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Abstract. Multivariate time series forecasting (MTSF) plays a crucial role in var-

ious applications by predicting future values based on historical data across mul-

tiple variates. Although deep learning models have achieved remarkable success 

in MTSF tasks, they often face challenges related to data scarcity. Data augmen-

tation, which enriches the training data, has emerged as a promising technique to 

improve forecasting accuracy. However, preserving temporal dependencies in 

augmented data remains a significant challenge. In this paper, we introduce Data 

Augmented Multi-Layer Perceptrons (DAMLP), a novel MTSF framework that 

integrates a Data Augmentation (DA) module and a simple yet effective Multi-

Layer Perceptrons (MLP) architecture. Our DA module enhances the training da-

taset by increasing the frequency of time series with high correlations to others 

while reducing the frequency of low-correlation series, thus mitigating the inter-

ference on the model's forecasting accuracy caused by low-correlation series. To 

efficiently utilize the augmented dataset, we use a simple MLP architecture that 

provides an efficient solution without sacrificing forecasting performance. Our 

experimental results on multiple real-world datasets demonstrate that DAMLP 

outperforms state-of-the-art models with less memory usage and training time. 

Our approach highlights the potential of leveraging correlation information to 

improve the accuracy and efficiency of MTSF models. 
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1 Introduction 

Multivariate time series forecasting (MTSF) is a task that predicts future values based 

on sequential historical data of multiple variates, which has a wide range of applications 

in various fields such as [1-9]. In the past, traditional statistical models like ARIMA 

[10] and ARCH [11] were commonly utilized for time series forecasting. These models 

are based on specific assumptions and are simple, intuitive, and useful for identifying 

basic patterns in data. However, multivariate time series exhibit complex inter-series 

relationships and temporal dependencies, which makes MTSF task highly challenging 

and exceeding the capabilities of classical statistical methods. Recently, the success of 

Deep Learning has led to many deep time series forecasting models that can flexibly 

learn the complex relationships within time series and achieve remarkable results in 

MTSF tasks. These include RNN-based models [12, 13], CNN-based models [14-16], 

Transformer-based models [17-20], MLP-based models [21-23], Linear-based models 

[24-26], etc. 

All of these deep forecasting models rely heavily on data and their performance often 

improves as the size of the training dataset increases [9, 27-29]. However, compared to 

fields like Computer Vision (CV) and Natural Language Processing (NLP), time series 

datasets are constrained by their limited available data with shorter timesteps and fewer 

variables. Therefore, as a critical strategy for enriching time series datasets, data aug-

mentation is a promising solution to enhance the forecasting accuracy [5, 7, 30]. One 

of the primary challenges in time series data augmentation is how to preserve the tem-

poral dependencies. Data augmentation techniques must ensure that synthetic data 

maintains these dependencies accurately [31]. If the temporal structures are not ade-

quately preserved, the performance of forecasting models may degrade [32]. On the 

other hand, the synthetic data should closely resemble real-world observations to ensure 

that models trained on augmented data generalize effectively. Poorly generated syn-

thetic data can introduce biases and inaccuracies, leading to unreliable model outcomes 

[33].  

Therefore, we directly utilize the original series to augment the dataset without mod-

ifying the original data through methods such as jittering or scaling, ensuring the quality 

of the augmented data while preserving temporal dependencies. Specifically, to directly 

utilize the original data for data augmentation, it is crucial to appropriately leverage the 

relationships between different series. Many past methods trained models directly on 

the original datasets where all series appear with the same frequency, in such cases the 

low-correlation series interfere with the forecasting performance of the high-correlation 

series, thereby degrading the overall performance of the model. For example, Fig. 1a 

shows the prediction results of iTransformer [20] for each series in the weather dataset. 

The MSEs of the five series with low correlations to others (series 15, 12, 13, 4, and 0) 

are much higher than the average MSE, while the MSEs of series that are highly corre-

lated with other series are lower than the average MSE. This result implies that low-

correlation series disrupt the forecasting performance of high-correlation series. In-

spired by this example, we should adjust the frequencies of each series in the augmented 

dataset to reduce the influence of the low-correlation series, which is helpful to improve 

the overall forecasting performance. 
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(a) MSE of each variate in the Weather dataset. 

 

(b) The correlation of series in the 

Weather dataset. 

Fig. 1. The prediction performance of iTransformer is interfered by the low-correlated series in 

the Weather dataset. (a) Displays the MSE of each variate on the test set (blue bars) along with 

the mean MSE (red horizontal line), with the results for series 20 and 11 zoomed in for clarity. 

These two series exhibit much lower MSEs compared to the others, as outliers cause the values 

of these series to approach zero after normalization, despite their weak correlations with the re-

maining series. (b) Shows the Pearson correlation coefficient of each pair of series. 

On the other hand, the model architecture often involves a trade-off between accu-

racy and performance. For instance, Transformer-based models can learn more com-

plex temporal dependencies through self-attention mechanisms, but they require more 

memory usage and training time. This limitation hinders their ability to utilize longer 

historical information for future predictions. Conversely, linear models [24-26] fail to 

capture intricate nonlinear relationships although they have fewer parameters and are 

more efficient. Consequently, their performances in MTSF with complex relationships 

are inferior to those of more sophisticated models. 

Based on the above motivations, in this paper, we propose a forecasting framework 

to balance the forecasting accuracy and computational efficiency. Technically, we pro-

pose Data Augmented Multi-Layer Perceptrons (DAMLP) with a Data Augmentation 

(DA) module that enhances the training data without additional transformations of the 

original data. This module increases the frequency of time series with higher correla-

tions to other variates during training while reducing the frequency of those with lower 

correlations, thereby mitigating the interference on the model's forecasting accuracy 

caused by low-correlation series. To efficiently handle the augmented dataset, we em-

ploy a MLP architecture as the core module for the series representation. The experi-

mental results confirm the proposed DAMLP achieves superior performance on real-

world forecasting datasets. Our main contributions are as follows: 

1. We propose a simple but effective Data Augmentation (DA) module that does not 

modify the original data, ensuring the quality of the augmented data while preserving 

temporal dependencies. By adjusting the frequencies of each series in the training 



 

process, this module helps mitigate the interference on the model’s forecasting ac-

curacy caused by low-correlation series. 

2. We propose a MTSF framework called DAMLP. It takes a simple MLP architecture 

as its core module for the series representation, which is quite simple but can handle 

the augmented training data more efficiently while preserving the high forecasting 

accuracy. 

3. We conduct extensive experiments on eight multivariate datasets and the results 

show that DAMLP outperforms state-of-the-art baselines. Our method achieves im-

pressive results with less memory usage and training time than many mainstream 

models. 

2 Related Work 

2.1 Time Series Forecasting 

Deep learning methods have gained prominence in time series forecasting due to their 

ability to capture complex time dependencies. These include RNN-based models like 

DeepAR [12] and WITRAN [13], CNN-based models like SCINet [14], TimesNet [15], 

and ModernTCN [16], Transformer-based models like Autoformer [17], FEDformer 

[18], PatchTST [19], iTransformer [20], etc. However, these methods have several lim-

itations. CNN-based models struggle to capture long-term dependencies due to their 

limited receptive field. RNN-based models are inefficient at utilizing training resources 

because of their inability to parallelize computations. Although Transformer-based 

models exhibit powerful forecasting performance, their quadratic computational and 

memory complexity results in significant memory overhead and slow inference speeds.  

Recently, many studies have adopted linear-based models with promising results in-

cluding DLinear [24], RLinear [25], SparseTSF [26], etc. However, Linear-based mod-

els face limitations when applied to multivariate time series with complex temporal 

dependencies. On the other hand, MLP-based models can implicitly learn nonlinear 

relationships, and they often achieve comparable performance to more complex mod-

els, while significantly reducing computational costs. For example, Timemixer [21] 

combines multi-scale information to handle intricate temporal variations, U-Mixer [23] 

adopts the U-Net architecture to merge low- and high-level features, resulting in more 

comprehensive data representations, and FITS [22] manipulates the series through in-

terpolation in the complex frequency domain. These studies highlight the effectiveness 

of MLP-based networks in time series forecasting tasks and inspire us to take MLP as 

our main module to learn temporal dependencies more efficiently. 

2.2 Data Augmentation 

Data augmentation, as an effective way to enhance the size and quality of the training 

data, is an important technique to improve the performance of deep time series fore-

casting models [30]. The transformations of the original series are the most straightfor-

ward data augmentation methods for time series data. The window slicing method [34] 

is simple and effective for extracting segments of the time series, but it may not capture 
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complex temporal dependencies. Window warping [35] generates new samples by 

compressing or extending specific time ranges, but it requires careful handling to main-

tain data consistency. Noise injection [36] improves model robustness by adding small 

amounts of noise, but it must be carefully adjusted to avoid introducing artifacts.  

In this paper, different from the methods mentioned above, we propose a simple yet 

effective data augmentation method for the training data without modifying the original 

series such that our training process can focus more on series with stronger correlations 

with others. 

3 Methods 

3.1 Problem Definition 

In time series forecasting tasks, given a collection of multivariate time series samples 

with look-back window 𝐿: 𝑿 = (𝒙1,:, . . . , 𝒙𝐿,:)
⊤ = (𝒙:,1, . . . , 𝒙:,𝐷) ∈ ℝ𝐿×𝐷  where each 

𝒙𝑡,: ∈ ℝ𝐷 at time step 𝑡 is a vector of dimension 𝐷 and 𝑿:,𝑖 ∈ ℝ𝐿 is the 𝑖-th variate of 

the 𝐷 historical series, the goal of the forecasting model is to predict the 𝐻 future values 

𝒀 = (𝒙𝐿+1,:, . . . , 𝒙𝐿+𝐻,:)
⊤ ∈ ℝ𝐻×𝐷 where each 𝒙𝐿+𝑡,: at time step 𝐿 + 𝑡 is a vector of di-

mension 𝐷  and ⊤  is the transpose symbol for matrix and vector. We also define 

𝑿𝑡𝑟𝑎𝑖𝑛 = (𝑋1, ⋯ , 𝑋𝐷) ∈ ℝ𝑇×𝐷 as the training data, where 𝑇 is the length of the series 

in the training data, and for 𝑑 = 1,⋯ , 𝐷,  𝑋𝑑 ∈ ℝ𝑇 is the 𝑑-th series with length 𝑇. 

3.2 Correlation Coefficients 

In statistics, Pearson Correlation Coefficient (PCC) [37] is one of the correlation coef-

ficients that measures correlation between two sets of data. When applied to a popula-

tion (meaning the case in which we treat variates 𝑋 and 𝑌 as random variables), it is 

defined as follows. 

Definition 1. Given a pair of random variables (𝑋, 𝑌), the Pearson correlation coeffi-

cient is defined as: 

 𝜌(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋,𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
, (1) 

where 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))]  is the covariance of 𝑋  and 𝑌 , 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋 − 𝐸(𝑋))2  is the variance of 𝑋 , and 𝑉𝑎𝑟(𝑌) = 𝐸(𝑌 − 𝐸(𝑌))2  is the 

variance of 𝑌.  

When applied to the case of time series sample, it is commonly represented by 𝑟𝑥𝑦 

and may be referred to as the sample correlation coefficient or the sample Pearson cor-

relation coefficient, which is defined as follows. 

Definition 2. Given a pair of time series data 𝑥 = {𝑥𝑡}𝑡=1
𝑇  and 𝑦 = {𝑦𝑡}𝑡=1

𝑇  of length 𝑇 

, the sample Pearson correlation coefficient is defined as: 

 𝑟𝑥𝑦 =
∑ (𝑥𝑡−𝑥̅)

𝑇
𝑡=1 (𝑦𝑡−𝑦̅)

√∑ (𝑥𝑡−𝑥̅)
2𝑇

𝑡=1 ∑ (𝑦𝑡−𝑦̅)
2𝑇

𝑡=1

, (2) 



 

where 𝑥̅ =
1

𝑇
∑ 𝑥𝑡
𝑇
𝑡=1  is the sample mean of {𝑥𝑡}𝑡=1

𝑇 , and analogously for 𝑦̅. 

In a multivariate time series dataset where 𝑥𝑖 and 𝑥𝑗 represent the 𝑖-th and 𝑗-th series 

respectively, we also denote 𝑟𝑖𝑗 = 𝑟𝑥𝑖𝑥𝑗  as the correlation coefficient of 𝑥𝑖 and 𝑥𝑗. 

3.3 DAMLP 

Fig. 2 illustrates the overall architecture of our work for time series forecasting, com-

prising four core components: DA, a data augmentation module; Norm and DeNorm 

[37], the reversible normalization and de-normalization as a pair to alleviate the distri-

bution shift problem; MLP, a core module to learn the time dependencies of the series; 

Projection, a linear layer that projects the output of MLP to the forecasting feature 

space. 

 

Fig. 2. The overall architecture of our work for time series forecasting. The pipeline comprises 

DA, Norm, MLP, Projection, and DeNorm for the training data while the DA module will be 

removed for the valid and test data. 

Data Augmentation Module. As shown in Fig. 2, for the training data, our DAMLP 

pipeline starts with the Data Augmentation (DA) module, which refines the input data 

by focusing on the most relevant inter-series relationships. It is also shown in Fig. 2 

that the validation and test data will not be transformed through the DA module since 

the former is only used to determine when to stop training to prevent over-fitting, while 

the latter is used to evaluate the model's performance. The details about the DA module 

are shown in Fig. 3 and the process of DA can be formulated as follows: 

 𝑿𝑡𝑟𝑎𝑖𝑛
′ = 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐹𝑖𝑛𝑑𝑒𝑟(𝑿𝑡𝑟𝑎𝑖𝑛), (3) 

 𝓧𝑡𝑟𝑎𝑖𝑛 , 𝓨𝑡𝑟𝑎𝑖𝑛 = 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑙𝑖𝑑𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤(𝑿𝑡𝑟𝑎𝑖𝑛
′ ). (4) 
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Fig. 3. Data Augmentation Module. 

The NeighborFinder is used to find the most related series for each series and place 

these series behind the original series one by one, and the IndependentSlidingWindow 

is to split each series into sliding windows. To be more specific, by calculating the 

correlation coefficient 𝑟𝑖𝑗(𝑗 = 1,⋯ , 𝐷, 𝑗 ≠ 𝑖) for each series 𝑋𝑖 ∈ 𝑿𝑡𝑟𝑎𝑖𝑛  and ordering 

them by their absolute value in descending order, we can obtain the 𝑘 most related se-

ries {𝑋𝑖
(𝑗)
}𝑗=1
𝑘  for each series, where 𝑋𝑖

(𝑗)
∈ ℝ𝑇 denotes the series that is the 𝑗-th most 

correlated with 𝑋𝑖. Then we place these series one after another behind the original 

series to obtain a new series 𝑋𝑖′ = (𝑋𝑖
⊤, 𝑋𝑖

(1)⊤
, ⋯ , 𝑋𝑖

(𝑘)⊤
)⊤ ∈ ℝ𝑇(𝑘+1). After processing 

each series in this way, we obtain the augmented training dataset 𝑿𝑡𝑟𝑎𝑖𝑛
′ =

(𝑋1′, ⋯ , 𝑋𝐷′) ∈ ℛ𝑇(𝑘+1)×𝐷, which is the output of the NeighborFinder. Then we take 

the IndependentSlidingWindow to split each series in 𝑋𝑖′  (i.e., 𝑋𝑖
⊤  and 𝑋𝑗

(1)⊤
, 𝑗 =

1,⋯ , 𝑘) into 𝑆 subseries, with each containing a look-back and a horizon window, 

which results in an input 𝓧𝑡𝑟𝑎𝑖𝑛 = {𝑿1 , ⋯ , 𝑿𝑆(𝑘+1)} ∈ ℝ𝑆(𝑘+1)×𝐿×𝐷  and an output 

𝓨𝑡𝑟𝑎𝑖𝑛 = {𝒀1, ⋯ , 𝒀𝑆(𝑘+1)} ∈ ℝ𝑆(𝑘+1)×𝐻×𝐷 , where 𝑆 = 𝑇 − 𝐿 − 𝐻 + 1 , 𝐿  and 𝐻  are 

the look-back window length and horizon window length respectively, and 𝑿𝑖 ∈ ℝ𝐿×𝐷 

and 𝒀𝑖 ∈ ℝ𝐻×𝐷 are the input and output of the 𝑖-th sample respectively.  

By this dedicatedly designed DA module, the series that are more correlated with 

others appear more frequently while those with lower relevance appear less often in the 

subsequent training phase, which is capable of mitigating the interference of the low-

correlation series for the overall forecasting performance.  

Norm and DeNorm. Before the series are fed into the MLP module, we take RevIN 

[38], a simple yet effective and model-agnostic technique, to normalize the input in the 

look-back window. The reversed transformation is also used to denormalize the output 

of the projection layer to get the final prediction result. The normalization and de-nor-

malization mitigate the distribution shift effect between the training and testing data, 

corresponding to the Norm and DeNorm module in Fig. 2 respectively, which are for-

mulated as follows: 

 𝑿̃𝑖 = 𝑅𝑒𝑣𝐼𝑁(𝑿𝑖),  (5) 

 𝒀̂𝑖 = 𝑅𝑒𝑣𝐼𝑁−1(𝒀̃𝑖),  (6) 

where 𝑿̃𝑖 ∈ ℝ𝐿×𝐷 is the normalized input in the 𝑖-th look-back window, 𝒀̂𝑖 ∈ ℝ𝐿×𝐷 is 

the denormalized final forecasting result, 𝒀̃𝑖 ∈ ℝ𝐿×𝐷  is the output of the projection 



 

layer introduced in the following subsection, 𝑅𝑒𝑣𝐼𝑁(⋅) denotes the instance normali-

zation operation, and 𝑅𝑒𝑣𝐼𝑁−1(⋅) is the inverse transformation of 𝑅𝑒𝑣𝐼𝑁(⋅) with the 

same parameters. 

MLP and Projection layer. We separate the MLP and the projection layer into two 

parts, so we can easily stack multiple MLPs to extend the network or replace the MLP 

with other blocks such as CNN or Transformer without modifying the projection layer 

if necessary, which makes our framework more flexible and user-friendly. 

The MLP layer serves as the core module for feature extraction, processing the aug-

mented input data to learn effective series representations. By introducing nonlinear 

activation functions, the MLP layer is capable of capturing complex temporal depend-

encies within multivariate time series, thus maintaining sufficient capacity to identify 

meaningful patterns in the data while achieving highly-efficient training and inference. 

Additionally, the MLP architecture can easily accommodate different task requirements 

by adjusting the number of layers or the hidden dimension size. The MLP module con-

sists of two linear layers with an intermediate RELU activation function, which is for-

mulated as follows: 

 𝒁𝑖 = 𝑀𝐿𝑃(𝑿̃𝑖) = 𝑾2𝜎(𝑾1𝑿̃
𝑖 + 𝒃𝟏) + 𝒃2,  (7) 

where 𝒁𝑖 ∈ ℝ𝐿×𝐷 denotes the output of the MLP, 𝑾1 ∈ ℝ𝑑×𝐿, 𝑾2 ∈ ℝ𝐿×𝑑, 𝒃1 ∈ ℝ𝑑, 

𝒃2 ∈ ℝ𝐿, 𝑑 is the dimension of the hidden layer, and 𝜎(⋅) is the point-wise RELU ac-

tivation function. Note that the bias terms 𝒃1  and 𝒃2  are 1-dimensional vectors, but 

they will be broadcasted into ℝ𝐿×𝐷 along the second dimension during the addition op-

eration to enable the correct execution of the subsequent calculations. 

The Projection layer maps the output of the MLP to the forecasting feature space. 

This ensures that the predictions are aligned with the length of the horizon window. It 

is a linear layer formulated as follows: 

 𝒀̃𝑖 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝒁𝑖) = 𝑾3𝒁
𝑖 + 𝒃3, (8) 

where 𝑾3 ∈ ℝ𝐻×𝐿, and 𝒃3 ∈ ℝ𝐻 is a 1-dimensional vector for the same reason as 𝒃1 

and 𝒃2. 

4 Experiments 

4.1 Experimental Settings 

Datasets. We evaluate the forecasting performance of our model on eight popular real-

world datasets, including Electricity (ECL), Traffic, Weather, Solar, and 4 PEMS da-

tasets (PEMS03, PEMS04, PEMS07, PEMS08) used by iTransformer [20].  

Table 1 provides statistical information of those eight real-world datasets. 
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Table 1. Detailed dataset descriptions. 

Dataset # of variates Timesteps Data Partition Frequency 

ECL 321 26304 7:1:2 Hourly 
Traffic 862 17544 7:1:2 Hourly 

Weather 21 52696 7:1:2 10min 

Solar 137 52560 7:1:2 10 min 
PEMS03 358 26208 6:2:2 5 min 

PEMS04 307 16992 6:2:2 5 min 

PEMS07 883 28224 6:2:2 5 min 

PEMS08 170 17856 6:2:2 5 min 

Evaluation metrics. Following previous works [20], we use Mean Squared Error 

(MSE) and Mean Absolute Error (MAE), which are separately computed between the 

prediction and the ground truth on the test set as the evaluation metric for our multivar-

iate time series forecasting task. 

Baselines. We select SOTA Transformer-based models for MTSF including iTrans-

former [20] and Crossformer [39]. We also incorporate TiDE [40], which is one of the 

SOTA MLP-based models, for comparison purposes. Recently, DLinear [24] demon-

strated that simple linear models can outperform these complex methods, hence we take 

DLinear as an important baseline. Besides, we also conduct a comparison with 

TimesNet [15], a CNN-based model, to further evaluate the performance of our method 

compared to different types of models. 

Experimental Setup. All experiments in this study were implemented using PyTorch 

[41] and conducted using an NVIDIA GeForce RTX 3090 24GB GPU. We utilize 

ADAM [42] with L2 loss for the model optimization. We set the same historical look-

back window size of 𝐿 = 336 for all models on all datasets. The predicting length is 

set to 𝐻 ∈ {96,192,336,720}. The hyperparameters of our model are obtained from the 

grid search. To be specific, we explore the learning rate within the set 

{0.01,0.001,0.0005,0.0001}, the dropout rate within {0.1,0.2,0.3,0.5}, the batch size 

within {16,32,64,128}, and the hidden dimension 𝑑 within {32,64,128,256,512}, and 

the layers within {1,2,3,4}. Considering the dataset size and computational resources, 

we set the training epochs to 10 for the short-term forecasting (PEMS) datasets and to 

30 for the other datasets. 

Additionally, we apply an early-stopping strategy with a patience of 5 epochs to 

prevent overfitting, ensuring that the final model generalizes well to unseen data. 

4.2 Main Results 

Table 2 shows the multivariate forecasting results. Overall, our model outperforms all 

baseline methods in almost all the cases. Quantitatively, compared with the DLinear 

model, DAMLP achieves an overall 44.6% reduction in MSE and 34.4% on MAE , 



 

with even more significant improvement in short-term forecasting, as its MLP module 

can capture more complex nonlinear temporal dependencies. It also outperforms the 

TimesNet model with a 24.1% reduction in MSE and 14.6% in MAE. In addition, com-

pared with Transformer-based models, DAMLP can still outperform them in general, 

especially for the longer horizon windows (ECL, Traffic, Weather, Solar). This phe-

nomenon can be attributed to DAMLP’s specialized Data Augmentation (DA) module, 

which strategically increases the representation frequency of highly correlated series, 

enabling the model to better capture stable long-term patterns and effectively mitigate 

interference from less relevant series. Consequently, DAMLP achieves robust and reli-

able long-horizon forecasting, reflecting its capability to leverage correlation infor-

mation for enhanced predictive accuracy.  

Table 2. Multivariate forecasting results with horizon 𝐻 ∈ {12,24,48,96} for PEMS and 𝐻 ∈
{96,192,336,720} for others. The best results are in bold and the second best are underlined. 

Models 
DAMLP iTransformer Crossformer TiDE TimesNet DLinear 

(Ours) 2024 2023 2023 2023 2023 

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ECL 

96 0.133  0.230  0.148  0.240  0.219  0.314  0.237  0.329  0.168  0.272  0.197  0.282  

192 0.152  0.247  0.162  0.253  0.231  0.322  0.236  0.330  0.184  0.289  0.196  0.285  

336 0.169  0.264  0.178  0.269  0.246  0.337  0.249  0.344  0.198  0.300  0.209  0.301  

720 0.208  0.298  0.225  0.317  0.280  0.363  0.284  0.373  0.220  0.320  0.245  0.333  

Avg 0.166  0.260  0.178  0.270  0.244  0.334  0.251  0.344  0.192  0.295  0.212  0.300  

Traffic 

96 0.375  0.262  0.395  0.268  0.522  0.290  0.805  0.493  0.593  0.321  0.650  0.396  

192 0.394  0.273  0.417  0.276  0.530  0.293  0.756  0.474  0.617  0.336  0.598  0.370  

336 0.405  0.277  0.433  0.283  0.558  0.305  0.762  0.477  0.629  0.336  0.605  0.373  

720 0.438  0.297  0.467  0.302  0.589  0.328  0.719  0.449  0.640  0.350  0.645  0.394  

Avg 0.403  0.277  0.428  0.282  0.550  0.304  0.760  0.473  0.620  0.336  0.625  0.383  

Weather 

96 0.160  0.208  0.174  0.214  0.158  0.230  0.202  0.261  0.172  0.220  0.196  0.255  

192 0.205  0.249  0.221  0.254  0.206  0.277  0.242  0.298  0.219  0.261  0.237  0.296  

336 0.257  0.290  0.278  0.296  0.272  0.335  0.287  0.335  0.280  0.306  0.283  0.335  

720 0.332  0.343  0.358  0.347  0.398  0.418  0.351  0.386  0.365  0.359  0.345  0.381  

Avg 0.239  0.272  0.258  0.278  0.259  0.315  0.271  0.320  0.259  0.287  0.265  0.317  

Solar 

96 0.194  0.244  0.203  0.237  0.310  0.331  0.312  0.399  0.250  0.292  0.290  0.378  

192 0.214  0.264  0.233  0.261  0.734  0.725  0.339  0.416  0.296  0.318  0.320  0.398  

336 0.229  0.274  0.248  0.273  0.750  0.735  0.368  0.430  0.319  0.330  0.353  0.415  

720 0.219  0.272  0.249  0.275  0.769  0.765  0.370  0.425  0.338  0.337  0.356  0.413  

Avg 0.214  0.263  0.233  0.262  0.641  0.639  0.347  0.417  0.301  0.319  0.330  0.401  

PEMS03 

12 0.063  0.167  0.071  0.174  0.090  0.203  0.178  0.305  0.085  0.192  0.122  0.243  

24 0.081  0.186  0.093  0.201  0.121  0.240  0.257  0.371  0.118  0.223  0.201  0.317  

48 0.108  0.212  0.125  0.236  0.202  0.317  0.379  0.463  0.155  0.260  0.333  0.425  

96 0.132  0.233  0.164  0.275  0.262  0.367  0.490  0.539  0.228  0.317  0.457  0.515  

Avg 0.096  0.200  0.113  0.221  0.169  0.281  0.326  0.419  0.147  0.248  0.278  0.375  

PEMS04 

12 0.080  0.187  0.078  0.183  0.098  0.218  0.219  0.340  0.087  0.195  0.148  0.272  

24 0.097  0.204  0.095  0.205  0.131  0.256  0.292  0.398  0.103  0.215  0.224  0.340  

48 0.123  0.232  0.120  0.233  0.205  0.326  0.409  0.478  0.136  0.250  0.355  0.437  

96 0.146  0.248  0.150  0.262  0.402  0.457  0.492  0.532  0.190  0.303  0.452  0.504  

Avg 0.111  0.218  0.111  0.221  0.209  0.314  0.353  0.437  0.129  0.241  0.295  0.388  

PEMS07 

12 0.058  0.162  0.067  0.165  0.094  0.200  0.173  0.304  0.082  0.181  0.115  0.242  

24 0.073  0.181  0.088  0.190  0.139  0.247  0.271  0.383  0.101  0.204  0.210  0.329  

48 0.094  0.202  0.110  0.215  0.311  0.369  0.446  0.495  0.134  0.238  0.398  0.458  

96 0.115  0.221  0.139  0.245  0.396  0.442  0.628  0.577  0.181  0.279  0.594  0.553  

Avg 0.085  0.191  0.101  0.204  0.235  0.315  0.380  0.440  0.124  0.225  0.329  0.395  

PEMS08 

12 0.078  0.175  0.079  0.182  0.165  0.214  0.227  0.343  0.112  0.212  0.154  0.276  

24 0.104  0.195  0.115  0.219  0.215  0.260  0.318  0.409  0.141  0.238  0.248  0.353  

48 0.141  0.217  0.186  0.235  0.315  0.355  0.497  0.510  0.198  0.283  0.440  0.470  

96 0.199  0.238  0.221  0.267  0.377  0.397  0.721  0.592  0.320  0.351  0.674  0.565  

Avg 0.131  0.206  0.150  0.226  0.268  0.307  0.441  0.464  0.193  0.271  0.379  0.416  
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A closer examination of the results in Table 2 reveals three important insights: 1) in 

high-dimensional datasets such as ECL (321 variates) and Traffic (862 variates), 

DAMLP consistently outperforms other models. This suggests that DAMLP is partic-

ularly effective in mitigating noise and capturing stable global trends under high-di-

mensional conditions. 2) The DA module is also capable of reinforcing meaningful 

seasonal patterns by emphasizing strongly correlated variables, thereby enhancing 

long-term temporal features consistency. This is particularly beneficial for datasets 

characterized by clear or pronounced periodic behaviors — a property exhibited to var-

ying degrees by all the datasets use in this paper. 3) In short-term traffic prediction 

datasets (PEMS), while DAMLP still achieves the lowest average errors in most fore-

casting horizons, its performance on PEMS04 is slightly inferior to that of iTrans-

former. We speculate that this may be due to the local nature of fluctuations, which 

could interfere with the results of inter-series correlation used in the data augmentation 

process. Nevertheless, all these results underscore the generalizability of the proposed 

method across both short- and long-term forecasting tasks, and these findings validate 

DAMLP’s ability to adaptively emphasize relevant series through its correlation aware 

data augmentation, which in turn improves the model’s representation of long-term de-

pendencies and boosts its predictive accuracy across a wide range of  multivariate time 

series. 

In addition, the standard deviation of DAMLP’s results is very small. We report the 

results under three runs with different random seeds in Table 3, which shows that the 

performance of DAMLP is stable. In most cases, the standard deviation across 5 runs 

is significantly small (within 0.001), which strongly indicates the robustness of 

DAMLP. 

Table 3. Robustness of DAMLP performance under different horizon. The results are obtained 

from five random seeds. 

Dataset Metric 96 192 336 720 

ECL 
MSE 0.133±0.000 0.152±0.001 0.169±0.000 0.208±0.000 

MAE 0.231±0.001 0.248±0.001 0.265±0.001 0.297±0.001 

Traffic 
MSE 0.375±0.002 0.394±0.001 0.405±0.001 0.439±0.004 

MAE 0.263±0.002 0.272±0.002 0.278±0.001 0.299±0.004 

Weather 
MSE 0.160±0.000 0.205±0.000 0.257±0.001 0.332±0.001 

MAE 0.208±0.000 0.249±0.000 0.290±0.000 0.343±0.000 

Solar 
MSE 0.194±0.008 0.211±0.007 0.227±0.004 0.217±0.002 

MAE 0.244±0.005 0.262±0.006 0.270±0.003 0.269±0.003 

PEMS03 
MSE 0.063±0.000 0.082±0.001 0.109±0.001 0.133±0.001 

MAE 0.167±0.000 0.187±0.002 0.213±0.002 0.233±0.001 

PEMS04 
MSE 0.080±0.000 0.097±0.001 0.123±0.001 0.145±0.001 

MAE 0.186±0.001 0.204±0.001 0.231±0.002 0.248±0.002 

PEMS07 
MSE 0.059±0.001 0.073±0.001 0.094±0.001 0.114±0.001 

MAE 0.161±0.003 0.179±0.002 0.200±0.002 0.220±0.002 

PEMS08 
MSE 0.079±0.002 0.109±0.009 0.144±0.003 0.202±0.004 

MAE 0.176±0.002 0.201±0.008 0.220±0.003 0.242±0.004 



 

4.3 Ablation Studies 

 To validate the soundness of our design in DAMLP, we perform an ablation study 

and report the results across all datasets. The results are shown in Table 4 and Table 5. 

Across all datasets, DAMLP consistently outperforms the version without the Data 

Augmentation (DA) module in terms of both MSE (Mean Squared Error) and MAE 

(Mean Absolute Error). The improvement brought by the DA module is consistent 

across diverse datasets, highlighting the robustness and generalizability of the DA mod-

ule in enhancing forecasting performance for different types of multivariate time series. 

Besides, from Table 5, we find that our DA module’s impact is evident in both short 

and long prediction windows, but its effect is more significant for longer horizon win-

dows. This effect may be explained by the fact that short-term predictions mainly con-

cern local fluctuations, where data augmentation has less influence. In contrast, long-

term predictions rely on more stable patterns, such as trends and seasonality. Our DA 

module provides the model with more reliable data to learn these long-term dependen-

cies, thereby improving its performance for longer horizons. 

Table 4. Ablation studies on ECL, Traffic, Solar, and Weather datasets. 

Design 
Hori

zon 

ECL Traffic Solar Weather 

MSE MAE MSE MAE MSE MAE MSE MAE 

original 

96 0.133  0.230  0.375  0.262  0.194  0.244  0.160  0.208  

192 0.152  0.247  0.394  0.273  0.214  0.264  0.205  0.249  

336 0.169  0.264  0.405  0.277  0.229  0.274  0.257  0.290  

720 0.208  0.298  0.438  0.297  0.219  0.272  0.332  0.343  

Avg 0.166  0.260  0.403  0.277  0.214  0.263  0.239  0.272  

w/o DA 

96 0.136  0.233  0.379  0.266  0.204  0.252  0.178  0.229  

192 0.152  0.247  0.401  0.278  0.218  0.265  0.220  0.264  

336 0.168  0.263  0.417  0.288  0.222  0.272  0.267  0.298  

720 0.209  0.298  0.449  0.308  0.234  0.282  0.335  0.345  

Avg 0.166  0.260  0.412  0.285  0.219  0.268  0.250  0.284  

Table 5. Ablation studies on four PEMS datasets. 

Design 
Hori-
zon 

PEMS03 PEMS04 PEMS07 PEMS08 

MSE MAE MSE MAE MSE MAE MSE MAE 

original  

12 0.063  0.167  0.080  0.187  0.058  0.162  0.078  0.175  

24 0.081  0.186  0.097  0.204  0.073  0.181  0.104  0.195  

48 0.108  0.212  0.123  0.232  0.094  0.202  0.141  0.217  

96 0.132  0.233  0.146  0.248  0.115  0.221  0.199  0.238  

Avg 0.096  0.200  0.111  0.218  0.085  0.191  0.131  0.206  

w/o DA  

12 0.068  0.174  0.083  0.190  0.062  0.166  0.082  0.182  

24 0.086  0.192  0.104  0.213  0.083  0.192  0.112  0.208  

48 0.119  0.224  0.140  0.246  0.111  0.226  0.165  0.247  

96 0.146  0.244  0.169  0.272  0.135  0.248  0.229  0.280  

Avg 0.105  0.209  0.124  0.230  0.098  0.208  0.147  0.229  
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4.4 Model Analysis 

The number of the most correlated series. The number of the most correlated series 

k plays a significant role in the Data Augmentation module. In this part, we conduct 

experiments on the Weather dataset to investigate the impact of k on forecasting per-

formance, with the results shown in Fig. 4. The figure demonstrates that as 𝑘 increases, 

there is a sharp metric downtrend at the very beginning followed by a gradual stabili-

zation. However, the result for 𝑘 = 20 is worse than that for 𝑘 = 19. This is because 

when 𝑘 = 20, the frequency of occurrence of each variate in the data-augmented train-

ing phase is exactly the same, as illustrated in Fig. 5. As a result, series with different 

correlation levels are learned the same number of times during training, which leads to 

poorer prediction results. This justifies our motivation to increase the frequencies of 

high-correlation series during training. 

 

Fig. 4. MSE and MAE of filters under different bandwidths on the Weather dataset. 

 

Fig. 5. The frequency with which each variate appears during training for each 𝑘. Each row cor-

responds to a variate, arranged in descending order of its correlation with other series. The 𝑘-th 

column represents the frequency at which each series appears during training when selecting the 

top-𝑘 series for data augmentation, with these frequencies normalized to the range [0, 1]. When 

𝑘 = 0 or 𝑘 = 20, each series appears with the same frequency: once for 𝑘 = 0 and 21 times for 

𝑘 = 20. 



 

Therefore, our DA module offers a significant advantage over training models when 

𝑘 > 0. However, as 𝑘 increases, the marginal effect of this advantage gradually dimin-

ishes. It is also important to note that the training cost with large k cannot be ignored in 

practical applications even when MLP- or Linear-based models are used, especially in 

high-dimensional datasets such as ECL and Traffic. Thus, according to our analysis 

above, it’s reasonable and effective to choose 𝑘 = 5 for these datasets and it can yield 

better forecasting results. 

Efficiency Analysis. To comprehensively assess efficiency, we evaluate it along two 

dimensions: memory usage and training time. Specifically, we compare the efficiency 

of our DAMLP with the baselines using the ECL dataset, which contains 321 variables 

and 26,304 timestamps. The results, as shown in Fig. 6, highlight the advantages of 

DAMLP over the other models. While our approach demonstrates similar forecasting 

accuracy to iTransformer, its efficiency significantly outperforms iTransformer, with 

lower memory costs. In contrast, DLinear, although comparable to DAMLP in terms of 

memory usage and training time, exhibits much worse performance in forecasting ac-

curacy. Therefore, DAMLP offers a similar speed and memory footprint as linear mod-

els while achieving superior forecasting performance. 

 

Fig. 6. Model effectiveness and efficiency comparison on the ECL datasets. 

5 Conclusion 

In this paper, we propose DAMLP, a novel multivariate time series forecasting frame-

work that integrates a Data Augmentation (DA) module and a simple but efficient MLP 

architecture. By adjusting the frequencies of each series in training process with DA 

module, this module helps mitigate the interference on the model’s forecasting accu-

racy caused by low-correlation series. DAMLP takes a simple MLP architecture, which 
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provides an efficient solution without sacrificing forecasting performance, to efficiently 

utilize the augmented dataset. Extensive experiments on real-world datasets demon-

strate that DAMLP outperforms state-of-the-art models in both accuracy and efficiency, 

requiring less memory and training time. Our results highlight the importance of lever-

aging inter-series correlations in multivariate time series forecasting. 
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