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Abstract. Accurate option pricing remains a key challenge in financial markets. 

The Heston model, a widely adopted stochastic volatility framework, improves 

pricing performance by accounting for time-varying volatility. However, its ef-

fectiveness critically depends on the accurate calibration of model parameters. 

To address the limitations of traditional calibration methods, this study introduces 

a novel framework that applies a multi-population genetic algorithm to search for 

the optimal parameter values for the Heston model. The calibrated parameters are 

then used to generate model-implied option prices. The framework is empirically 

evaluated using option data from both the SSE 50ETF and the Hang Seng Index. 

The results show that the proposed method provides more accurate parameter 

estimates, and outperforms conventional approaches in both pricing accuracy and 

computational stability. Moreover, it exhibits consistent performance across both 

developed and emerging markets, underscoring its practical value for financial 

derivative valuation. 

Keywords: Heston Model, Multi-Population Genetic Algorithm, Option Pric-

ing, SSE 50ETF Options, Hang Seng Index Options. 

1 Introduction 

As a cornerstone of modern financial markets, option pricing continues to pose signif-

icant challenges in accurate valuation, making it a persistent focus for both academics 

and practitioners. A major milestone in this area was the introduction of the Black-

Scholes (BS) model in 1973 [1], which provided an analytical solution for pricing Eu-

ropean-style options, and laid the theoretical foundation for modern derivatives pricing. 

Despite its influence, the BS model relies on several strong assumptions: 1) asset prices 

follow a log-normal distribution; 2) options are European, and can only be exercised at 

expiration; 3) short selling is allowed; 4) there are no transaction costs; 5) there are no 

dividends during the option’s validity; 6) there are no arbitrage opportunities; and 7) 

trading is continuous. These assumptions are often violated in practice, resulting in sig-

nificant discrepancies between theoretical valuations and actual market prices. 



 

 

Moreover, the BS model is limited to European options, and does not generalize well 

to American or exotic derivatives. 

To address these limitations, numerous alternative pricing models have been intro-

duced, such as the jump diffusion model [2-5], stochastic volatility models [6-9], 

GARCH-type models [10-12], wavelet-based models [13-14], and deep learning ap-

proaches [15-17]. Among these, stochastic volatility models have gained widespread 

adoption for their ability in capturing empirical features of financial time series, includ-

ing volatility clustering and time-varying dynamics.  

The Heston model [18] is one of the most commonly adopted frameworks for mod-

eling stochastic volatility. Its primary advantage lies in modeling volatility as a mean-

reverting square root process, which aligns well with observed market behavior. Addi-

tionally, unlike many other stochastic volatility models, the Heston model offers a 

closed-form solutions for European option prices, improving computational tractability 

and facilitating practical implementation. 

As a parametric model, the calibration of the Heston framework involves estimating 

a set of six key parameters:  

Ω = {𝜃, 𝜅, 𝑉𝑡 , 𝜎, 𝜌, 𝜆}, 

where 𝜃 denotes the long-term price variance, 𝜅 represents the rate of mean reversion, 

𝑉𝑡 is the instantaneous variance, 𝜎 is the volatility of volatility, 𝜌 is the correlation co-

efficient between two Brownian motions, and 𝜆 represents the market price of volatility 

risk. The calibration objective for the Heston model is typically formulated as a nonlin-

ear least squares problem: 

𝐶𝑚𝑖𝑛 = arg min
𝛺

∑ 𝜔𝑖{𝐶𝑖
𝑃(𝛺) − 𝐶𝑖

𝑀}2,𝑛
𝑖=1                    (1)  

where 𝐶𝑖
𝑀 and 𝐶𝑖

P(𝛺) are the market-observed and model-predicted option prices, re-

spectively, 𝜔𝑖 is the sample weight, and 𝑛 denotes the number of observed options. 

Accurate parameter estimation is crucial for the Heston model’s pricing perfor-

mance. Existing estimation methods can generally be categorized into two categories: 

traditional algorithms [1, 19] and modern intelligent optimization algorithms [16, 20]. 

While traditional calibration methods often exhibit slow convergence, susceptibility to 

local optima, and challenges in conducting statistical inference, intelligent optimization 

techniques, particularly the Genetic Algorithm (GA) [21], have attracted widespread 

attention for their ability to perform global searches and handle complex optimization. 

Several studies have successfully applied GA to the calibration of the Heston model, 

reporting promising improvements in estimation accuracy and computational perfor-

mance [22-24].  

Nevertheless, premature convergence, where an algorithm quickly settles on a local 

rather than a global optimum, remains one of the most persistent challenges in conven-

tional GA [23]. In response to this issue, [25] proposed the Multi-Population Genetic 

Algorithm (MPGA), which incorporates multiple independently evolving subpopula-

tions initialized with distinct strategies. By periodically exchanging individuals across 
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subpopulations through an immigration operator [26], MPGA promotes population di-

versity, preserves elite individuals, and effectively mitigates premature convergence 

[27]. Since its introduction, MPGA has found extensive application across various op-

timization domains, such as lot sizing [27-28], flow shop scheduling [29-30], multi-

label feature selection [31], binary classification [32], and predictive modeling [33]. 

Despite its demonstrated effectiveness in various domains, the application of MPGA 

to option pricing remains largely unexplored. To fill this gap, this study introduces a 

novel calibration framework for the Heston model (i.e, the MPGA-based estimation of 

the Heston option pricing model), which employs MPGA identify the optimal values 

of model parameters. The proposed approach is applied to calibrate and price options 

on both the SSE 50ETF and the Hang Seng Index. Empirical results show that MPGA 

not only effectively mitigates the premature convergence commonly observed in stand-

ard genetic algorithms but also significantly improves pricing accuracy. 

The main contributions of this study are threefold: 1) it pioneers the use of MPGA 

for calibrating the Heston model, providing a robust and adaptable approach to option 

pricing; 2) the proposed framework is empirically validated in both developed and 

emerging markets, demonstrating its generalizability and practical relevance; and 3) an 

ask-bid weighting scheme is integrated into the calibration process to further improve 

pricing accuracy. 

The remainder of the paper is organized as follows. Section 2 provides an overview 

of the Heston model. Section 3 details the calibration methodology based on MPGA. 

Section 4 presents the empirical analysis using option data from both the SSE 50ETF 

and the Hang Seng Index. Section 5 concludes the paper. 

2 Heston Option Pricing Model 

The Heston model [10] assumes the underlying stock price 𝑆𝑡 follows a stochastic dif-

fusion process: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
1,                                      (2) 

where 𝜇 is the drift term, 𝑉𝑡 denotes the instantaneous variance of the stock price, and 

𝑊𝑡
1 represents a Brownian motion. The variance 𝑉𝑡 is modeled as a Cox-Ingersoll-Ross 

(CIR) process [34]: 

d𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎√𝑉𝑡𝑑𝑊𝑡
2,                                (3)  

where 𝜅, 𝜃, and 𝜎 are positive constants, 𝑊𝑡
2 is another Brownian motion. The corre-

lation between the two Brownian motions (i.e., 𝑊𝑡
1 and 𝑊𝑡

2) is given by   

𝑑𝑊𝑡
1𝑑𝑊𝑡

2 = 𝜌𝑑𝑡,                                             (4) 

where 𝜌 ∈ [−1,1] is a constant correlation coefficient. 



 

 

Under the standard no-arbitrage principle, the price 𝑈(𝑆, 𝑉, 𝑡) of any derivative that 

depends on the stock price 𝑆 and 𝑉 satisfies the following partial differential equation 

(PDE) [1, 35]:  

1

2
𝑉𝑆2 𝜕2𝑈

𝜕𝑆2 + 𝜌𝜎𝑉𝑆
𝜕2𝑈

𝜕𝑆𝜕𝑉
+

1

2
𝜎2𝑉

𝜕2𝑈

𝑉2 + 𝑟𝑆
𝜕𝑈

𝜕𝑆
+ 𝐴1

𝜕𝑈

𝜕𝑉
− 𝑟𝑈 +

𝜕𝑈

𝜕𝑡
= 0,       (5) 

where 𝐴1 = 𝜅[𝜃 − 𝑉] − 𝜆(𝑆, 𝑉, 𝑡)𝜎√𝑉 , 𝑟 is the risk-free interest rate, and 𝜆(𝑆, 𝑉, 𝑡) 

represents the market price of volatility risk.  

In the Heston model, the price 𝐶(𝑆, 𝑉, 𝑡) of a European call option satisfies the same 

PDE as Equation (5), with 𝑈 replaced by 𝐶, i.e.,  

1

2
𝑉𝑆2 𝜕2𝐶

𝜕𝑆2 + 𝜌𝜎𝑉𝑆
𝜕2𝐶

𝜕𝑆𝜕𝑉
+

1

2
𝜎2𝑉

𝜕2𝐶

𝜕𝑉2 + 𝑟𝑆
𝜕𝐶

𝜕𝑆
+ 𝐴1

𝜕𝐶

𝜕𝑉
− 𝑟𝐶 +

𝜕𝐶

𝜕𝑡
= 0.     (6) 

Since 𝜆(𝑆, 𝑉, 𝑡) is not directly observable, Heston assumes it is proportional to volatil-

ity: 

𝜆(𝑆, 𝑉, 𝑡) = 𝜅√𝑉, 

where 𝜅 is a constant. 

Under the Heston model, the closed-form solution for pricing a European call option 

(assuming no dividends) is given by: 

𝐶(𝑆, 𝑉, 𝑡) = 𝑆𝑃1 − 𝐾𝑒−𝑟(𝑇−𝑡)𝑃2,                            (7) 

where 𝐾 is the strike price, 𝑇 is the maturity date, 𝑃1 is the adjusted risk-neutral proba-

bility distribution functions, and 𝑃2 is the risk-neutral probability distribution functions.  

Due to the complexity of the pricing function, 𝑃1 and 𝑃2 are typically computed us-

ing the characteristic function approach combined with an inverse Fourier transform 

[36-37]: 

𝑃𝑗 =
1

2
+

1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝑢𝑙𝑛(𝐾)𝑓𝑗(𝑆,𝑉,𝑇,𝑢)

𝑖𝑢
]

+∞

0
𝑑𝑢,   𝑗 = 1,2                (8) 

where 𝑖 denotes the imaginary unit, 𝑅𝑒[∙] extracts the real component of a complex ex-

pression, and 𝑓𝑗 represents the characteristic function of the log-asset price evaluated 

under the risk-neutral probability measure, i.e., 

𝑓𝑗(𝑆, 𝑉, 𝑇, 𝑢) = 𝑒−𝑖𝑢ln(𝑆)+𝐶𝑗(𝑇−𝑡,𝑢)+𝐷𝑗(𝑇−𝑡,𝑢)𝑉 ,    𝜏 = 𝑇 − 𝑡.           (9) 

The functions 𝐶𝑗(𝜏, 𝑢) and 𝐷𝑗(𝜏, 𝑢) are defined as:  



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

𝐶𝑗(𝜏, 𝑢) = 𝑟𝑢𝑖𝜏 +
𝑎

𝜎2 (𝑏𝑗 − 𝜌𝜎𝑢𝑖 + 𝑑𝑗) − 2ln (
1−𝑔𝑗𝑒

𝑑𝑗𝜏

1−𝑔𝑗
),    

𝐷𝑗(𝜏, 𝑢) =
𝑏𝑗−𝜌𝜎𝑢𝑖+𝑑𝑗

𝜎2 (
1−𝑒

𝑑𝑗𝜏

1−𝑔𝑗𝑒
𝑑𝑗𝜏),  

where 𝑑𝑗 = √(𝜌𝜎𝑢𝑖 − 𝑏𝑗)
2

+ 𝜎2(2𝑎𝑗𝑢𝑖 − 𝑢2) , 𝑔𝑗 =
𝑏𝑗−𝜌𝜎𝑢𝑖+𝑑𝑗

𝑏𝑗−𝜌𝜎𝑢𝑖−𝑑𝑗
, 𝑎 = 𝜅∗𝜃∗ , 𝑎1 =

1

2
, 

𝑎2 = −
1

2
, 𝑏1 = 𝜅 + 𝜆 − 𝜌𝜎 , and 𝑏2 = 𝜅 + 𝜆 . Using the put-call parity, the price 

𝑃(S, V, t) of a European put option is then given by:  

 𝑃(S, V, t) = 𝐶(S, V, t) + 𝐾𝑒−𝑟(𝑇−𝑡) − 𝑆.                     (10) 

Both the call and put option prices under the Heston model depend on six parameters, 

namely, 𝛺 = {𝜅, 𝜃, 𝜎, 𝜌, 𝑉𝑡 , 𝜆} . Assuming 𝜆 = 0  under the risk-neutral measure, the 

number of parameters reduces to five, i.e., 𝛺 = {𝜅, 𝜃, 𝜎, 𝜌, 𝑉𝑡}. Accordingly, this study 

focuses on the five-parameter Heston model for calibration and pricing. 

3 MPGA-Based Estimation of the Heston Option Pricing Model 

The genetic algorithm was proposed by Professor Holland in 1975 [38]. Over time, it 

has evolved into a class of adaptive search techniques widely studied in the literature 

[39-40], which essentially explore potential solutions through local modifications 

known as genetic operations, such as selection, crossover, and mutation. As a self-adap-

tive optimization algorithm, it iteratively improves solutions through recombination 

and reproduction, favoring individuals with higher fitness values [38]. To handle mul-

tiple tasks, [25] extended GA to MPGA by employing multiple subpopulations rather 

than a single population for genetic operations. Each subpopulation may utilize differ-

ent selection, crossover, and mutation strategies, along with distinct crossover and mu-

tation probabilities. Particularly, MPGA adopts a multi-population architecture, where 

subpopulations evolve independently and periodically exchange individuals. This 

structure enhances search diversity, speeds up convergence, and helps prevent entrap-

ment in local optima by maintaining high-quality solutions across generations [26]. 

With the increasing prevalence of multi-core CPU architectures and parallel compu-

ting techniques, transitioning from GA to MPGA is straightforward. This study adopts 

a parallel population structure, where multiple subpopulations evolve independently 

using different genetic strategies. The migration operator transfers the best individuals 

from one subpopulation to others for further evolution. This process continues until the 

optimal solution is reached. Specifically, the implementation of MPGA mainly consists 

of initial population, encoding, fitness function, genetic operators, immigration opera-

tor, and iteration termination. Genetic operators includes selection, crossover, and mu-

tation. 

(1) Initial population 



 

 

The initial population is the foundation of MPGA. This paper uses a completely ran-

domized approach to generate multiple subpopulations. The number of subpopulations 

is chosen to balance computational memory constraints while ensuring a strong overall 

search capability. 

(2) Encoding 

Encoding plays a crucial role in genetic algorithms. Frequently adopted encoding 

strategies include binary, continuous, and symbolic forms. This study employs binary 

encoding for real-value representation of chromosomes. In the Heston option pricing 

model, each chromosome represents a parameter set to be estimated, and different chro-

mosomes correspond to different parameter estimates. The advantage of binary encod-

ing is its ability to efficiently track genetic algorithm evolution paths while maintaining 

simple encoding and decoding operations. 

(3) Fitness function 

The fitness function measures how well an individual chromosome (parameter set) 

performs in approximating the option price. It is derived from the objective function as 

follows: 

  𝑓𝑘 = ∑ 𝜔𝑖[𝐶𝑖
𝑃(Ω) − 𝐶𝑖

𝑀]2,𝑛
𝑖=1                                         (11) 

where 𝐶𝑖
𝑃 and 𝐶𝑖

𝑀 represent the model-predicted and market-observed option prices for 

the 𝑖-th sample, respectively, 𝜔𝑖 are weights, and 𝑓𝑘 quantifies the pricing accuracy of 

the 𝑘-th individual in the population. The larger the value 𝑓𝑘, the worse the pricing ef-

fect and vice versa. 

A proper choice of weights 𝜔𝑖 is crucial for optimization. Following [41], we use 

the ask-bid weighting scheme, where  𝜔𝑖 =
1

|𝑎𝑠𝑘𝑖−𝑏𝑖𝑑𝑖|
, and the ask-bid spread 𝑎𝑠𝑘𝑖 −

𝑏𝑖𝑑𝑖  represents pricing discrepancies between buyers and sellers, making it an effective 

weighting factor for option pricing analysis.  

(4) Genetic Operators 

GA employs three fundamental genetic operations: selection, crossover, and muta-

tion. First, the selection process identifies individuals with superior fitness to propagate 

their genetic material. In this study, we adopt the random traversal sampling technique, 

which is recognized for its unbiased selection and low expansion of individual samples 

[23]. The selection probability 𝑝𝑘 for an individual 𝑘 is defined as 

𝑝𝑘 =
𝑓𝑘

∑ 𝑓𝑘
𝑁
𝑘=1

, 

where 𝑁 is the population size. Higher fitness values result in a greater probability of 

selection. 

Second, crossover operator is a process of facilitating recombination by exchanging 

genetic material between selected individuals. This study employs the single-point 
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crossover method, where a random crossover point is chosen in the gene string, and 

genetic material is swapped between two parents, generating two new offspring. For 

example, 

Parent 1:  10011|0101
Parent 2:  11001|0001

 

⟹
Offsprings 1: 10011|0001

Offsprings 2: 11001|0101
 

Third, mutation operator is a method of introducing diversity by randomly flipping 

gene values at selected positions with a given mutation probability 𝑝𝑚. For example, 

chromosome A = 11110001, mutating the third and fifth positions yields 11011001. 

Mutation helps refine local search performance, and prevents premature convergence. 

In the genetic algorithm, crossover and mutation work in tandem, with the former 

promoting global exploration and the latter enhancing local search refinement. Their 

probabilities, 𝑝𝑐 and 𝑝𝑚, play a critical role in balancing search strategies. Empirical 

values typically fall within the following ranges: crossover probability 𝑝𝑐 ∈ [0.7, 0.9] 
and mutation probability 𝑝𝑚 ∈ [0.001, 0.05]. 

(5) Immigration operator 

The immigration operator allows for the exchange of high-fitness individuals among 

subpopulations, promoting diversity and preventing premature convergence. By 

spreading optimal solutions across populations, it enhances global search capability, 

accelerates convergence, and improves overall algorithm stability. 

(6) Iteration Termination 

Each repetition of steps (3) to (5) constitutes an iteration, with results from one iter-

ation serving as the initial state for the next. MPGA employs two termination criteria: 

fixed iteration count, where the algorithm stops after a predefined number of genera-

tions, and fitness stability, where termination occurs if the optimal individual's fitness 

remains unchanged for several consecutive generations. 

The MPGA flowchart (parallel population structure) is illustrated in Fig. 1.  

4 Empirical Analysis: SSE 50ETF and Hang Seng Index Options 

This study employs MPGA to estimate the parameters of the Heston model using 

Shanghai SSE 50ETF stock index options and Hong Kong Hang Seng Index options. 

The objective is to evaluate precision, accuracy, and effectiveness of MPGA in option 

pricing across a developing market (Mainland China) and a developed market (Hong 

Kong). 



 

 

 

Fig. 1. MPGA flowchart (parallel population structure) 

 To ensure the validity of the data analysis, the following preprocessing steps are 

applied: 1) excluding options with zero trading volume; 2) removing options with re-

maining maturities exceeding 100 trading days; 3) filtering out call options that do not 

satisfy the arbitrage-free condition: 

𝐶𝑡 ≥ max(𝑆𝑡 − K𝑒−𝑟(𝑇−𝑡), 0), 

where 𝐶𝑡 and 𝑆𝑡 are the option and stock price at time 𝑡, respectively, 𝐾 is the strike 

price of the option, 𝑟 is the risk-free interest rate, and 𝑇 is the maturity date. According 

to the Put-Call Parity Theorem, every call option has a corresponding put option. Thus, 

this study focuses solely on call options.  

Following the approach in [41], this paper introduces ask-bid weights into the pro-

posed MPGA-based estimation framework for the Heston model. To evaluate the ef-

fectiveness of the ask-bid weighting scheme, an equal-weighting approach is also im-

plemented for comparison. The performance of each scheme is assessed using three 

standard error metrics: mean squared error (MSE), root mean squared error (RMSE), 

and mean absolute error (MAE), defined respectively as:  
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𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)2,𝑁

𝑖=1   

     𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1 ,  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦̂𝑖 − 𝑦𝑖|𝑁

𝑖=1 ,  

where 𝑦̂𝑖 and 𝑦𝑖 represent the model-predicted and market-observed option prices, re-

spectively, and 𝑁 is the number of observations. For all three metrics, the smaller the 

better.  

In addition, to further assess the effectiveness of the proposed MPGA approach, we 

compare its performance with several benchmark methods, including random sequence 

Monte Carlo (MC), dual-variable Monte Carlo (Dual MC), control variable Monte 

Carlo (Control variable MC), Nonlinear Least Squares (NLS), and conventional GA. 

The Monte Carlo-based methods are implemented with 1,000 and 10,000 simulation 

iterations, respectively. 

4.1 SSE 50ETF Stock Index Options 

As the first derivative instrument in China's capital market, SSE 50ETF options hold 

significant pricing importance for option pricing research. This study utilizes a dataset 

of European call options on the SSE 50ETF with transaction data from March 11, 2019, 

to price the call options on May 7, 2019. The strike prices (in yuan) with expiration 

dates on March 27, April 24, and June 26, 2019 are 2.10, 2.15, 2.20, 2.25, 2.30, 2.35, 

2.40, 2.45, 2.50, 2.55, 2.60, 2.65, 2.70, 2.75, 2.80, 2.85, 2.90, 2.95 and 3.00. The closing 

price of each option is taken as the average of the corresponding bid and ask prices. On 

March 27, 2019, the closing price of the SSE 50ETF was 2.69 yuan, and the 3-month 

SHIBOR was 0.0027565. When the time to expiration is less than 120 days, the 3-

month SHIBOR is used as the risk-free rate [42-43]. All data are sourced from the 

Bloomberg database. 

4.1.1 Parameter Estimation 

For parameter estimation, we consider call options on March 11, 2019, and configure 

MPGA with 10 subpopulations of 40 individuals each, evolving over 200 generations. 

The crossover probability is randomly chosen within the range [0.7, 0.9], while the 

mutation probability is drawn from [0.001, 0.05]. Table 1 reports the resulting param-

eter estimates for the Heston model. 

Table 1. Parameter estimates of the call option on March 11, 2019 

𝜅 𝜃 𝜎 𝜌 𝑉𝑡 

6.5992 0.0543 2.0130 -7.34E-05 0.1096 



 

 

The final fitness value of the proposed algorithm is 5.37 × 10−6, which is notably 

lower than those obtained by traditional NLS (5.54 × 10−6) and GA (5.51 × 10−6), 

indicating superior estimation accuracy. Fig. 2 illustrates the evolution of the average 

fitness values across subpopulations. Each generation is represented by ten dots, with 

each dot corresponding to the average fitness value of a distinct subpopulation. 

 

Fig. 2. Evolution of the average fitness of each sub-population for SSE 50ETF. Note: the x-axis 

denotes the number of generations, and the y-axis represents the fitness values. 

During the first 20 generations, fitness values fluctuate substantially but gradually 

stabilize, confirming MPGA's effectiveness in optimizing Heston model parameters. 

Initially, the average fitness across all subpopulations is 8.38 × 10−6, which steadily 

converges to 5.37 × 10−6  by generation 40, demonstrating MPGA’s strong conver-

gence properties. These results corroborate the findings reported in [23]. 

 

 

Fig. 3. Evolution of the best individual fitness value of each generation for 50ETF. Note: the x-

axis denotes the number of generations, and the y-axis represents the fitness values. 
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Fig. 3 further depicts the best individual fitness value in each generation. After ap-

plying the immigration operator, the best fitness value exhibits an almost strictly de-

creasing trend, providing additional evidence of the effectiveness of the migration 

mechanism in MPGA. 

4.1.2 Option Pricing Results 

Using the estimated parameters, we price European call options with times to maturity 

of 0.0595, 0.1984, and 0.5595 years on May 7, 2019. The pricing results are reported 

in Table 2. On that date, the closing price of the SSE 50ETF was 2.79 yuan, and a 3-

month SHIBOR was 0.0029220. The fourth and ninth columns of Table 2 list the actual 

closing prices of the options, while the fifth and tenth columns provide the predicted 

prices obtained using MPGA with ask-bid weights. 

Table 2. Predicted prices via MPGA for SSE 50ETF on May 07, 2019. 

No. Maturity 

Date 

Strike 

Prices 
True Prices 

Predicted 

Prices 

No. Maturity 

Date 

Strike 

Prices 
True Prices 

Predicted 

Prices 

1 0.0595 2.50 0.3071 0.3037 31 0.1984 2.95 0.0539 0.0729 

2 0.0595 2.55 0.2562 0.2584 32 0.1984 3.00 0.0413 0.0605 

3 0.0595 2.60 0.2099 0.2151 33 0.1984 3.10 0.0234 0.0422 

4 0.0595 2.65 0.1558 0.1745 34 0.1984 3.20 0.0135 0.0300 

5 0.0595 2.70 0.1160 0.1376 35 0.1984 3.30 0.0086 0.0218 

6 0.0595 2.75 0.0824 0.1055 36 0.1984 3.40 0.0057 0.0161 

7 0.0595 2.80 0.0534 0.0788 37 0.5595 2.20 0.6404 0.6497 

8 0.0595 2.85 0.0368 0.0579 38 0.5595 2.25 0.6005 0.6052 

9 0.0595 2.90 0.0246 0.0421 39 0.5595 2.30 0.549 0.5617 

10 0.0595 2.95 0.0159 0.0305 40 0.5595 2.35 0.5046 0.5191 

11 0.0595 3.00 0.0111 0.0221 41 0.5595 2.40 0.4612 0.4776 

12 0.0595 3.10 0.0056 0.0117 42 0.5595 2.45 0.4195 0.4375 

13 0.0595 3.20 0.0031 0.0062 43 0.5595 2.50 0.3793 0.3989 

14 0.0595 3.30 0.0027 0.0034 44 0.5595 2.55 0.3421 0.3620 

15 0.0595 3.40 0.0020 0.0018 45 0.5595 2.60 0.3109 0.3270 

16 0.1984 2.20 0.6119 0.6108 46 0.5595 2.65 0.2769 0.2940 

17 0.1984 2.25 0.5622 0.5633 47 0.5595 2.70 0.2462 0.2633 

18 0.1984 2.30 0.5130 0.5163 48 0.5595 2.75 0.2204 0.2349 

19 0.1984 2.35 0.4644 0.4700 49 0.5595 2.80 0.1924 0.2089 

20 0.1984 2.40 0.4173 0.4245 50 0.5595 2.85 0.1674 0.1853 

21 0.1984 2.45 0.3692 0.3801 51 0.5595 2.90 0.1466 0.1641 

22 0.1984 2.50 0.3235 0.3370 52 0.5595 2.95 0.1286 0.1452 

23 0.1984 2.55 0.2798 0.2956 53 0.5595 3.00 0.1118 0.1284 



 

 

24 0.1984 2.60 0.2427 0.2563 54 0.5595 3.10 0.0834 0.1007 

25 0.1984 2.65 0.2037 0.2195 55 0.5595 3.20 0.0620 0.0793 

26 0.1984 2.70 0.1680 0.1858 56 0.5595 3.30 0.0453 0.0629 

27 0.1984 2.75 0.1377 0.1556 57 0.5595 3.40 0.0335 0.0503 

28 0.1984 2.80 0.1115 0.1293      

29 0.1984 2.85 0.087 0.1069      

30 0.1984 2.90 0.0679 0.0882      

Note: The unit for prices is Chinese Yuan, and the unit for time is year.          

As shown in Table 2, the predicted prices closely align with the observed market 

prices. However, when the actual market price is low, the relative error, which is de-

fined as the absolute price difference divided by the actual price, can appear dispropor-

tionately large. For example, in row 12, the actual market price is 0.00560, while the 

predicted price is 0.01129. Although the absolute difference is only 0.00569, the rela-

tive error reaches 101.6%. This phenomenon can be attributed to several factors. First, 

the small denominator amplifies the relative error. Second, while the Heston model 

presumes a fixed risk-free rate, real-world interest rates tend to fluctuate over time. 

Third, small residuals associated with low-price options have limited influence on the 

fitness function in Equation (11), and thus may be deprioritized during optimization.  

In addition, prediction errors tend to increase as the expiration date approaches. This 

may be due to increased market activity and potential insider trading, which violate the 

assumptions of the Heston model. For options with the same expiration, both actual and 

predicted prices decrease as the strike price increases, and the prediction error tends to 

diminish accordingly. This pattern arises because a higher strike price lowers the in-

trinsic value of the option for the buyer, thereby reducing its market price.   

Table 3 reports the MSE, MAE, and RMSE results for SSE 50ETF options under 

two weighting schemes: ask-bid weights and equal weights. The results clearly show 

that incorporating ask-bid weights leads to more accurate pricing outcomes compared 

to equal weighting, highlighting its effectiveness in improving model performance. 

Table 3. Comparison results under two weighting schemes for SSE 50ETF. 

 𝜔𝑖 = 1/|𝑎𝑠𝑘𝑖 − 𝑏𝑖𝑑𝑖| 𝜔𝑖 = 1/𝑛 

MSE 0.00024 0.00028 

RMSE 0.01544 0.01573 

MAE 0.01383 0.01433 

Table 4 reports the comparison results under various calibration methods. As ob-

served, the pricing accuracy of Monte Carlo-based approaches improves only margin-

ally as the number of simulations increases from 1,000 to 10,000. In contrast, GA sig-

nificantly outperforms the Monte Carlo methods, yielding notably lower errors across 

all three evaluation metrics. Moreover, the proposed MPGA consistently outperforms 

the standard GA, demonstrating superior optimization efficiency and pricing accuracy 

across all scenarios. 
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Table 4. Option price comparisons for SSE 50ETF 

Methods Number of simulation MSE MAE RMSE 

MC 

10,000 0.00126 0.02824 0.03546 

1,000 0.00133 0.02839 0.03642 

Dual MC 

10,000 0.00119 0.02745 0.03456 

1,000 0.00124 0.02756 0.03526 

Control variable MC 

10,000 0.00118 0.02732 0.03438 

1,000 0.00119 0.02742 0.03454 

NLS 0.01337 0.01337 0.04145 

GA 0.00025 0.00504 0.01568 

MPGA 0.00024 0.00477 0.01544 

4.2 Hang Seng Index Options 

In the Hang Seng Index Options analysis, we use the European call option from Sep-

tember 10, 2018, as the basis to price options on September 12, 2018. The dataset in-

cludes strike prices with maturities on September 27, October 30, and November 29, 

covering strike levels from 24,600 to 28,600 in increments of 200. On September 10, 

2018, the closing price of the Hang Seng Index was 26,613.42. The Hong Kong Inter-

bank Offered Rates (HIBOR) were 0.025556 on September 10 and 0.002554 on Sep-

tember 12, 2018. All data are sourced from the Bloomberg database. To ensure data 

reliability, options with zero transaction volume are excluded. 

4.2.1 Parameter Estimation
 

The parameter settings follow that used for SSE 50ETF options. As shown earlier, the 

ask-bid weighting scheme improves pricing accuracy over equal weighting; therefore, 

we adopt the ask-bid weights in this analysis. The Heston model parameters estimated 

using this weighting method are 

[𝜅, 𝜃, 𝜎, 𝜌, 𝑉𝑡] = [27.6044, 0.0189, 1.3214, −0.3086, 0.0497]. 

The evolution of the average fitness value of each subpopulation during MPGA op-

timization is illustrated in Fig. 4. Each generation is represented by ten dots, with each 

dot corresponding to the average fitness value of a distinct subpopulation.  

As shown in Fig. 4, the average fitness values within each subpopulation fluctuate 

markedly during the first 10 iterations. However, the fluctuations diminish with contin-

ued iterations, and the values ultimately converge toward zero. Overall, the fitness val-

ues exhibit a downward trend, confirming the convergence behavior of MPGA. This 

result is consistent with the findings for SSE 50ETF options. 



 

 

 

Fig. 4. Evolution of the average fitness of each sub-population for Hang Seng index options. 

Note: the x-axis denotes the number of generations, and the y-axis represents the fitness values. 

4.2.2 Option Pricing Results
 Using the calibrated parameters, we price call option on September 12, 2018. On that 

date, the closing price of the Hang Seng Index was 26,613.42, the 3-month HIBOR was 

0.0025556, and the option maturities were 𝑇 = 0.0675, 𝑇 = 0.1984, and 𝑇 = 0.3175 

(in years). The pricing results are illustrated in Fig. 5. 

 

Fig. 5. Performance of MPGA for Hang Seng index options on September 12, 2018. Note: the 

blue ◆ denotes the true option price, and the orange ■ denotes the predicted values of the option 

price obtained by the calibrated parameters. 
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Consistent with prior findings, the option prices predicted by the MPGA-based 

Heston model closely match the actual market prices. As noted in [23], traditional ge-

netic algorithms tend to exhibit larger prediction biases when market prices are rela-

tively low. In contrast, MPGA effectively mitigates this issue by generating predicted 

prices that more closely align with observed transaction prices. For example, when the 

actual market price is 19, the MPGA-predicted price is 18, reflecting a notable improve-

ment in accuracy. The close correspondence between predicted and actual prices further 

confirms the effectiveness and practical feasibility of MPGA-based calibration within 

the Heston framework, even in mature financial markets. 

Table 5 presents the MSE, MAE, and RMSE results for Hang Seng index options 

under various calibration methods. The results indicate that the control variate Monte 

Carlo consistently outperforms both the standard Monte Carlo and dual-variable Monte 

Carlo in terms of pricing accuracy. Moreover, increasing the number of simulations 

leads to improved performance across all Monte Carlo-based approaches. 

Table 5. Option price comparisons for Hang Seng index options. 

Compared with GA and NLS, the proposed MPGA yields substantially more accu-

rate price estimates. For instance, the MSEs of MPGA, GA, and NLS are 282.060, 

305.763, and 1045.791, respectively, with the MSE of NLS being nearly four times 

higher than that of MPGA. Moreover, MPGA demonstrates a greater advantage over 

GA when market prices are higher. Specifically, for Hang Seng Index options, MPGA 

reduces the MSE by 8% compared to GA, whereas for SSE 50ETF options, the reduc-

tion is approximately 4%. 

In summary, the results of both empirical analyses demonstrate that the proposed 

MPGA-based calibration framework substantially improves the predictive accuracy of 

the Heston model across both developing (Mainland China) and developed (Hong 

Kong) markets. 

Methods Number of simulation MSE MAE RMSE 

MC 

10,000 1443.297 31.609 37.991 

1,000 2211.029 37.939 47.022 

Dual MC 

10,000 1427.873 31.551 37.787 

1,000 2078.276 37.509 45.588 

Control variable MC 

10,000 1415.718 31.246 37.626 

1,000 1679.885 32.776 40.986 

NLS 1045.791 25.215 32.339 

GA 305.763 15.763 17.486 

MPGA 282.060 8.493 16.795 



 

 

5 Conclusion 

This study presents a novel approach to parameter estimation for the Heston option 

pricing model by employing a multi-population genetic algorithm to optimize model 

parameters. To evaluate the performance of the proposed approach, we conduct empir-

ical analyses using option data from both a developing market (Mainland China, SSE 

50ETF) and a developed market (Hong Kong, Hang Seng Index). The empirical results 

highlight several advantages of MPGA: 1) it consistently outperforms benchmark al-

gorithms in identifying optimal parameter estimates; 2) it improves the accuracy of op-

tion pricing; and 3) it ensures a more stable and reliable evolutionary search process. 

Moreover, the option prices derived from MPGA calibration are closer to observed 

market prices, thereby yielding a more accurate implementation of the Heston model. 

Notably, the performance gain of MPGA is relatively modest when market prices are 

low, but becomes significantly more pronounced as prices increase. 

For future research, two promising directions are identified. First, while optimization 

algorithms for European-style options are relatively mature, extending these methods 

to American-style options and other path-dependent derivatives remains a substantial 

challenge. Second, many pricing models adopted by exchanges are built on restrictive 

assumptions. Exploring techniques to relax these assumptions, and enhance model flex-

ibility represents a valuable avenue for further investigation.  
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