achieve a model-free collaborative defense method 

against spoofing attacks. Compared to model-based and other complex methods, the 

complexity of CPF is primarily determined by the sorting algorithm, which saves 

more onboard resources and enhances the scalability of the computational power. 

4 Experimental results and analysis 

4.1 Experiment setup 

The simulation software is coded in Python and operates on an experimental setup 

utilizing a Garine system powered by an Intel (R) Core (TM) Ultra 5 125H processor 

clocked at 1.20 GHz. The system comprises a workstation with 32.0 GB DDR4 RAM 

(31.6 GB usable) and runs on the 64-bit Windows 11 operating system (x64 architec-

ture). The simulation platform is constructed in Python, utilizing NumPy (version 

1.26.0) and SciPy (version 1.11.1) for dynamic modeling, in conjunction with Mat-

plotlib (version 3.8.0) for visualizing trajectories. 

After repeated experiments and previous work, the environmental noise is set to 

0.5 = , att 0.4k = , rep 0.6k = , and the flight physical parameters are referenced 

from the Parrot Anafi drone, with a mass of 0.5 kg, a maximum horizontal flight 

speed of 15 m/s, and a line-of-sight communication radius of 50 m. The maximum 

flight time is set to 30 minutes with 1800 time slots. In each time slot, at least zero 

and at most all group members will be subjected to malicious attacks, and affected 

aircraft will receive incorrect location information. 
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Table 1. Evaluation metrics. 

Metrics Description Metrics Description 

T(s) 
The time consumed to reach 

termination state. 
Ee(m) 

The deviation from the ex-

pected destination. 

S(m) 
The total flight distance of 

aircraft. 
H(True/False) 

Whether the aircraft has been 

hijacked. 

Er(m) 
The deviation from the ex-

pected trajectory. 
P(%) 

The proportion of healthy 

members in the swarm. 

 

4.2 Performance evaluation experiment 

After taking off from the initial position, the swarm executes flight missions under the 

interference of environmental noise and malicious attacks. Fig. 2 shows the flight 

trajectory of the swarm’s defense method based on an unknown repulsive field envi-

ronment. The blue dots in the figure represent the starting flight position of the air-

craft, the green dots indicate the expected destination, and the red diamonds mark the 

location of the malicious hijacking. The green dashed line represents the expected 

trajectory of the aircraft under ideal conditions, the red dashed line shows the flight 

trajectory the aircraft will execute without defensive measures if deceived, and the 

blue solid line indicates the actual flight trajectory. As shown in the figure, all six 

members in the swarm successfully reached a safe area under malicious attacks and 

environmental noise disturbances, proving the effectiveness of the proposed method. 

 

Fig. 2. Swarm Flight Trajectory Diagram in CPF. 

Table 2 summarizes the various flight information of the swarm upon task comple-

tion. The experimental results show that swarm members can reach the safe area with-

in approximately 120s, and the deviation from the expected route during short-

distance flight is less than 10m. Regarding environmental disturbances and malicious 

attacks throughout the mission, the error from the endpoint after completion is within 

the range of 5–21m. 
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Table 2. Record of Swarm Job Results. 

No. S/m T/s Er/m Ee/m H 

1 1490.29 121 2.79 10.04 False 

2 1490.32 120 3.50 10.02 False 

3 1550.41 111 3.37 5.24 False 

4 1480.29 120 2.37 20.03 False 

5 1500.32 119 8.47 5.95 False 

6 1480.30 120 5.57 20.68 False 

 

Fig. 3 presents the impact of flight distance and swarm size on the performance of the 

proposed algorithm. Specifically, Fig. 3 (a) demonstrates how the average destination 

error and drift error of the swarm vary as the horizontal coordinates of the target and 

hijacking location are enlarged by multiple factors, increasing flight distance. The 

blue curve with semitransparent bands shows the average and standard deviation (SD) 

of the swarm members' deviation from the expected flight trajectory, while the red 

curve with bands indicates the average and SD of their distance from the target end-

point after completion. Fig. 3 (b) illustrates how these errors change with the number 

of swarm members. Here, the blue curve and bands represent the average and SD of 

the error distance between the swarm and the target location post-task, while the red 

curve and bands correspond to the offset error and SD from the expected trajectory 

during flight. The results indicate that increasing the number of nodes improves the 

destination accuracy and reduces error fluctuations among members, but the drift 

error remains stable with slightly increased fluctuations among members. 

 

Fig. 3. Variation of Flight Error with Distance. 

In all ten cases shown in the Fig. 2 (a), the swarm can successfully reach the destina-

tion without being hijacked, and the error distance between the aircraft and the desti-

nation position remains within 10–20m. However, the error tends to increase as the 

distance expansion factor increases. The color bands on both sides of the curve also 

reflect substantial fluctuations in the error distance among members and the destina-

tion position. However, as flight distance increases, member interactions become 

more frequent, and fluctuations tend to decrease. The average offset distance between 

the swarm and the expected trajectory shows a clear upward trend, with offset fluctua-
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tions gradually amplifying, mainly owing to the accumulation of errors from the 

lengthening of the flight distance. 

Table 3 shows the time and other performance parameters required by the swarm 

to complete tasks over a greater distance (with the horizontal axis magnified 11–13 

times). When the distance expansion factor reached 12 times, owing to the influence 

of the maximum flight time, some members, although not hijacked, were unable to 

reach the safe area and were considered mission failures. Therefore, only the average 

drift error is recorded. The experimental results show that as the flight distance in-

creases, some aircraft cannot reach the safe area because of the continuous impact of 

environmental disturbances and malicious attacks, resulting in a decrease in the over-

all flight distance of the swarm and the completion of swarm tasks. 

Table 3. Record of swarm job results. 

Magnification S/m T/s Er/m P/% 

11 17280.33 1645 35.23 100% 

12 16879.67 Full 40.5 66.67% 

13 14686.5 Full 43.95 16.67% 

 

4.3 Performance comparison experiment 

Table 4. Method number and description. 

Method Description 

CPF Swarm counteracts attacks through joint force and consensus mechanism 

Game Swarms and attackers make offensive and defensive decisions through games. 

PID Using velocity as input of PID controller to resist malicious attacks. 

PSO Members adjust flight direction based on their best position and the global best position. 

Random The attacker and defender randomly select targets for attack and defense. 

 

Table 4 lists the five defense methods and compares the defense performance of the 

five defense methods, including the proposed method. Fig. 4 shows the flight trajecto-

ries of swarms under four comparative algorithms. As Fig. 4 (a) and Fig. 4 (b) show, 

both the game and PID models can help the swarm reach a safe area, and the flight 

trajectory of the PID model has a satisfactory fit with the expected trajectory. In the 

PSO model in Fig. 4 (c), the aircraft can bypass the hijacking location, but the flight 

trajectory deviates considerably. During the simulation, cluster members could not 

reach the safe area, resulting in substantial endpoint errors and trajectory deviations. 

In the random decision model, the flight direction of the swarm changes frequently, 

especially when approaching the target area. After reaching the simulation time, 

member 5 did not reach the safe area, indicating that the defense performance was 

random. 



 

Fig. 4. Swarm flight trajectory in different methods:  

(a) Game model, (b) PID model, (c) PSO model, (d) Random model. 

The experimental results indicate that, in comparison to the proposed method, the 

algorithm based on the game model exhibits a higher distance error and greater fluc-

tuations in trajectory deviation, although it shows smaller fluctuations in endpoint 

deviation and requires more time for flight missions. The defense method utilizing the 

vector PID model demonstrates strong performance in terms of endpoint error and 

trajectory deviation, with minimal performance fluctuations within the swarm. How-

ever, this method demands more time than the proposed approach. Conversely, the 

defense algorithm based on the PSO model offers satisfactory time efficiency, yet it 

suffers from substantial endpoint and trajectory deviations. The endpoint deviation 

among swarm members shows significant fluctuations, and the trajectory deviation 

approaches the maximum drift distance, rendering it susceptible to hijacking. Under 

the random decision model, the trajectory deviation of swarm content exhibits consid-

erable fluctuations, and the time cost is elevated. 

The experimental results indicate that the Consensus Potential Field (CPF) method 

exhibits superior performance, achieving a Ee of 10.32 meters and a Er of 4.35 meters. 

This performance significantly surpasses that of baseline methods such as Game (Ee = 

20.19 m, Er = 16.28 m), PID (Ee = 18.04 m, Er = 3.68 m), PSO (Ee = 116.91 m, Er = 

42.09 m), and Random (Ee = 21.21 m, Er = 29.83 m). Notably, CPF maintains a 100% 

survival rate compared to Random's 66.67% and achieves a balanced total path length 

of 1498.65 meters, demonstrating its capability to mitigate spoofing-induced devia-

tions while preserving swarm coherence. The CPF method's key advantages include 

minimal trajectory drift (4.35 m, 73% lower than Game), precise destination targeting 

(10.32 m, 44% better than PID), and robust reliability (100% survival rate). These 

findings substantiate CPF's superiority in terms of accuracy, stability compared to 

baseline methods. 
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Fig. 5. Swarm Flight Trajectory in different methods: 

 (a) Trajectory in CPF model, (b) Trajectory in Game model, (c) Trajectory in PID model,  

(d) Trajectory in PSO model, (e) Trajectory in Random model. 

Fig. 5 illustrates the flight trajectory of the swarm under five defense strategies, in-

cluding the proposed method. In Fig. 5 (a), the group effectively defends against a 

malicious attack using the CPF model, reaching the safe zone within the specified 

time. Conversely, Figure 4(b) displays a notable deviation in the flight path of node 5, 

caused by intersecting with the hijacking path shortly after takeoff. Fig. 5 (c) exhibits 

a distinct deviation in trajectory compared to Fig. 5 (b), resulting in two members 

falling victim to hijacking. In the scenario of a spoofing attack as depicted in Fig. 5 

(d), the swarm's flight path, controlled by the particle swarm optimization model, 

experiences a significant deviation, impeding task completion. Lastly, Fig. 5 (e) por-

trays a population safeguarded by a random decision model, leading to substantial 

trajectory bias and member hijacking. 

5 Conclusion and Outlook 

This paper addresses the navigation security issue of UAV swarms under yaw spoof-

ing attacks. An asymmetric attack-defense simulation scenario based on environmen-

tal noise is constructed. By integrating spatial relationship modeling, it predicts the 

location of hijacking points, solves the problem of potential field estimation under an 

unknown repulsive force field, and realizes heading calibration through a model-free 

lightweight collaborative defense method based on the Consensus Potential Field 

(CPF).The experimental results show that that CPF has achieved the collaborative 

optimization of high-precision navigation, low trajectory drift, and high swarm coop-
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eration reliability under spoofing attacks, providing an efficient solution for UAV 

swarms to resist yaw spoofing. 
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