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Abstract. With the development of deep learning, models have become increas-

ingly large and difficult to deploy effectively on embedded devices, mobile ap-

plications, and edge computing environments. Knowledge distillation has be-

come a mainstream approach to solving this problem due to its simplicity and 

efficiency. In the field of image classification, most knowledge distillation meth-

ods focus on how to enable the student model to learn more knowledge from the 

teacher model, but they introduce unnecessary strict constraints. To address this 

challenge, we propose a novel knowledge distillation paradigm based on logit 

ranking alignment, i.e., aligning the logit rankings of the teacher and student 

models. Since traditional hard ranking algorithm is non-differentiable, we intro-

duce a fast differentiable soft ranking algorithm to obtain the soft logit rankings 

of the teacher and student models, and then we use an L2 loss to align them. 

Extensive experiments on CIFAR-100 and Tiny-ImageNet validate the effective-

ness of our method. 

Keywords: Knowledge Distillation, Logit Ranking Alignment, Fast Differenti-

able Soft Ranking, Image Classification. 

1 Introduction 

With the rise of machine learning, an increasing number of models have been developed 

for computer vision tasks, such as image classification [1, 2, 3], object detection [4, 5], 



and semantic segmentation [6, 7]. However, with the continuous development of deep 

learning, models have become larger, making it difficult to deploy them effectively on 

embedded devices, mobile applications, and edge computing environments. Knowle-

dge distillation [8] has become a mainstream approach to address this issue. Knowledge 

distillation can transfer the knowledge from large models to small ones, thereby reduc-

ing the resource consumption required for model deployment. 

With the growing research interest in knowledge distillation, an expanding array of 

distillation approaches have been developed for image classification tasks. From the 

perspective of knowledge definition, knowledge distillation methods can be broadly 

classified into three categories: logit distillation [8-17], feature distillation [18-25], and 

relation distillation [26-28]. Logit distillation has become a research hotspot in recent 

years due to its simplicity, efficiency, and low cost. 

Traditional KD [8] requires the student model to match the probability distribution 

output by the teacher model. Logit standardization [13] uses a standardization method 

to eliminate the impact of different means and variances in logits. MLKD [15] employs 

prediction augmentation and multi-level alignment to allow the student model to learn 

more knowledge from the teacher model's logits. However, a common goal of these 

methods is to require the student to learn the probability distribution or certain latent 

characteristics of the teacher's logits, which introduces unnecessary strict constraints in 

the learning process of the student model. 

 

(a) Teacher                            (b) Vanilla KD                            (c) Ours 

Fig. 1. Vanilla KD explicitly requires the student model to learn the probability distribution out-

put by the teacher model, introducing unnecessary strict constraints. However, our method 

simply requires the student model to learn the logit ranking of the teacher model, reducing such 

constraints. 

To address this challenge, we propose a novel knowledge distillation paradigm based 

on logit ranking alignment. As shown in Fig. 1, we simply require the student model to 

learn the logit ranking of the teacher model without forcing it to learn the probability 
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distribution output by the teacher model. This allows the student to adaptively achieve 

the learning objective, reducing the learning difficulty and mitigating the impact of the 

capability gap between teacher and student models. 

However, hard ranking is inherently non-differentiable. To overcome this, we intro-

duce a fast differentiable soft ranking algorithm to achieve our goal. This method em-

ploys permutahedron projection, which transforms the discrete ranking problem into a 

continuous optimization problem, making the ranking process differentiable. We then 

directly align the soft logit rankings of the teacher and student using an L2 loss. Exten-

sive experiments on standard benchmarks demonstrate that our method outperforms 

previous logit distillation and feature distillation methods, proving its effectiveness. 

In summary, this paper makes the following three contributions: 

• To avoid introducing unnecessary strict constraints to the student model, this paper 

proposes a novel knowledge distillation paradigm based on logit ranking alignment. 

• To address the non-differentiability issue of traditional hard ranking algorithm, this 

paper introduces a fast differentiable soft ranking algorithm to obtain the soft logit 

rankings of the teacher and student, and uses an L2 loss to align them. 

• Extensive experiments on CIFAR-100 and Tiny-ImageNet validate the effectiveness 

of our method. 

2 Related Work 

In the field of image classification, knowledge distillation is widely used to improve 

the performance of lightweight models. Traditional knowledge distillation [8] enables 

the student to learn the probability distribution output by the teacher by introducing soft 

labels and KL divergence loss. However, this method has several issues, including a 

large impact from the temperature parameter, difficulty in cross-architecture distilla-

tion, and a lack of adaptability in the student model. To address these issues, more and 

more knowledge distillation methods have been proposed, which can be mainly cate-

gorized into three types: logit distillation [8-17], feature distillation [18-25], and rela-

tion distillation [26-28]. 

Feature Distillation. The e me h     m   ve  he     e  ’     e           f  he 

teacher by making the student learn the intermediate features of the teacher. In recent 

years, many related methods have been proposed. ReviewKD [23] proposed cross-stage 

connection paths in knowledge distillation for the first time; CAT-KD [22] improved 

the student model by transferring  he  e che ’  c      c  v      m   ; FCFD [25] ex-

plicitly optimized the functional similarity between teacher and student features. Other 

representative works include [18-21], [24]. However, in general, feature distillation is 

heavily affected by the teacher-student architecture and has high computational costs. 



Relation Distillation. These methods enhance the generalization ability of the student 

by making the student learn the relational information of the teacher. SP [26] enabled 

input pairs that produce similar (or dissimilar) activations in the teacher network also 

produce similar (or dissimilar) activations in the student network. ICKD [27] aligned 

the diversity and homology of the feature space of the student with that of the teacher. 

DIST [28] proposed a correlation-based loss to explicitly capture the teacher model's 

inter-class and intra-class relations. However, in general, relation distillation is compu-

tationally intensive and poses optimization challenges due to its dependence on struc-

tured inter-sample relationships. 

Logit Distillation. These methods mainly allow the student to learn information related 

to the te che ’        , w  h             K  [8] belonging to this category. In recent 

years, many logit distillation methods have been proposed. TAKD [9] proposed multi-

step knowledge extraction by employing a medium-scale network (teacher assistant) to 

bridge the gap between the student and teacher; DKD [12] rephrased the classic KD 

loss into two parts: target class knowledge distillation (TCKD) and non-target class 

knowledge distillation (NCKD); CTKD [10] dynamically modulated task difficulty 

throughout the student's learning process via a learnable temperature parameter; TTM 

[14] improved the generalization ability of the student by reformulating temperature 

scaling as a power transform of probability distribution. However, these methods still 

introduce unnecessary strict constraints in the learning process of the student. In con-

trast, a significant advantage of our method is that it reduces the difficulty of learning, 

allowing the student to adaptively achieve the learning objective. 

3 Methodology 

3.1 Preliminaries 

Traditional KD [8] mainly relies on soft labels for training. Assuming there are 𝐶 clas-

sification categories, let 𝑠 represent the student's logits and 𝑡 represent the teacher's 

logits, where both 𝑠 and 𝑡 belong to 𝑅𝐶 . The softmax outputs of the student and teacher 

are then represented as: 

 𝑝𝑆𝑡𝑢
(𝑖,𝑇) =

𝑒𝑠𝑖/𝑇

∑ 𝑒
𝑠𝑗/𝑇𝐶

𝑗=1

, 𝑝Te 
(𝑖,𝑇) =

𝑒𝑡𝑖/𝑇

∑ 𝑒
𝑡𝑗/𝑇𝐶

𝑗=1

 (1) 

where 𝑠𝑖  and 𝑡𝑖  represent the values of the student's and teacher's logits for the 𝑖-th 

class, respectively. 𝑇 is the temperature parameter used to control the smoothness. The 

larger the value of 𝑇, the smoother the softmax distribution; the smaller the value of 𝑇, 

the sharper the softmax distribution. Let 𝑦 represent the one-hot encoded true label cor-

responding to 𝑠. The student's standard cross-entropy loss is then expressed as: 

 𝐿𝐶𝐸 = − ∑ 𝑦𝑖 𝑙𝑜𝑔 𝑝𝑆𝑡𝑢
(𝑖,1)𝐶

𝑖=1  (2) 
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where 𝑦𝑖 represents the value of 𝑦 for class 𝑖 (either 0 or 1). The KL divergence loss 

between the student and teacher models can be expressed as: 

 𝐿𝐾𝐿 = ∑ 𝑝𝑇𝑒𝑎
(𝑖,𝑇) 𝑙𝑜𝑔

𝑝𝑇𝑒𝑎
(𝑖,𝑇)

𝑝𝑆𝑡𝑢
(𝑖,𝑇)

𝐶
𝑖=1  (3) 

Finally, the traditional KD loss combines the CE Loss and KL Loss, and can be ex-

pressed as: 

 𝐿𝐾𝐷 = 𝛼 ⋅ 𝐿𝐶𝐸 + 𝛽 ⋅ 𝐿𝐾𝐿 (4) 

where 𝛼 and 𝛽 are hyperparameters that control the weights of the CE Loss and KL 

Loss. Traditional KD can improve the generalization ability of the student model, and 

is easy to implement. However, it suffers from issues such as a large dependency on 

the temperature parameter, difficulty in cross-architecture distillation, and a lack of 

adaptability in the student model. Therefore, we propose a more robust logit distillation 

method. 

 

Fig. 2. Overall Framework. The image is processed through both the teacher and student models 

to produce logits. Then, through the fast differentiable soft ranking algorithm, the soft logit rank-

ings 𝑅𝑡 and 𝑅𝑠 for the teacher and student are obtained. Finally, an L2 loss is used to align 𝑅𝑡 

and 𝑅𝑠, resulting in the Ranking Alignment Loss, which, along with the student's CE Loss, forms 

the final loss. 

3.2 Soft Ranking Alignment 

We propose a novel knowledge distillation paradigm based on logit ranking alignment, 

as shown in Fig. 2. First, the image is processed through both the teacher and student 

models to obtain logits. Then, the fast differentiable soft ranking algorithm is applied 

to obtain the soft logit ranking. Finally, an L2 loss is used to align the teacher's and 

student's soft logit rankings, resulting in the Ranking Alignment Loss, which, along 

with the student's CE Loss, forms the final loss. 
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Fast Differentiable Soft Ranking. As shown in Fig. 2, we need to generate corre-

sponding ranking based on the logits of the teacher and student. Since traditional hard 

ranking algorithm is not differentiable, we adopt the fast differentiable soft ranking 

algorithm proposed in [29]. 

Let 𝜌 = (𝑛, 𝑛 − 1, ⋯ , 1). Let 𝛴 represent the set of 𝑛! permutations of 𝜌, and let 

𝜃 ∈ 𝑅𝑛 be the input to be ranked. First, present the discrete optimization criterion: 

 𝑟(𝜃) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜇∈∑

⟨−𝜃, 𝜇⟩ (5) 

where the symbol 〈∙ , ∙〉 represents the dot product. To make the problem continuously 

optimizable, this algorithm introduces the permutahedron induced by the vector 𝑤 ∈
𝑅𝑛, which is the convex hull formed by all permutations of 𝑤: 

 𝑃(𝑤) = 𝑐𝑜𝑛𝑣({𝑤𝜎: 𝜎 ∈ 𝛴}) ⊂ 𝑅𝑛 (6) 

The permutahedron of 𝑤 is a convex polyhedron whose vertices correspond to all 

permutations of 𝑤. Specifically, when 𝑤 = 𝜌, 𝑃(𝑤) = 𝑐𝑜𝑛𝑣(𝛴). Based on this, the lin-

ear programming formulation for ranking can be derived: 

 𝑟(𝜃) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜇∈𝑃(𝜌)

⟨−𝜃, 𝜇⟩ (7) 

To design an efficient approximation of the ranking operator and provide useful de-

rivatives for the ranking operator, this algorithm introduces strong convex regulariza-

tion in the linear programming formulation. Define 𝑧 ∈ 𝑅𝑛, then, add the squared reg-

ularization 𝑄(𝜇) =
1

2
‖𝜇‖2 to the linear programming on the permutahedron: 

 𝑃𝑄(𝑧, 𝑤) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜇∈𝑃(𝑤)

⟨𝑧, 𝜇⟩ − 𝑄(𝑢) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜇∈𝑃(𝑤)

1

2
‖𝜇 − 𝑧‖2 (8) 

i.e., the Euclidean projection of 𝑧 onto 𝑃(𝑤). To control the strength of the regulariza-

tion, this algorithm introduces a parameter 𝜀 > 0 and multiply it by 𝑄 (equivalent to 

dividing 𝑧 by), i.e.: 

 𝑃𝜀𝑄(𝑧, 𝑤) = 𝑃𝑄(𝑧/𝜀, 𝑤) (9) 

Based on this, define the Q-regularized soft ranking as: 

 𝑟𝜀𝑄(𝜃) = 𝑃𝜀𝑄(−𝜃, 𝜌) = 𝑃𝑄(−𝜃/𝜀, 𝜌) (10) 

As 𝜀 → 0, 𝑟𝜀𝑄(𝜃)  converges to the corresponding "hard" counterpart; as 𝜀 → ∞ , 

𝑟𝜀𝑄(𝜃) shrinks to a constant. It is important to note that the resulting 𝑟𝜀𝑄(𝜃) corre-

sponds to a descending order ranking, meaning that the larger the value in 𝜃, the smaller 

the corresponding ranking in 𝑟𝜀𝑄(𝜃). To obtain an ascending order ranking, simply in-

put −𝜃, i.e., 𝑟𝜀𝑄(−𝜃). Additionally, to speed up the process, [29] also provides methods 

for fast computation and differentiation. 
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Ranking Alignment. Given the logits 𝑠 and 𝑡 ∈ 𝑅𝐶  for the student and teacher models, 

we obtain the corresponding soft rankings 𝑟𝜀𝑄(𝑠) and 𝑟𝜀𝑄(𝑡) through the fast differen-

tiable soft ranking algorithm. Then, we use an L2 loss to align 𝑟𝜀𝑄(𝑠) and 𝑟𝜀𝑄(𝑡) to ob-

tain the Ranking Alignment Loss: 

 𝐿𝑅𝐴 =
1

𝐶
⋅ ∑ (𝑟𝜀𝑄(𝑠)𝑖 − 𝑟𝜀𝑄(𝑡)𝑖)

𝐶
𝑖=1

2
 (11) 

3.3 Total Loss 

In summary, the total loss function can be expressed as: 

 𝐿total = 𝐿𝐶𝐸 + 𝜆𝐿𝑅𝐴 (12) 

where 𝜆 is a hyperparameter used to adjust the weight of the Ranking Alignment Loss. 

For convenience, in all subsequent experiments, the regularization strength parameter 

𝜀 for the fast differentiable soft ranking is fixed to 1. 

4 Experiments 

In Section 4.1, we introduce the datasets and related settings used in this paper. In Sec-

tion 4.2, we discuss the experimental results on CIFAR-100 and Tiny-ImageNet. In 

Section 4.3, we conduct ablation study, hyperparameter experiments, and visualization 

analysis. 

4.1 Datasets and Settings 

Datasets. We use the widely adopted CIFAR-100 and Tiny-ImageNet datasets to vali-

date the effectiveness of our method. 1) CIFAR-100 [30] is a standard dataset for image 

classification, containing 100 categories, with 500 training images and 100 test images 

per category. Each image has a resolution of 32 × 32. 2) Tiny-ImageNet [31] is a smaller 

version of the ImageNet dataset, consisting of 200 categories, with 500 training images 

and 50 validation images per category. Each image has a resolution of 64 × 64. 

Settings. We compare our method with other approaches on both homogeneous and 

heterogeneous teacher-student architectures. We use a variety of network architectures, 

including ResNet [32], WRN [33], VGG [34], MobileNetV2 [35], and ShuffleNet-V1 

[36]/V2 [37]. 

Implementation Details. For CIFAR-100, we use a batch size of 64, an initial learning 

rate of 0.025, and train for 300 epochs. The learning rate decays by a factor of 0.1 at 



the 150th, 180th, and 210th epoch. We use SGD as the optimizer with a weight decay 

of 0.0005 and a momentum of 0.9. For Tiny-ImageNet, we use a batch size of 128 and 

an initial learning rate of 0.05, training for 240 epochs, while preserving other config-

urations. To ensure fair comparisons, we apply the identical data augmentation strate-

gies as MLKD [15] on CIFAR-100. All experiments are conducted on a 1× NVIDIA 

Tesla T4 16GiB GPU. 

4.2 Experimental Results 

To validate the effectiveness of our method, we conduct extensive experiments on 

CIFAR-100 and Tiny-ImageNet, and compare it with logit distillation and feature dis-

tillation methods. 

CIFAR-100. We compare our method with various logit distillation and feature distil-

lation methods on CIFAR-100. The comparison results for homogeneous teacher-stu-

dent architectures are reported in Table 1, while the results for heterogeneous teacher-

student architectures are reported in Table 2. It can be observed that our method 

achieves the best performance in both homogeneous and heterogeneous teacher-student 

architectures, validating the superiority of our approach. 

Tiny-ImageNet. We compare our method with other methods on Tiny-ImageNet, and 

the results of Top-1 accuracy are shown in Table 3. It can be observed that, compared 

to previous logit distillation and feature distillation methods, our method achieves the 

best performance, validating the effectiveness of our approach. 

4.3 Analyses 

The experimental results above validate the superiority and effectiveness of our 

method. In this section, we will further analyze our approach. 

Ablation Study. As shown in Fig. 2, we align the soft logit rankings of the teacher and 

student models using a simple L2 loss. However, is there a better method for handling 

the soft logit rankings? We explore this question here. In Table 4, we compare the ex-

perimental results using different ranking alignment methods and also evaluate the im-

pact of applying vanilla KD to our method. From Table 4, it can be seen that our pro-

posed ranking alignment method with L2 loss achieves superior performance improve-

ment compared to both L1 loss and Spearman's 𝜌-based loss (where Spearman's 𝜌 [39] 

quantifies the monotonic relationship strength between teacher and student’s soft logit 

rankings, and the loss is defined as 1 − 𝜌). Moreover, applying vanilla KD to our 

method leads to a performance decline. One possible explanation is that our method 

avoids introducing unnecessary strict constraints to the student, whereas vanilla KD 

imposes such constraints, causing the performance to drop. The ablation study results 

further validate the effectiveness of our method. 
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Table 1. Results on CIFAR-100, Homogeneous Architectures. We compare our method with 

various logit distillation and feature distillation methods and report the Top-1 accuracy. The best 

and second-best results are highlighted in bold and underlined, respectively. 

Teacher 
resnet56 

72.34 

resnet32×4 

79.42 

wrn-40-2 

75.61 

wrn-40-2 

75.61 

vgg13 

74.64 

resnet110 

74.31 

Student 
resnet20 

69.06 

resnet8×4 

72.50 

wrn-16-2 

73.26 

wrn-40-1 

71.98 

vgg8 

70.36 

resnet32 

71.14 

Feature-based 

FitNets [18] 69.21 73.50 73.58 72.24 71.02 71.06 

AT [19] 70.55 73.44 74.08 72.77 71.43 72.31 

VID [20] 70.38 73.09 74.11 73.30 71.23 72.61 

CRD [21] 71.16 75.51 75.48 74.14 73.94 73.48 

CAT-KD [22] 71.05 76.91 75.60 74.82 74.65 73.62 

ReviewKD [23] 71.89 75.63 76.12 75.09 74.84 73.89 

NORM [24] 71.61 76.98 76.26 75.42 74.46 73.95 

FCFD [25] 71.96 76.62 76.43 75.46 75.22 - 

Logit-based 

KD [8] 70.66 73.33 74.92 73.54 72.98 73.08 

TAKD [9] 70.83 73.81 75.12 73.78 73.23 73.37 

CTKD [10] 71.19 73.79 75.45 73.93 73.52 73.52 

NKD [11] 70.40 76.35 75.24 74.07 74.86 72.77 

DKD [12] 71.97 76.32 76.24 74.81 74.68 74.11 

LSKD [13] 71.43 76.62 76.11 74.37 74.36 74.17 

TTM [14] 71.83 76.17 76.23 74.32 74.33 73.97 

MLKD [15] 72.19 77.08 76.63 75.35 75.18 74.11 

CRLD [16] 72.10 77.60 76.45 75.58 75.27 74.42 

CALD [17] 72.05 77.02 76.44 75.12 74.99 74.19 

Ours 72.39 77.97 77.13 75.98 75.84 75.29 



Table 2. Results on CIFAR-100, Heterogeneous Architectures. We compare our method with 

various logit distillation and feature distillation methods and report the Top-1 accuracy. The best 

and second-best results are highlighted in bold and underlined, respectively. 

Teacher 
resnet32×4 

79.42 

vgg13 

74.64 

resnet50 

79.34 

wrn-40-2 

75.61 

resnet32x4 

79.42 

Student 
shufflenetv2 

71.82 

mobilenetv2 

64.60 

mobilenetv2 

64.60 

shufflenetv1 

70.50 

shufflenetv1 

70.50 

Feature-based 

FitNets [18] 73.54 64.16 63.16 73.73 73.59 

AT [19] 72.73 59.40 58.58 73.32 71.73 

VID [20] 73.40 65.56 67.57 73.61 73.38 

CRD [21] 75.65 69.63 69.11 76.05 75.11 

CAT-KD [22] 78.41 69.13 71.36 77.35 78.26 

Re-

viewKD[23] 
77.78 70.37 69.89 77.14 77.45 

NORM [24] 78.32 69.38 71.17 77.63 77.79 

FCFD [25] 78.18 70.65 71.00 77.99 78.12 

Logit-based 

KD [8] 74.45 67.37 67.35 74.83 74.07 

TAKD [9] 74.82 67.91 68.02 75.34 74.53 

CTKD [10] 75.31 68.46 68.47 75.78 74.48 

NKD [11] 76.26 70.22 70.67 75.96 75.31 

DKD [12] 77.07 69.71 70.35 76.70 76.45 

LSKD [13] 75.56 68.61 69.02 76.62 75.62 

TTM [14] 76.55 69.16 69.59 75.42 74.37 

MLKD [15] 78.44 70.57 71.04 77.44 77.18 

CRLD [16] 78.27 70.39 71.36 - - 

CALD [17] 77.89 70.42 71.19 77.25 77.63 

Ours 79.44 71.03 72.31 78.36 78.57 
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Table 3. Results on Tiny-ImageNet. The Top-1 accuracy is reported, with the best results high-

lighted in bold. 

Type 

Teacher 
resnet18 

62.99 

resnet18 

62.99 

Student 
mobilenetv2 

56.28 

shufflenetv2 

60.78 

Feature 
AT [19] 57.18 62.45 

CRD [21] 61.18 63.97 

Logit 

KD [8] 58.35 62.26 

DKD [12] 62.04 65.06 

KD+DOT [38] 64.01 65.75 

LSKD [13] 64.20 65.97 

Ours 64.30 66.58 

Table 4. Experiments conducted on CIFAR-100. The teacher model is resnet32x4, and the stu-

dent model is resnet8x4. The Top-1 accuracy is reported. 

CE Vanilla KD 
Ranking Alignment Method 

Top-1 Acc 
L2 L1   e  m  ’ 𝜌 

√ × - - - 72.50 

√ √ - - - 73.33 

√ × - √ - 77.12 

√ × - - √ 77.44 

√ × √ - - 77.97 

√ √ √ - - 77.29 

Analysis of Hyperparameter. We analyze the weight 𝜆 of Ranking Alignment Loss on 

CIFAR-100 and Tiny-ImageNet, with the results shown in Table 5. On CIFAR-100, 

the teacher model is resnet32×4, and the student model is resnet8x4. As 𝜆 increases, 

the Top-1 accuracy continuously rises, reaching the maximum value of 77.97 when 𝜆 

is 5.0. On Tiny-ImageNet, the teacher model is resnet18, and the student model is mo-

bilenetv2. As 𝜆 increases, the Top-1 accuracy continuously rises, reaching the maxi-

mum value of 64.30 when 𝜆 is 10.0. The hyperparameter experimental results further 

validate the effectiveness of our method. 



Table 5. Analysis of the weight 𝜆 of Ranking Alignment Loss on different datasets. The Top-1 

accuracy is reported. 

Dataset CIFAR-100 Dataset Tiny-ImageNet 

Teacher 
resnet32×4 

79.42 
Teacher 

resnet18 

62.99 

Student 
resnet8×4 

72.50 
Student 

mobilenetv2 

56.28 

𝜆 = 0.1 75.59 𝜆 = 0.5 62.15 

𝜆 = 0.5 76.74 𝜆 = 1.0 63.16 

𝜆 = 1.0 77.17 𝜆 = 5.0 64.02 

𝜆 = 5.0 77.97 𝜆 = 10.0 64.30 

𝜆 = 10.0 77.71 𝜆 = 15.0 64.03 

 

(a) Teacher                   (b) Student                 (c) Vanilla KD                 (d) Ours 

Fig. 3. In 3(a), the logits of the teacher are ranked; in 3(b), (c), and (d), the logits are assigned 

the same ranking as the teacher’s logits, and the logit values corresponding to each ranking are 

shown. The teacher model is resnet32x4, and the student model is resnet8x4. 

Visualization. To better illustrate the characteristics and advantages of our method, we 

randomly select an image from the CIFAR-100 test set, pass it through the teacher 

model, and rank the output logits, as shown in Fig. 3(a). Then, the same image is passed 

through the student trained with the standard approach, vanilla KD, and our method, 

respectively, and the corresponding logits are assigned the same ranking as the 

teacher’s logits, and the logit values corresponding to each ranking are shown in Fig. 

3(b), (c), and (d). We can observe that, compared to the student trained with the stand-

ard approach and vanilla KD, where the logit arrangement is sharp in some positions, 

the logit arrangement of the student trained with our method is relatively smoother. 

This is due to our method using the teacher's logit ranking as the learning objective, 

further validating the effectiveness of our approach. 
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5 Conclusion 

To avoid introducing unnecessary strict constraints to the student model during 

knowledge distillation, we propose a novel knowledge distillation paradigm based on 

logit ranking alignment. To address the issue of non-differentiability in traditional hard 

ranking algorithm, we introduce a fast differentiable soft ranking algorithm to obtain 

the soft logit rankings of the teacher and student. We then use an L2 loss to align the 

soft logit rankings of the teacher and student. Experimental results on CIFAR-100 and 

Tiny-ImageNet validate that our method achieves superior performance improvement 

compared to previous logit distillation and feature distillation methods. 
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