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Abstract. Shared bicycle demand prediction plays a crucial role in urban public 

transportation planning, citizen mobility, and environmental protection. How-

ever, existing demand prediction models have certain limitations in modeling the 

coupling relationship between the inflow and outflow of shared bicycle stations. 

Furthermore, the performance of the model is highly influenced by sparse data, 

especially for fine-grained shared bicycle demand prediction tasks. To address 

these challenges, this paper proposes a Hierarchical Spatiotemporal Graph Con-

volutional Network (HST-GCN). Specifically, we apply a hierarchical spatial-

temporal feature learning framework to capture both coarse-grained and fine-

grained shared bicycle demand features, and utilize a feature transformation ma-

trix to achieve cross-scale fusion of these demand features, alleviating the impact 

of data sparsity on fine-grained feature modeling. We also design a dynamic cou-

pling graph convolution module to better model the dynamic spatial dependen-

cies between the inflow and outflow of shared bicycle stations. On this basis, we 

integrate temporal convolution networks and temporal attention mechanisms to 

capture the spatial-temporal correlations of shared bicycle demand. Extensive ex-

periments are conducted on the Citi Bike dataset from New York and the Divvy 

dataset from Chicago. The results show that the proposed model outperforms the 

baseline models in prediction accuracy. 

Keywords: Transportation planning, Demand prediction, Temporal convolu-

tion network, Graph convolution network 

1 Introduction 

Shared bicycles are a low-carbon, eco-friendly, and convenient mode of transportation 

that solves the problem of the "last mile" in urban areas. They have become an essential 

component of modern urban transport systems [1]. However, with the rapid develop-

ment of the industry, issues such as excessive bicycle deployment, disorganized park-

ing, and supply-demand imbalance have become urgent problems that need to be ad-

dressed in bicycle-sharing systems. Accurately predicting the inflow and outflow de-

mand of shared bicycle stations is the key to addressing the supply-demand imbalance 

and further promoting the sustainable development of the bicycle-sharing system.  



 

 

In recent years, researchers have proposed various deep learning-based prediction 

methods for shared bicycle demand, including methods considering temporal, spatial, 

and spatial-temporal correlations. Pan et al. [2] used a two-layer Long Short-Term 

Memory (LSTM) network, while Yang et al. [3] proposed a combined prediction model 

based on Prophet and Bidirectional Long Short-Term Memory (BiLSTM) networks. 

Although effective in modeling temporal dependencies, these methods often neglect 

spatial correlations, limiting their applicability in systems with complex network struc-

tures. 

To address spatial dependencies, Qiao et al. [4] designed a dynamic CNN-based 

model that incorporates weather data and represents station status as a 2D feature ma-

trix. However, CNNs are limited in capturing long-range dependencies in non-Euclid-

ean spaces. Graph Neural Networks (GNNs), particularly Graph Convolutional Net-

works (GCNs), have since been introduced to model these complex spatial structures. 

For instance, Liang et al. [5] proposed a GNN-based trip generation model, and Qin et 

al. [6] developed RESGCN to capture long-range spatial dependencies using directed 

weighted graphs.  

However, most current spatiotemporal graph convolutional network prediction mod-

els have the following shortcomings: (1) Neglecting inflow-outflow coupling: The mu-

tual influence between inflow and outflow at and across stations is often overlooked. 

For example, inflow at a station is affected by the outflow of its neighbors, and vice 

versa. Ignoring this coupling weakens prediction accuracy. (2) Data sparsity: Many sta-

tions exhibit zero demand during most time intervals, causing underfitting and reduced 

model performance. 

To address the above issues, this paper proposes a Hierarchical Spatiotemporal 

Graph Convolutional Network (HST-GCN) model. Firstly, spectral clustering is ap-

plied to partition the stations in bicycle-sharing systems into regions, thus constructing 

demand data at both the station-level and region-level granularity. Furthermore, for de-

mand data with different granularities, a dynamic coupling graph convolution module 

is employed to capture the coupling relationship and spatial dependencies between in-

flow and outflow for shared bicycle demand, while temporal convolution and attention 

mechanisms are incorporated to capture the temporal features. Finally, a hierarchical 

dynamic interaction module is constructed to facilitate cross-scale interactions between 

demand features, alleviating the issue of data sparsity in fine-grained demand predic-

tion tasks. 

2 RELATED WORK 

2.1 Region-Based Shared Bicycle Demand Predictions 

This approach divides bicycle stations into regions, then uses deep learning methods to 

predict the shared bicycle demand for each region. Zhang et al. [7] proposed a CNN-

based deep prediction model by dividing Beijing city into several grids, achieving ac-

curate predictions of shared bicycle demand in each grid. Although this method 

achieved notable results in spatial feature modeling, it overlooks the impact of temporal 

features on demand prediction. Yu et al. [8] proposed a hybrid model that combines 
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Seasonal Autoregressive Integrated Moving Average (SARIMA) and Long Short-Term 

Memory (LSTM), which primarily captured the temporal dynamics of shared bicycle 

demand while ignoring the spatial features. To capture both temporal and spatial fea-

tures, Ai et al. [9] proposed a deep prediction model based on ConvLSTM, which di-

vided the Chengdu geographical area into multiple grids of specified sizes to fully cap-

ture the temporal dynamics and multi-dimensional feature dependencies in shared bi-

cycle demand data. Li et al. [10] proposed a region-level shared bicycle demand pre-

diction model based on the Irregular Convolution Long Short-Term Memory 

(IrConv+LSTM) model. This model extracts features over regions that are both spa-

tially adjacent and far apart, and enhances prediction accuracy by introducing the con-

cept of semantic neighbors. In terms of handling complex spatiotemporal dependencies, 

Tang et al. [11] proposed the Multi-community Spatiotemporal Graph Convolution 

Network (MC-STGCN) framework, which uses heterogeneous graphs to capture geo-

graphical adjacency and functional similarity between regions, thus enabling more ac-

curate region-level demand predictions. Compared to traditional methods, this model 

performs better in modeling complex spatiotemporal dependencies. 

 

2.2 Station-Based Shared Bicycle Demand Prediction 

This approach treats each station as an individual entity and predicts the demand for 

bicycles at each station. Traditional statistical models for shared demand prediction 

typically use regression models such as Auto-regressive Integrated Moving Average 

(ARIMA) [12] and Linear Regression (LR) [13] to reveal the relationship between bi-

cycle demand and historical data. However, as demand patterns become more complex, 

the prediction accuracy of traditional statistical models becomes limited. Subsequent 

research explored advanced machine learning models to address the limitations. Ashqar 

et al. [14] employed Random Forest and Least Squares Boosting to model the demand 

at each station.  Feng et al. [15] proposed a hierarchical demand prediction model based 

on Gradient Boosting Regression Trees. However, these methods still face challenges 

in efficiently processing large-scale, unstructured data. In recent years, deep learning 

models have shown significant advantages in capturing complex nonlinear relation-

ships in demand prediction tasks. Li et al. [16] combined Convolutional Long Short-

Term Memory (Conv-LSTM) networks with feature engineering techniques to effec-

tively capture spatiotemporal dependencies at the station level. Yin et al. [17] conducted 

a one-year data analysis of the Divvy bicycle-sharing system in Chicago, quantifying 

the predictability of station-level shared bicycle demand and emphasizing the im-

portance of time-varying patterns for accurate predictions. Lin et al. [18] proposed a 

model based on Graph Convolutional Networks (GCN), combined with a recursive net-

work, to enhance the modeling ability of spatiotemporal dependencies. Liang et al. [19] 

proposed a cross-mode knowledge adaptation method based on multi-relational graph 

neural networks, effectively improving demand prediction accuracy by combining his-

torical data with domain adversarial learning. 

Based on the above work, a Hierarchical Spatiotemporal Graph Convolutional Net-

work model (HST-GCN) is proposed. First, the dynamic coupling module captures the 



 

 

correlation effects between inflow and outflow. Then, spatiotemporal features are ex-

tracted from coarse and fine-grained data, and the hierarchical dynamic interaction 

module integrates features of different granularities to solve the data sparsity problem. 

3 PRELIMINARIES 

3.1 Definitions 

This paper focuses on predicting future inflow and outflow demand based on historical 

shared bicycle inflow and outflow data. To properly define this prediction problem, we 

use the following definitions: 

Definition 1 (Station Graph). Unlike traditional transportation systems with fixed 

infrastructure, bicycle-sharing systems are inherently dynamic, with new stations fre-

quently added over time. To ensure the stability of the network structure during model 

training, we adopt a long observation window and focus on nodes with relatively con-

sistent historical presence, thereby reducing the impact of recently added or short-lived 

stations. We define the station network as an unweighted undirected graph 𝐺𝑠 =
(𝑉𝑠, 𝐸𝑠, 𝐴𝑠), where 𝑉𝑠 represents the set of nodes, 𝐸𝑠 represents the set of edges, and 

𝐴𝑠 is the adjacency matrix of graph 𝐺𝑠. Let 𝑁 = |𝑉𝑠| be the number of stations. Shared 

bicycle stations correspond to the nodes in 𝑉𝑠, with each node recording the inflow and 

outflow information of the corresponding station.𝐴𝑆 ∈ ℝ𝑁×𝑁  reflects the spatial prox-

imity effects between connected stations. 

Definition 2 (Region Graph). A region is a larger spatial unit formed by aggregat-

ing stations through spectral clustering, with each region consisting of multiple stations 

that are highly correlated. We define the region network as an unweighted undirected 

graph 𝐺𝑅 = (𝑉𝑅, 𝐸𝑅 , 𝐴𝑅), where 𝑉𝑅 represents the set of regions,𝐸𝑅 represents the set 

of edges, and 𝐴𝑅 is the adjacency matrix of graph  𝐺𝑅. Let 𝑁𝑅 = |𝑉𝑅| be the number 

of regions. Shared bicycle regions correspond to the nodes in 𝑉𝑅, with each node re-

cording the inflow and outflow information of the corresponding region. 𝐴𝑅 ∈ ℝ𝑁𝑅×𝑁𝑅
 

reflects the spatial proximity effects between connected regions. The region demand 

data at time𝑡 is denoted as 𝑥𝑡
𝑅. 

Definition 3 (Out/In-demand). The inflow 𝑋𝑖𝑛
𝑡  and outflow 𝑋𝑜𝑢𝑡

𝑡  at time 𝑡 repre-

sent the number of users arriving and leaving at each station, respectively. The histori-

cal demand over T time slices is denoted as 𝑋 = [𝑋in, 𝑋out] =
(𝑋𝑡−𝑇+1, 𝑋𝑡−𝑇+2, … , 𝑋𝑡) ∈ ℝ𝑁×2𝐹×𝑇, where 𝐹 is the feature dimension. This encapsu-

lates the fine-grained shared demand feature. Region-wise features can be denoted 

as𝑋𝑅 = [𝑋in
𝑅 , 𝑋out

𝑅 ] = (𝑋𝑡−𝑇+1
𝑅 , 𝑋𝑡−𝑇+2

𝑅 , … , 𝑋𝑡
𝑅) ∈ ℝ𝑁𝑅×2𝐹×𝑇 , which characterizes the 

demand features of urban areas at a coarse-grained level. 

Problem Definition. Based on historical inflow and outflow demand data 𝑋 for 𝑇 

time slices and the bicycle-sharing system's station structure graph 𝐺, let the model's 

learning mapping function be g(⋅). The function g(⋅) is used to learn the inflow and 

outflow demand features from the historical data for 𝑇 time slices to predict the inflow 

and outflow demand 𝑋̂ = (𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑀) for the next 𝑀 time slices. Therefore, 

the shared bicycle demand prediction problem can be formulated as follows: 
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(𝑋̂𝑡+1, 𝑋̂𝑡+2, … , 𝑋̂𝑡+𝑀) = 𝑔(𝐺; (𝑋𝑡−𝑇+1, 𝑋𝑡−𝑇+2, … , 𝑋𝑡)) (1) 

3.2 Spatial Graph Convolution 

Graph convolution is a convolution operation based on graph-structured data, used to 

capture the spatial dependencies between nodes and their neighborhoods. In Graph 

Neural Networks (GNNs), graph convolution learns node representations by interacting 

node features with the adjacency matrix, effectively modeling the spatial correlation 

characteristics in complex graph structures. This paper adopts a spatial-based graph 

convolution method, with the model based on the spatial method proposed by Kipf et 

al. [20], defined as: 

𝐻(𝑙+1) = 𝜎 (𝐷̂
1
2𝐴̂𝐷̂

1
2𝐻(𝑙)𝑊(𝑙)) (2) 

In the formula, 𝐻(𝑙) ∈ ℝ𝑁×𝐹 represents the hidden state matrix at layer. The adjacency 

matrix 𝐴̂ is the self-loop enhanced adjacency matrix, which adds the identity matrix 𝐼 

to the original adjacency matrix 𝐴 to enhance the self-loop information; 𝐷̂ is the degree 

matrix derived from 𝐴̂ , with diagonal elements 𝐷̂𝑖𝑖 = ∑ 𝐴̂𝑖𝑗𝑗 . 𝑊(𝑙) is the learnable 

weight parameter matrix at layer 𝑙. The nonlinear activation function 𝜎 (such as ReLU 

or Sigmoid) is applied to the model's output to enhance its nonlinear expressive power. 

 

3.3 Temporal One-Dimensional Convolution 

Temporal one-dimensional convolution is a convolution operation used to capture local 

patterns in time-series data by sliding the convolution kernel along the temporal dimen-

sion to extract the dynamic changes in node or region features over time. Let the input 

feature be H ∈ ℝ𝑁×2𝐹×𝑇. The calculation process of the temporal one-dimensional con-

volution can be represented as: 

𝐻out = ReLU(𝑊conv ∗ 𝐻 + 𝑏) (3) 

In the formula above, 𝑊conv represents the learnable convolution kernel, which extracts 

the local dynamic features along the temporal dimension. The length of the convolution 

kernel is 𝑘; ∗ denotes the one-dimensional convolution operation, which essentially 

slides the convolution kernel along the time axis and performs a dot product with the 

input feature; b is the bias term, which adjusts the feature distribution; ReLU(⋅) is a 

nonlinear activation function, which enhances the model's ability to express complex 

temporal dependencies. After the convolution operation, the time dimension length of 

the output feature decreases from 𝑇 to 𝑇 − 𝑘 + 1, reflecting the constraint of the con-

volution kernel length on the local receptive field of the feature, while ensuring the 

model's ability to model short-term dependencies. 



 

 

4 METHODOLOGY 

This paper proposes a Hierarchical Spatiotemporal Graph Convolutional Network 

(HST-GCN) model for shared bicycle demand prediction, with the overall framework 

shown in Fig. 1. The model primarily consists of five modules: spectral clustering-based 

shared bicycle region graph generation, regional spatiotemporal graph convolution, sta-

tion spatiotemporal graph convolution, hierarchical dynamic fusion module, and pre-

diction module. The hierarchical graph generation module is used to generate the re-

gion-level graph structure and data representation. The station (region) spatiotemporal 

graph convolution network is used to learn the spatiotemporal features of demand data, 

with the DCA-GCN integrated with a dynamic coupling module to extract spatial de-

pendencies and capture the mutual influence between inflow and outflow; temporal 

attention and temporal one-dimensional convolution capture temporal correlations. The 

hierarchical dynamic interaction module is used to integrate and fuse coarse and fine-

grained demand features, addressing the data sparsity issue. Finally, the prediction 

module generates the final prediction output. Both regional spatiotemporal graph con-

volution and station spatiotemporal graph convolution consist of multiple spatiotem-

poral blocks, and they have the same structure. 

 

 

Fig. 1. The framework of HST-GCN 

In the subsequent subsections of this section, we will first take the spatiotemporal 

block in regional spatiotemporal graph convolution as an example and provide a de-

tailed introduction to its internal components, including the Dynamic Coupling Graph 

Convolution (DCA-GCN) module and temporal attention. Then, we will introduce the 

dynamic interaction module for station and region features. 
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4.1 Dynamic Coupling Graph Convolution Module 

 

Fig. 2. GCNGRU unit structure 

The Dynamic Coupling Graph Convolutional Network (DCA-GCN) learns the spatial 

dependencies in shared bicycle data and simulates the coupling influence between in-

flow and outflow. The structure of the DCA-GCN is shown in Fig. 2. The model mainly 

consists of a Graph Convolutional Network (GCN), spatial attention, and a dynamic 

coupling module. This subsection will elaborate on these modules in detail 

 

Spatial Attention. In the spatial dimension, different locations of shared bicycle nodes 

exert mutual influence, which has high dynamicity. The spatial attention mechanism 

can adaptively adjust the weights between nodes based on the locations, thus more ac-

curately reflecting the spatial relationships between nodes. Therefore, this model adopts 

the spatial attention mechanism to learn the dynamic influence relationships in the spa-

tial dimension. The formula for the spatial attention mechanism is expressed as follows: 

𝑆 = 𝑉𝑠 ⋅ 𝜎((𝑋𝑊1)𝑊2(𝑊3𝑋)⊤ + 𝑏𝑠) (4) 

𝑆′(𝑖,𝑗) =
exp( 𝑠(𝑖,𝑗))

∑ exp(𝑁
𝑗=1 𝑠(𝑖,𝑗))

(5) 

𝑆𝑎𝑡𝑡(𝑋) = 𝑆′𝑋 (6) 

where 𝑋 ∈ ℝ𝑁𝑅×𝐹×𝑇 represents the input to the spatial attention module, 𝐹 is the fea-

ture dimension of the nodes, and 𝑇 is the length of the time series. In the formula, 𝑉𝑠,  

 𝑏𝑠 ∈ ℝ𝑁𝑅×𝑁𝑅
,  𝑊1 ∈ ℝ𝑇 ,  𝑊2 ∈ ℝ𝐹×𝑇  and  𝑊3 ∈ ℝ𝐹  are learnable parameters, and 𝜎 

is an activation function. First, the spatial attention weight matrix 𝑆 is obtained accord-

ing to equation (5). Then, the Softmax function is applied to normalize the weight ma-

trix 𝑆, ensuring that the sum of attention weights for each node is 1, yielding the final 

spatial attention matrix 𝑆′ ∈ ℝ𝑁𝑅×𝑁𝑅
, where 𝑆′(𝑖,𝑗) indicates the strength of the correla-



 

 

tion between node 𝑖 and node 𝑗 in the weight matrix. Finally, the spatial attention ma-

trix is multiplied with the input features to dynamically adjust the spatial dependencies 

between nodes, obtaining the final result 𝑆𝑎𝑡𝑡(𝑋) ∈ ℝ𝑁𝑅×𝐹×𝑇. 

 

Dynamic Coupling Module. In bicycle-sharing systems, there is a correlation between 

the inflow and outflow of vehicles at the nodes. We establish two criteria to describe 

such correlations. The first inflow criterion: the inbound demand at a node at time 𝑡 +
1 is influenced by the outbound demand of its neighboring nodes at time 𝑡. The second 

outflow criterion: the outbound demand at a node at time 𝑡 + 1 is influenced by its in-

bound demand at time 𝑡. Based on the inflow criterion, the In-Out Dynamic Coupling 

module (IO-DC) is constructed to capture the coupling correlation between outflow and 

inflow demand. Based on the outflow criterion, the Out-In Dynamic Coupling module 

(OI-DC) is constructed to simulate the influence of inflow on outflow. 

 

 

Fig. 3. Two variants of dynamic coupling, namely IO-DC and OI-DC 

The structure of the IO-DC module is shown in Fig. 3 (a). This module has two input 

data sources: the feature 𝑋1 = (𝑋𝑡
1, 𝑋𝑡+1

1 , … , 𝑋𝑡+𝑇
1 ) ∈ ℝ𝑁𝑅×𝐹×𝑇  after spatial attention 

and the raw feature 𝑋2 = (𝑋𝑡
2, 𝑋𝑡+1

2 , … , 𝑋𝑡+𝑇
2 ) ∈ ℝ𝑁𝑅×𝐹×𝑇 . 𝑋1 represents inflow infor-

mation, and 𝑋2 represents outflow information. Based on the inflow criterion, the cou-

pling operation is applied to the features of the 𝑇 time slices. For example: 𝑋𝑡
1 ∈ ℝ𝑁𝑅×𝐹  

represents the inflow feature at time 𝑡 + 1, and 𝑋𝑡
2 ∈ ℝ𝑁𝑅×𝐹 represents the outflow fea-

ture at time 𝑡. The operation process is shown in Fig. 3 (a), and its calculation formula 

is defined as follows: 

𝐶𝐼𝑂 = 𝜎((𝑋𝑡
1𝑊𝐼𝑂

1 )(𝑋𝑡
2𝑊𝐼𝑂

2 )⊤𝐷) (7) 

𝐶′(𝑖,𝑗) =
exp( 𝐶(𝑖,𝑗))

∑ exp(𝑁
𝑗=1 𝐶(𝑖,𝑗))

(8) 
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𝐻𝑡
1 = 𝐶′𝑋𝑡

1 (9) 

where  𝑊𝐼𝑂
1 ∈ ℝ𝐹×1,  𝑊𝐼𝑂

2 ∈ ℝ𝐹×1are learnable parameters,  𝐷 ∈ ℝ𝑁𝑅×𝑁𝑅
is the normal-

ized matrix of the historical inflow and outflow data between nodes, and 𝐷(𝑖,𝑗) repre-

sents the probability of vehicles flowing from node 𝑖 to node 𝑗. According to Eq. (8), 

the correlation matrix 𝐶 is obtained, and it is normalized to obtain a normalized matrix 

 𝐶′ ∈ ℝ𝑁𝑅×𝑁𝑅
. The larger the value of 𝐶′(𝑖,𝑗), the stronger the correlation between nodes 

𝑖 and 𝑗. The correlation coefficient matrix 𝐶′ is used for matrix operations with 𝑋𝑡
1, ob-

taining the inflow feature  𝐻𝑡
1 ∈ ℝ𝑁𝑅×𝐹 after the coupling impact at the current time 

step. The features of the 𝑇 time slices are passed to the coupling module, producing 𝑇 

outputs, which are then concatenated to obtain the final inflow feature  𝐻𝑖𝑛 ∈ ℝ𝑁𝑅×𝐹×𝑇. 

The formula is as follows: 

𝐻in = Concat(𝐻𝑡
1, 𝐻𝑡+1

1 , … , 𝐻𝑡+𝑇
1 ) (10) 

As shown in Fig. 3 (b), the OI-DC structure has two inputs: 𝑋1 and 𝑋2.  𝑋1 provides 

outflow information for time 𝑡 + 1, 𝑡 + 2, … , 𝑡 + 𝑇 + 1, and 𝑋2  provides inflow de-

mand information for time 𝑡, 𝑡 + 1, … , 𝑡 + 𝑇. The formula for calculating the coupling 

correlation coefficient is similar to Eq. (7): 

𝐶𝑂𝐼 = 𝜎((𝑋𝑡
1𝑊𝑂𝐼

1 )(𝑋𝑡
2𝑊𝑂𝐼

2 )⊤) (11) 

as in Eq. (8), (9), and (10), the weight coefficient matrix is normalized, and the outflow 

demand data is used in matrix operations with the weight coefficient matrix to obtain 

the outflow demand feature. Multiple time slice data are then concatenated to obtain 

the final outflow feature  𝐻𝑜𝑢𝑡 ∈ ℝ𝑁𝑅×𝐹×𝑇. Finally, 𝐻𝑖𝑛 and 𝐻𝑜𝑢𝑡  are concatenated to 

obtain the final feature. 

 

4.2 Temporal Attention 

In bicycle-sharing systems, demand data across different time slices exhibit temporal 

correlations, and this correlation has fluctuating dynamics. The temporal attention 

mechanism can adaptively assign different weights to the data, thereby more accurately 

reflecting temporal dependencies. Therefore, this model uses the temporal attention 

mechanism to learn the dynamic influence relationships in the temporal dimension. The 

temporal attention calculation formula is as follows: 

𝐸 = 𝑉𝑡 ⋅ 𝜎(((𝑋)⊤𝑈1)𝑈2(𝑈3𝑋)⊤ + 𝑏𝑡) (12) 

𝐸′(𝑖,𝑗) =
exp( 𝐸(𝑖,𝑗))

∑ exp(𝑁
𝑗=1 𝐸(𝑖,𝑗))

(13) 

𝑇𝑎𝑡𝑡(𝑋) = 𝐸′𝑋 (14) 

where 𝑉𝑡, 𝑏𝑡 ∈ ℝ𝑇×𝑇,𝑈1 ∈ ℝ𝑁𝑅
, 𝑈2 ∈ ℝ2𝐹×𝑁𝑅

and 𝑈3 ∈ ℝ2𝐹 are learnable parameters, 

and 𝑋 represents the input to the temporal attention mechanism. Matrix operations are 

performed on the input data to obtain the temporal attention weight matrix 𝐸, and the 



 

 

softmax function is applied to normalize the weight matrix 𝐸, resulting in the normal-

ized weight matrix, where 𝐸′(𝑖,𝑗) indicates the strength of the correlation between node 

𝑖 and node 𝑗. 

 

4.3 Hierarchical Dynamic Interaction Module 

The above structure extracts the spatiotemporal features of stations  𝐹𝑆 ∈ ℝ𝑁×2𝐹×𝑇  and 

the spatiotemporal features of regions  𝐹𝑅 ∈ ℝ𝑁𝑅×2𝐹×𝑇, but the station sparsity prob-

lem has not yet been addressed. Interacting station features with region features can 

enhance the expression of station features and solve the data sparsity problem. There-

fore, this paper constructs a dynamic interaction module, which involves two steps: 

feature mapping and feature fusion. Feature mapping refers to transforming the coarse-

grained region data into fine-grained station data with consistent dimensions. Feature 

fusion refers to performing a weighted aggregation of the features from both granularity 

levels. 

The feature mapping step is as follows: First, a transfer matrix  𝑇𝑟𝑎𝑛 ∈ ℝ𝑁×𝑁𝑅
 is 

defined to represent the correspondence between stations and regions. The formula is 

expressed as: 

𝑇𝑟𝑎𝑛𝑖,𝑗 = {
1, if the node 𝑖 belongs to the region 𝑗
0, else

(15) 

Region features are the sum of all station features within the region. For example, if 

a region contains five stations, the demand for the region should be 𝑥 = 𝑥1 + 𝑥2 +···
+𝑥5. The contribution of each station generated in the region's demand is different and 

changes over time. To achieve dynamic feature mapping, we propose constructing a 

dynamic transfer matrix  𝑇𝑟𝑎𝑛𝑑 ∈ ℝ𝑁×𝑁𝑅
 to learn the contribution matrix of stations 

to region features dynamically. First, a contribution coefficient matrix  𝑇𝑟𝑎𝑛𝑑 is con-

structed using station and region features and normalized. Then, the transfer matrix 

Tran is used to adjust the correspondence between the positions of stations and regions 

in the matrix 𝑇𝑟𝑎𝑛𝑑 , and finally, the region feature  𝐹𝑅 ∈ ℝ𝑁𝑅×2𝐹×𝑇  is mapped to 

 𝐹𝑡𝑟𝑎𝑛
𝑅 ∈ ℝ𝑁×2𝐹×𝑇. The formula is expressed as: 

𝑇𝑟𝑎𝑛𝑑 = 𝜎((𝐹𝑆𝑈1)𝑈2(𝐹𝑅𝑈3)⊤ + 𝑏𝑑) (16) 

𝑇𝑟𝑎𝑛𝑑 = 𝑇𝑟𝑎𝑛𝑑 − mean(𝑇𝑟𝑎𝑛𝑑 , axis = 0) (17) 

𝑇𝑟𝑎𝑛𝑑 = 𝜎(𝑇𝑟𝑎𝑛𝑑) ∗ 𝑇𝑟𝑎𝑛 (18) 

𝐹𝑡𝑟𝑎𝑛
𝑅 = (𝑇𝑟𝑎𝑛𝑑)(𝐹𝑅) (19) 

where  𝑈1 ∈ ℝ𝑇,𝑈2 ∈ ℝ2𝐹×2𝐹,𝑈3 ∈ ℝ𝑇 and  𝑏𝑑 ∈ ℝ𝑁×𝑁𝑅
 are learnable parameters. 

The fusion of station features and region features  𝐹out ∈ ℝ𝑁×2𝐹×𝑇 can be defined 

as: 

𝐹out = 𝑊𝑓1
⊙ 𝐹𝑆 + 𝑊𝑓2

⊙ 𝐹tran
𝑅 (20) 

where 𝑊𝑓1
 and 𝑊𝑓2

 are learnable parameters, and ⊙ denotes the Hadamard product. 
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5 Experiments 

5.1 Datasets 

The experiments in this paper use two real-world shared bicycle demand datasets: the 

Citi Bike dataset from New York City and the Divvy dataset from Chicago.  The pre-

liminary information of the two datasets includes station IDs and times for bike rentals 

and returns, as well as the latitude and longitude of each station. The experiment in this 

paper selects shared bicycle data from September 1, 2014, to August 31, 2015, covering 

171 shared bicycle stations in Manhattan, New York City. The Divvy shared bicycle 

dataset contains user bike rental records from January 1, 2017, to December 31, 2017, 

in Chicago, with 133 shared bicycle stations selected as experimental stations for this 

study. In the dataset configuration, 80% of the data is used as the training dataset, while 

the remaining 20% is used as the testing dataset. 

 

5.2 Baseline Models 

We compare the proposed model with the following 9 baseline models: 

— HA: Predicts future inflow and outflow demand based on the average values of 

historical demand data. 

— LASSO: A regression analysis method that performs feature selection and regu-

larization simultaneously. 

— XGBOOST [21]: An efficient gradient boosting tree algorithm used for regression 

and classification problems, known for its excellent predictive performance and 

interpretability. 

— RNN [22]: A neural network used for learning continuous time-series data, capable 

of capturing temporal dependencies in data of any time sequence length. 

— GRU [23]: A recurrent neural network model used for sequence data, featuring a 

simpler structure and stronger memory capacity. It resolves the gradient vanishing 

and exploding issues present in RNNs. 

— GAT: A graph neural network model that uses attention mechanisms between 

nodes to effectively learn and represent the relationships between nodes and edges 

in graph data. It is widely applied in shared bicycle demand prediction and traffic 

flow prediction. 

— MH-GCN [24]: A novel hierarchical spatiotemporal graph convolutional network 

for solving traffic flow prediction problems. 

— DSTH-GCN [25]: A dynamic local graph and corresponding adaptive local graph 

convolution network that captures spatial dependencies in traffic flow data. 

— TS-STN [26]: A new deep learning architecture for OD flow prediction in urban 

rail systems. 

 

5.3 Overall Model Prediction Performance Analysis 

We compare HST-GCN with other baseline models on the Citi Bike and Divvy datasets. 

Table 1 demonstrates the experimental results of each model for outflow and inflow 

demand.  As Table 1 shows, HST-GCN achieves the best prediction results for both 



 

 

outflow and inflow demand under two evaluation metrics. Furthermore, the experi-

mental results show that deep learning-based prediction models outperform traditional 

statistical learning and machine learning methods. MH-GCN and DSTH-GCN yield 

better results than RNN, GRU, and GAT models, confirming that hierarchical feature 

learning methods effectively improve prediction accuracy. This phenomenon occurs 

because hierarchical feature learning can address the data sparsity issue in shared bicy-

cle demand data. TS-STN outperforms RNN, GRU, and GAT in both evaluation met-

rics, demonstrating that prediction performance can be significantly improved by fully 

considering the relationships between outflow and inflow demand. 

Table 1. Performance comparison of different models on the SZ-Taxi and Los-Loop dataset 

Datasets Methods 
Inflow Outflow 

MAE RMSE MAE RMSE 

Citi Bike 

HA 3.84 6.47 3.62 6.03 

LASSO 3.42  6.08 3.27  5.61 

XGBOOST 3.29 5.58 3.09 5.15 

RNN  3.12 5.16 2.98 4.97 

GRU 2.97 4.83 2.64 4.51 

GAT 2.89 4.72 2.61 4.48 

MH-GCN  2.61  4.27 2.51 4.15 

DSTH-GCN 2.47  4.12 2.44 4.01 

TS-STN 2.51 4.19  2.45  4.08 

HST-GCN 2.44  3.96  2.40  3.81 

Divvy 

HA 1.17 2.14 1.22  2.29 

LASSO  1.07 2.01 1.13  2.07 

XGBOOST  1.03 1.92 1.06 1.94 

RNN 1.01 1.86  1.02 1.88 

GRU  0.94 1.69 0.96 1.71 

GAT  0.92 1.61 0.93 1.65 

MH-GCN 0.87 1.54  0.91 1.57 

DSTH-GCN 0.83 1.46  0.84 1.49 

TS-STN 0.84 1.49 0.85 1.53 

HST-GCN  0.81 1.39  0.83 1.44 

 

Compared to MH-GCN, DSTH-GCN, and TS-STN, the HST-GCN model proposed 

in this paper thoroughly examines the impact of hierarchical features and simultane-

ously takes into account the coupling relationships between outflow and inflow demand 

at each level. The experimental results show that the HST-GCN model outperforms 

MH-GCN, DSTH-GCN, and TS-STN in predicting the outflow and inflow demand. 

This verifies the effectiveness of the experimental framework proposed in this paper. 

The HST-GCN model models and learns features from different levels, enabling it to 

more comprehensively capture the spatial and temporal characteristics of shared bicy-

cle demand. Additionally, considering the coupling relationships between outflow and 
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inflow demand helps the model make more accurate predictions. The experimental re-

sults demonstrate that the HST-GCN model performs better in predicting outflow and 

inflow demand than other models. This proves the superiority and effectiveness of the 

HST-GCN model in shared bicycle demand prediction tasks. 

 

 

 

Fig. 4. Comparison of MAE and RMSE for different region numbers on the Citi Bike and Divvy 

datasets 

5.4 Region Quantity Analysis Experiment 

The number of regions 𝑚 is a critical parameter in the experiment, as its variation sig-

nificantly impacts the prediction results. To assess this effect, we set 6 different values 

of 𝑚 for both datasets. For the Citi Bike dataset, the number of regions 𝑚 is set from 7 

to 12; for the Divvy dataset, 𝑚 ranges from 5 to 10. Fig. 4 shows the experimental 

results for different 𝑚 values in both datasets. As the figure shows, as the number of 

regions increases, MAE and RMSE gradually decrease. However, when the number of 

regions increases to a certain level, MAE and RMSE rise. The paper suggests that this 

happens because too few or too many regions can lead to a decline in the model's pre-

diction performance. Only by setting 𝑚 within a reasonable range can the prediction 

accuracy be optimized. 

The figure shows that the predictions for outflow and inflow demand are relatively 

good for the Citi Bike dataset when m is 9 or 10. Considering the MAE and RMSE of 

both outflow and inflow demands from the two experimental groups, the region number 



 

 

m for the Citi Bike dataset is set to 9. For the Divvy dataset, the prediction results for 

m=7 and m=8 are better. After considering the overall results, the region number m for 

the Divvy dataset is set to 8. 

 

 

 

Fig. 5. The results of ablation experiments on the Citi Bike and Divvy dataset 

5.5 Ablation Experiment 

To further examine the effectiveness of the model proposed in this paper, this section 

will dismantle each HST-GCN module and perform ablation experiments on the variant 

models using the Citi Bike and Divvy datasets. The relevant variants of the model are 

as follows: 

– HST-GCN-I: This variant is designed to evaluate the effect of the regional graph 

convolution on prediction accuracy. It eliminates the regional graph convolution from 

HST-GCN, while preserving the integrity of all other components. 

– HST-GCN-II: This variant investigates the role of the dynamic transfer block in 

prediction performance. The dynamic transfer block in the hierarchical dynamic inter-

action layer is substituted with a static transfer matrix, leaving the remaining architec-

ture unaltered. 
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– HST-GCN-III: This model removes the dynamic coupling module in HST-GCN 

while keeping the other structures unchanged. 

Fig. 5 shows the results of the ablation experiments. As seen from the figure, when 

the regional graph convolution is removed, both MAE and RMSE of HST-GCN-I de-

crease to varying degrees, indicating that the regional graph convolution helps improve 

the prediction results for shared bicycle demand. When the Tran matrix replaces the 

dynamic transfer block, the results of HST-GCN-II show a declining trend, which sug-

gests that the dynamic transfer block is effective. The dynamic coupling module is also 

an important component of the model. The experimental results show that when the 

dynamic coupling module is removed, the performance of HST-GCN-III worsens, 

proving the effectiveness of the dynamic coupling module. Based on the above com-

prehensive analysis, removing any of the modules in this chapter weakens the experi-

mental results, indicating that each module plays an indispensable role in the overall 

framework. When all modules are present, we observe that all evaluation metrics 

achieve optimal levels on both datasets. The results of the ablation experiment confirm 

the effectiveness of the modules proposed in this chapter. 

6 Conclusion and Future Work 

This paper proposes a Hierarchical Spatiotemporal Graph Convolutional Network 

(HST-GCN) model for shared bicycle demand prediction. The model takes station and 

region-level demand data as input and jointly employs hierarchical spatiotemporal fea-

ture learning and dynamic coupling learning to better address fine-grained shared bicy-

cle inflow and outflow demand prediction tasks. Relevant experiments were conducted 

on the Citi Bike dataset from New York and the Divvy dataset from Chicago. The ex-

perimental results show that the prediction results of HST-GCN outperform the base-

line models, validating the effectiveness of the HST-GCN model. Future work includes: 

(1) Considering more factors that influence shared bicycle travel, such as unexpected 

events, to predict bicycle demand under extreme conditions; (2) Since user behavior is 

random, incorporating user-related information, such as social data, to analyze individ-

ual user cycling habits and further improve the accuracy of prediction results. 
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