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Abstract. Labanotation is a widely-used notation system for recording human 

dance movements. However, writing standard Labanotation scores requires ex-

tensive professional training. Automatically generating Labanotation scores from 

motion capture data can significantly reduce manual efforts in dance documen-

tation and can serve as a powerful tool for preserving folk dances, in the protec-

tion work of intangible cultural heritages. Despite this, existing methods for 

Labanotation generation face challenges in capturing the more fluid and variable 

limb movements inherent in folk dance performances. In this paper, we introduce 

a novel Transformer-based model called PSA-Transformer (Transformer with 

Part-Specific Attention) to achieve more accurate Labanotation generation. First, 

we develop a Part-Specific Attention (PSA) module that adheres to the body part 

division rules of Labanotation. This module extracts spatial attention features at 

individual body part levels, enhancing the precision of movement capture. Then, 

this attention mechanism is integrated into an encoder-decoder architecture, ena-

bling the model to learn global temporal dependencies within the feature se-

quences produced by the PSA module. As such, we sequentially generate corre-

sponding Laban symbols using the decoder component of the PSA-Transformer. 

Extensive experiments on two real-world datasets demonstrate that our proposed 

model performs favorable against current state-of-the-art methods in automatic 

Labanotation generation. 

Keywords: Labanotation generation, Part-Specific Attention, Transformer, 

limb movements, encoder-decoder. 

1 Introduction 

Labanotation is a common system for recording dance, used in teaching, sharing, and 

preserving dances [1, 2]. It’s a good way to protect traditional folk dances, which are 

part of our cultural heritage. While methods like written descriptions, pictures, photos, 

and videos are used to document dances, Labanotation is accurate, efficient, easy to 

store, and useful for both teaching and communication. Several computer tools have 

been created to help write Labanotation scores [3–5]. However, creating these scores 

by hand is still a slow process that requires skilled professionals. Developing ways to 

automatically generate Labanotation scores could significantly help preserve traditional 

folk dances.  



 

Fig. 1. Illustration of the Labanotation system. (a) Labanotation score example. (b) The corre-

sponding relationship between columns of the Labanotation score and human body parts. 

One common approach to automatic Labanotation generation is to identify Laban 

symbols from motion capture data and then arrange them into a score in the correct 

order. Motion capture devices record movement and produce a series of skeletal data 

frames. Unlike general action recognition which labels a series of movements with a 

single action [6–8], generating Labanotation involves creating a sequence of symbol 

labels from dance movements, where each movement of every body part is represented 

by a specific Laban symbol [1].  

To understand our work, let’s briefly explain the Labanotation system. Figure 1(a) 

shows an example of a Labanotation score, which uses a three-line staff where symbols 

are written in columns. Symbols are arranged from bottom to top on each page, follow-

ing the order of the dance. Each column represents a body part, and each symbol de-

scribes a movement of that part. For example, Figure 1(a) shows the movements of the 

legs in the support columns and the arms in the arm columns. Figure 1(b) illustrates 

how the columns relate to different body parts. The support and arm columns are the 

most used. Specifically, the support columns show how the body’s center of gravity 

moves during a step, which is essential in dance. Since it needs to accurately capture 

every detail of a dancer’s movements, Labanotation uses many different symbols. 

Therefore, generating a correct Labanotation score requires accurate recognition of 

every atomic movement of each body part and proper assignment of signs according to 

the Labanotation writing conventions. Among the multiple Labanotation symbols, 

those indicating direction in the support columns are particularly important, as they 

describe the footwork, which is a fundamental part of dance. There are 24 direction 

symbols used in the support columns to represent movement on both sides of the body.  

Many studies have focused on automatically generating Labanotation for the support 

columns. Early methods for converting motion capture data into Labanotation relied on 

handcrafted rules, but were limited in application. Subsequent research explored two-

stage approaches with manual or automated movement segmentation followed by 

recognition using statistical learning or deep neural networks (including HMMs, Bi-
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LSTMs, and GRU recurrent networks). More recently, one-stage methods employing 

Connectionist Temporal Classification (CTC) or sequence-to-sequence learning with 

feature extraction modules, including CNNs, CRNNs, or graph networks, have stream-

lined the process and avoided segmentation errors. However, accurately capturing the 

nuances of complex and variable dance movements (particularly in folk dances), re-

mains a challenge. Existing feature extraction networks often focus on local joint rela-

tionships and limited temporal ranges, potentially missing crucial information for rep-

resenting broader limb movements needed for precise Labanotation. 

In this paper, we propose a novel PSA-Transformer model (Transformer with Part-

Specific Attention networks). To describe flexible limb movements in detail and gen-

erate accurate Laban symbols, first, we propose a PSA module and employ the multi-

head attention (MHA) mechanism to learn the feature correlations between joints on 

each body part defined in the Labanotation system. The body-part features are further 

aggregated to obtain an overall spatial feature for each sampled frame. Then, we apply 

the MHA mechanism in an encoder-decoder architecture to learn long-term global tem-

poral dependencies in the output feature sequences of PSA module. Finally, the PSA-

Transformer’s decoder sequentially outputs a sequence of Laban symbols, effectively 

translating motion capture data into Labanotation scores for dances. Evaluations on two 

large datasets demonstrate that our model achieves state-of-the-art results, surpassing 

the performance of existing one-stage and two-stage methods. 

2 Related Work 

Numerous methods have been developed to tackle the problem of automatic Labano-

tation generation. Researchers focus on the Laban symbols in support columns, and the 

proposed methods are usually based on motion capturing technique. First, precise hu-

man motion data of dances are recorded via professional motion capturing devices. 

Then, spatial analysis, either using specially designed rules or machine learning meth-

ods, are employed to relate every single movement of each body part to a Laban direc-

tional symbol. Finally, a complete Labanotation score is constructed under the guidance 

of domain knowledge of music and dance. 

Early approaches based on Spatio-temporal movement analysis [9–13] generally rely 

on artificially designed rules to translate motion capture data into Laban symbols frame-

by-frame. However, the applicability of these methods is limited by the constraints of 

their handcrafted rules. 

To overcome this limitation, subsequent researches introduce two-stage methods 

that first manually segment movements, then recognize these segments using conven-

tional statistical learning techniques or deep neural networks. Recognition algorithms 

employed in this stage include hidden Markov models [14, 15], Extreme Learning Ma-

chine [16], bidirectional Long Short Term Memory (BiLSTM) [17], bidirectional Gated 

Recurrent Unit (BiGRU) [18], and combinations of LSTM and LieNet networks [19]. 

More recently, to reduce manual effort, some frameworks [20, 21] have incorporated 

auto-segmentation algorithms. However, errors in the segmentation phase can signifi-

cantly degrade the quality of Labanotation generation. 



To further refine Labanotation generation and eliminate segmentation errors, one-

stage methods [22–28] have been proposed. Xie et al. [23, 24] utilize Connectionist 

Temporal Classification (CTC) [29] to directly convert per-frame skeletal motion fea-

tures into sequences of Laban symbols. The features are extracted using Convolutional 

Recurrent Neural Networks (CRNNs) or Graph Neural Networks (GNNs). Li et al. de-

veloped a series of sequence-to-sequence (seq2seq) learning methods based on recur-

rent neural networks (RNNs) to generate Labanotation scores from continuous motion 

capture data, utilizing skeletal motion features extracted via CNNs [22], CRNNs [28], 

Gesture-Sensitive graph convolutional networks (GS-GCNs) [26],or Multi-scale graph 

attention networks (MS-GATs) [27]. 

While these one-stage methods offer a streamlined solution and avoid segmentation 

errors, Labanotation generation performance remains a challenge, particularly with the 

complexity and fluidity of dance movements. Particularly, folk dances often exhibit 

diverse limb movements and variations between performers, making precise capture 

and representation difficult. The Labanotation system demands fine-grained analysis of 

joint movements, and existing feature extraction networks like CRNN [22, 23], GS-

GCN [26] and MS-GAT [27] often focus on local joint relationships and limited tem-

poral ranges, potentially overlooking crucial information for capturing broader limb-

level movements. 

In this paper, we deal with this problem by proposing a transformer-based approach 

with a novel Part-Specific Attention network module. Detailed method description is 

as follows. 

3 Methodology 

3.1 Overview 

This work aims to generate sequences of corresponding Laban direction symbols 

from motion capture data, specifically focusing on the support columns of movement. 

The overall process of our proposed PSA-Transformer is illustrated in Figure 2. Ini-

tially, we employ a motion data preprocessing strategy consistent with the approach 

described in [26], including coordinate transformation and normalization. For each 

frame, the proposed PSA module leverages the attention mechanism to extract spatial 

features based on body parts, allowing us to better model the correlations between joints 

and capture the nuances of flexible limb movements in dance. These spatial features 

are then aggregated to create a comprehensive representation of the frame. The result-

ing feature sequence, 1 2{ , , , }  Lg g g , is then positionally encoded and input into the 

temporal encoder-decoder of the Transformer, producing a sequence 
1 2{ , , , }  Lz z z . 

This encoder-decoder architecture enables the learning of dynamic characteristics of 

body movements throughout the dance performance. Finally, the decoder outputs a se-

quential series of Laban symbols. By arranging these generated symbols along the 

dance timeline, a complete Labanotation score for the dance can be created, effectively 

achieving automatic Labanotation score generation from motion capture data. A de-

tailed explanation of our proposed method is as follows. 
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Fig. 2. Illustration of the overall method. The preprocessed motion capture data sequence is fed 

into the PSA-Transformer. For each frame, the proposed PSA module extracts spatial features by 

body parts via attention mechanism. In the figure, the color of joints differentiates body parts, 

and the red lines starting from Joint right-foot depicts the learned attention weights relative to 

other joints in a body part, as an example. Then, the outputs of PSA module form a sequence 

1 2{ , , , }  Lg g g . We apply positional encoding and feed the spatial feature sequence to the 

encoder-decoder architecture to learn temporal dependencies across different frames over time 

and get a sequence 
1 2{ , , , }  Lz z z . Finally, the Laban symbols are sequentially generated by 

the decoder, thus a Labanotation score is composed. 

3.2 Part-specific Attention Module 

Our method begins with a novel Part-Specific Attention (PSA) module specially de-

signed to capture the characteristics of flexible limb movements. This PSA module 

learns correlations between joints within each body part, and enhances these joint fea-

tures using the multi-head attention (MHA) mechanism. These enhanced joint features 

are then aggregated to form the overall spatial feature representation of the body skel-

eton for each frame.  

We begin by explaining the criteria for dividing the body into parts, and then intro-

duce the subsequent process of extracting features specific to each part. Guided by the 

principles of Labanotation, which separately records the movements of each limb and 

the trunk with directional symbols, we divide the motion capture data into distinct body 

parts based on the skeletal hierarchy. As illustrated in Figure 3, each part is visually 

distinguished using different colors. Each body part contains several joint points. De-

noting a body part as P , we can break down a frame of motion capture data as a group 

of body parts 
1 2{ , ,.., }nP P P , where we set 5n =  considering the structure of body skel-

etal data. Each body part consists of several joints and can be seen as a joint sequence

1 2{ , ,.. }mj j j based on spatial hierarchical relationships, as shown in Figure 3. For sim-

plicity, we maintain a consistent number of joints, m , across all body parts. 

    For each body part P , we extract spatial feature from the raw joint data using the 

multi-head attention (MHA) mechanism, MHA explicitly models relationships between 

all states within the sequence, enabling the learning of global dependencies between 

sequential joint positions. 



 

Fig. 3. Illustration of the PSA module. Each part of human body, represented as P , is processed 

as a sequence of joints based on skeletal hierarchical structure. For each part, the multi-head 

attention (MHA) mechanism is applied to extract spatial features from sequential raw joint data. 

The obtained features are concatenated to form a final matrix 
tg at frame t , which constitutes 

the spatial feature representation for the current frame of motion capture data. 

Specifically, we apply the scaled dot-product attention [30], as illustrated in the right 

part of Figure 3. There are three inputs for self-attention computation: queries, keys, 

and values, represented with Q , K , and V . To learn dependencies across the input 

sequence itself, the self-attention is applied. In this case, all the query, key, and value 

are computed based on the same input sequence. Denoting the matrix representation of 

the input sequence as 
1 2{ , , , }ms s s= S  where m  is the length of sequence (which is 

also the consistent number of joints in each part), the three inputs Q , K , and V  to 

the self-attention module can be obtained via three weight matrices: 

 

,
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,

Q

K

V
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=

=

Q SW

K SW

V SW

 (1) 

where S is of dimension modelm d , QW  is of dimension model Qd d , KW of 

model Kd d , and 
VW of 

model Vd d . We set /Q K V model headd d d d n= = = , where 
headn is 

the number of parallel heads in multi-head attention. Thus, the attention weight selfa  is 

computed by the dot-product of queries Q and keys K , following with a normalization 

with a scalar Vd and the softmax function, as follows: 

 softmax( ) .
T

self

V

a
d

=
QK

V  (2) 

Here, the subscript self indicates that selfa is a self-attention weight. T denotes the 

transpose operation. It is easy to know that the dimension of selfa is Vm d . 

The computation above allows each state within the input sequence to be represented 

with weighted contributions. Additionally, during decoding along the time axis, self-

attention requires a mask to prevent the model from accessing future information when 

computing attention weights at each step t . 
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Then, to improve the model’s ability to represent complex relationships, the atten-

tion computation is performed in parallel 
headn  times, each with different learned pa-

rameters. The outputs of these parallel attention heads are then concatenated to form 

the multi-head attention output: 

 1 2concat( , , , ) ,  
head

mhself self self self

n Oa a a a=  W  (3) 

where 
OW is a weight matrix of dimension 

V head modeld n d , representing a fully-con-

nected feed-forward network. mhselfa denotes the output of multi-head self-attention 

module, of dimension 
modelm d . The MHA computation procedure is depicted in the 

lower middle part of Figure 3. 

 More specifically, for the feature extraction on a body part ( {1,2,.., })iP i n , the 

length of input sequence is the joint number m , and feature of 
iP  (i.e. the output of 

MHA) is in shape 
modelm d . Finally, we further concatenate the features of all body 

parts to form a matrix in 
modeln m d  as the spatial feature of current frame. By arrang-

ing all the frames in temporal order, we can obtain a sequence of spatial features, de-

noted as 
1 2 }  { , ,  , , ,t Lg g g g  , where 

tg represents the frame feature, and L is the 

length of frame sequence. 

3.3 Encoder-Decoder Network 

In the proposed method, the PSA module takes in motion capture data sequences and 

outputs corresponding sequences of motion features. To learn the temporal dependen-

cies in the motion feature sequences from PSA, we apply an encoder-decoder network 

to learn and transform the motion feature sequences to Laban symbol sequences. 

The output spatial feature sequence of the PSA module, 
1 2{ , , , , , } t Lg g g g  , is 

the input of the encode-decoder network. We apply positional encoding to the spatial 

feature sequence, and denote the positionally encoded sequence as 
1 2{ , , , } Lx x x . 

Generally, the learning of temporal dynamic characteristics and global dependencies 

across frames over a long sequence is accomplished via the encode-decoder architec-

ture. First, the encoder processes the input sequence to learn a compact representation, 

also utilizing the above-stated multi-head attention (MHA) mechanism for this purpose. 

Denoting with 
encodef , we can describe the encoding procedure as: 

 1 2({ , , , }),  encode tf x x x= Ε  (4) 

where 1 2{ , , , }  tx x x is the positional-encoded sequence, and E is the encoded output. 

Then, we describe the decoding procedure as: 

 ( ,{ }),decodef BOS=  Z E  (5) 

where Z denotes the decoded sequence output, and BOS  represents begin-of-se-

quence. Using a greedy strategy that outputs the label with the biggest probability, the 



decoder generates a sequence of Laban symbols, which is the output sequence denoted 

as 
1 2{ , , , , , }   t Lz z z z =  Z , where 

tz denotes the Laban symbol at time 
tz , and L is 

the length of the output sequence. Finally, the generated Laban symbols are organized 

into Labanotation scores along with the time order. 

4 Experiments 

We assess the proposed PSA-Transformer model using the datasets LabanSeq16 and 

LabanSeq48, which are two common benchmarks for skeletal motion sequence analy-

sis. Our method demonstrates competitive performance compared to both two-stage 

(automatic segmentation-based) and one-stage approaches. We also include parameter 

sensitivity analysis results, detailed below. 

4.1 Experimental Setup 

Datasets and Evaluation Metric. LabanSeq16 and LabanSeq48 are two commonly 

used datasets for automatic Labanotation generation, captured using the OptiTrackTM 

motion capture system [31] motion capture system. We divided each dataset using a 

portion of 50%  for training and the remainder for testing. Performance was evaluated 

using Laban symbol accuracy, consistent with previous work [22, 25, 26]. 

Implementation Details. In the proposed model, for PSA, we use part number 5n =

and joint number of each part 6m= . In the MHA of the PSA module, we use 2 heads 

and 2 stacked encoders. The 
modeld of spatial MHA is 32 . For the Encoder-Decoder net-

work, we use 4 encoders followed by 4 decoders, and the head number is 4 . The 

modeld of temporal MHA is 256 . The whole PSA Transformer model is implemented 

with PyTorch. All the experiments are conducted on a workstation with an RTX 3090 

GPU. 

4.2 Experimental Results and discussions 

Comparison with existing methods. We benchmarked our method against existing 

Labanotation generation techniques, including both two-stage and one-stage ap-

proaches. Table 1 presents a comparison of symbol generation accuracies across the 

two datasets. For the two-stage methods, we utilized the automatic segmentation tech-

nique from [21]. Results for existing methods on LabanSeq16 were taken directly from 

published work; for LabanSeq48, we obtained results using the authors’ provided code 

(as some prior studies did not include this dataset in their evaluations). The final row 

of Table 1 showcases the performance of our proposed PSA-Transformer. 
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Table 1. Comparison of different Labanotation generating methods on symbol generation accu-

racy (%). The PSA-transformer model obtains the best results. 

Methods LabanSeq16 LabanSeq48 

Auto Seg + HMM [15] 74.17 69.13 

Auto-Seg + LSTM [17] 76.57 71.28 

Auto-Seg + GRU  [18] 77.22 73.21 

Auto-Seg + C-GRU [21] 78.92 73.96 

CRNN-CTC [23] 72.80 68.92 

Seq2seq [22] 73.60 70.89 

DFGNN-CTC [24] 87.79 82.02 

GS-GCN + RA-Attention [26] 89.84 89.40 

Fusion Feature + CRNN-based - 

Attention-seq2seq [28] 
86.21 91.61 

Baseline Transformer 93.16 92.24 

LabanFormer [27] 94.44 94.86 

PSA-Transformer (Proposed) 94.93 95.20 

From Table 1, we can see that the proposed model obtains the best results on both 

datasets LabanSeq16 and LabanSeq48 comparing with both existing two-stage and 

one-stage methods. In addition, the transformer-based approaches generally show bet-

ter results compared to previous methods, while the proposed method performs the best. 

This indicates that our PSA-Transformer model is more suitable for generating Labano-

tation scores from motion capture data. Moreover, we can see that in comparison to 

other transformer-based models with similar temporal encoder-decoder architectures, 

the proposed PSA-Transformer performs the best, which shows that the novel PSA 

module provides more fine-grained spatial features by aggregating joint features of 

body parts that can contribute to higher accuracies.  

Discussion on spatial feature extraction methods. The proposed PSA module is 

based on the part-level feature extraction and aggregation. To demonstrate the benefit 

of part division, we compare the proposed PSA module with a non-part-specific ap-

proach. Specifically, we perform the same MHA operations directly on the whole skel-

eton of each data frame, without dividing into parts, and take the output as the spatial 

feature. We name this module as spatial-attention (SA). Other components of the pipe-

line are kept the same. In essence, this is a replacement of spatial feature extraction 

modules, and we conduct experiments to compare between them. 



 

Fig. 4. Comparison of accuracies (%) of different spatial feature extraction modules. The GAT 

(graph attention network) and MS-GAT (multi-scale GAT) methods are from [27]. PSA is the 

proposed Part-Specific Attention network, while SA is a comparison method that uses the same 

MHA modules with PSA, but does not perform part-specific feature extraction. 

In addition, we note that the LabanFormer model proposed in [27] also employed 

transformer to sequentially generate Laban symbols. A main difference of our method 

to LabanFormer is the spatial feature extraction module. LabanFormer [27] proposed a 

multi-scale graph attention network (MS-GAT) to learn spatial features in each frame 

of motion sequences, while in our work the PSA module does the similar thing. The 

GAT and MS-GAT modules from [27] are based on a kind of attention mechanism 

different from that in this work. Therefore, we conduct a horizontal comparison on dif-

ferent spatial feature extraction modules, including GAT, MS-GAT, the above-stated 

SA, and the proposed PSA. The experimental results are shown in Figure 4. 

We evaluate the final Labanotation generation performance on both datasets of 

LabanSeq16 and LabanSeq48 for the four methods. All the compared networks share 

the same input data and the remaining encode-decoder structures use the same Trans-

formers. From Figure 4, we can see that the proposed PSA module performs the best. 

The SA module, which simply extracts spatial feature using MHA from the whole skel-

eton, does not show advantages over MS-GAT. This indicates that the increase of ac-

curacy mostly comes from the part-specific design. With the proposed PSA module, 

we can obtain more distinguishable human-body spatial features by learning at the level 

of body parts. The experimental results demonstrate the effectiveness of the proposed 

PSA module for the representation of flexible limb movements. 

Qualitative results. Finally, we demonstrate an example of the final output Labanota-

tion score with generated Laban symbols in the support column for a series of lower 

limb movements, as in Figure 5. The motion sequence contains four steps: forward (left 

foot), right-forward (right foot), right-forward (left foot), and forward (right foot). The 
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generated Laban symbols written in the support columns accurately reproduce the 

above movements. 

 

Fig. 5. An example of output Labanotation score composed of a few Laban symbols, which are 

generated from the motion capture data of several walking movements. 

5 Conclusion 

In this paper, we propose a new Transformer model based on novel Part-Specific At-

tention Networks (PSA-Transformer) to automatically generate Labanotation scores in 

support columns from motion capture data. The proposed PSA extracts and aggregates 

the features extracted at part-level to obtain a better representation of the flexible dance 

limb movements. With the self-attention mechanism of the Encoder-Decoder architec-

ture, the temporal dependencies in the motion sequence are captured. Extensive exper-

iments show that the proposed method can generate Labanotation scores at higher ac-

curacy and outperform the state-of-the-art methods in the automatic Labanotation gen-

eration task. 
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