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Abstract. Accurate and rapid classification of plant diseases is crucial for en-

hancing productivity in contemporary agriculture. Both modern deep-learning 

models and conventional methods encounter obstacles when it comes to finding 

plant diseases. For instance, complicated scenarios often increase processing 

costs and reduce recognition accuracy. This study introduces the PRMT (Reten-

tive Networks Meet Vision Transformers for Plant Disease Identification) 

framework, utilizing the Retentive Networks Meet Vision Transformers (RMT) 

architecture. The method utilizes Manhattan distances and spatial prior 

knowledge to create a spatial attenuation matrix. It improves internal correla-

tions and enables a greater understanding of the relationships among image re-

gions. The design incorporates the Convolutional Block Attention Module 

(CBAM) to enhance feature representations. Incorporating 2D average pooling 

in the backbone network diminishes sensitivity to local noise and inhibits an 

increase in model parameters. We employed datasets on paddy, corn, wheat, and 

coffee diseases. To enhance the utilization of the datasets, we implemented ro-

tation, scaling, and color modification and conducted three-fold cross-valida-

tion. We assessed the PRMT model is performance using recall, specificity, ac-

curacy, and precision metrics and compared it with other models. Studies show 

that the PRMT model can easily handle big and complicated datasets of agricul-

tural diseases, leading to much better results with only a few extra parameters. 

Our methodology improves the effectiveness of categorizing intricate plant dis-

ease images. 

Keywords: Plant disease, Manhattan, Networks, Attention, Spatial prior-

knowledge. 



 

 

1.1 Introduction 

1.2 A Subsection Sample 

Severe plant losses, estimated at 20 to 40 percent in some countries, have arisen from 

agricultural illnesses and insect infestations, posing substantial challenges to global 

food supplies [1]. Traditional pest control methods are also losing their effectiveness, 

which calls for developing new, creative strategies, such as plant rotation and other 

agricultural practices to reduce pest infestations [2]. 

Precise identification of plant diseases ensures plant safeguarding and promotes sus-

tainable farming methods. Traditional methods of classifying agricultural diseases 

demonstrate numerous shortcomings that impede their precision and efficacy. Conven-

tional techniques for diagnosing agricultural diseases, including visual and tactile eval-

uations, frequently depend on subjective interpretations and are susceptible to inaccu-

racies [3].  Furthermore, these technologies require substantial human labor, which is 

becoming progressively inefficient and time-intensive, especially in managing large 

agricultural operations [4]. Traditional techniques can fail to detect infections in their 

first stages, resulting in postponed interventions and increased agricultural losses [5]. 

The demand for accurate, automated disease detection technologies that provide de-

pendable real-time information is rising [6]. 

Recent advancements in deep learning, such as Vision Transformers (ViT) [7], Con-

volutional Neural Networks (CNNs) [8], and Artificial Neural Networks (ANNs) [9], 

have significantly transformed the detection and classification of agricultural diseases. 

These algorithms enhance classification accuracy by examining extensive visual data 

and independently extracting intricate features from plant photos, exceeding conven-

tional methods. CNN and ViT models exhibit enhanced proficiency in feature extrac-

tion and acquiring spatial and positional data, improving the identification of subtle 

illness markers [10]. Deep learning techniques, especially Vision Transformers (ViTs) 

[11, 12], have significantly improved the handling of intricate datasets with diverse 

lighting and backdrop circumstances. These algorithms have proven their capacity to 

adjust to diverse agricultural situations and deliver faster, more accurate results than 

traditional manual classification methods [13, 14]. Deep learning models are indispen-

sable in the current era because they can surpass previous limitations [15]. Convolu-

tional Neural Networks (CNNs) excel at identifying plant diseases by recognizing pat-

terns and anomalies in leaf surfaces, as they are proficient at discerning spatial hierar-

chies within images [16]. Conversely, ViTs effectively handle long-range dependencies 

in images, facilitating the identification of intricate disease patterns across extensive 

agricultural regions [17]. Advancements in deep learning methodologies facilitate early 

disease detection and prevention, reducing dependence on manual assessments while 

providing quicker and more precise results [18]. Implementing these algorithms has 

facilitated the development of reliable systems for various plants and illnesses, ensuring 

the applicability of precision agriculture across many scenarios and on a wide scale 

[19].  Nonetheless, these algorithms possess certain limitations, such as the possibility 

of substantial computing expenses and time investments, which constrain their scala-

bility for large-scale agricultural applications [20]. Traditional deep-learning algo-

rithms mainly focus on local features, hindering the identification of long-range 
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relationships in complex agrarian data. It may also impede the recognition of subtle 

disease patterns [5]. Researchers have developed sophisticated deep-learning algo-

rithms, such as Vision Transformers (ViT) and Swin Transformers, to tackle these dif-

ficulties by integrating attention mechanisms. These developments allow models to fo-

cus on the most relevant picture areas, improving feature extraction and overall effec-

tiveness [17]. The sophisticated algorithms enhance accuracy by concentrating on crit-

ical areas, reducing the necessity for large datasets, and increasing efficiency and adapt-

ability in agricultural applications [21]. 

: Quary                                                                 : Receptive Field 

  

(a) Vanilla Self-Attention (b) Window Self-Attention 

  

(c) Neighborhood Self-Attention (d) Manhattan Self-Attention 

Fig. 1. A comparison is made between several self-attention methods. The color intensity in the 

Manhattan Self-Attention (MaSA) mechanism represents the spatial decay rate; lighter parts in-

dicate more considerable spatial decay rates, while darker regions indicate lower spatial decay 

rates. This distance-related spatial decay rate provides the model with rich spatial prior infor-

mation. 

The attention mechanism and 2D average pooling make the modified RMT (Reten-

tive Network for Vision Transformer) method better for classifying agricultural dis-

eases. This method has many benefits. By adding explicit spatial priors to the Vision 

Transformer (ViT) [22], RMT overcomes the shortcomings of the conventional self-

attention mechanism, which lacks spatial awareness and has a high computational cost. 

The attention mechanism improves feature selection even more by focusing on the most 

essential parts of the image. It makes it easier for the model to spot small plant disease 

patterns [20]. Adding 2D average pooling to the model also makes it easier to use with 

large datasets and speeds up computation by reducing the number of spatial dimensions 



 

 

while keeping essential features [6]. This combination improves the model's robustness 

and increases disease detection accuracy, making it more useful in agricultural settings. 

In particular, this paper introduces several key innovations: 

(1) The PRMT framework, a novel RMT architecture, integrates the Convolutional 

Block Attention Module (CBAM) with a 2D average pooling layer and an RMT net-

work. It improves disease detection accuracy, reduces computational costs, and en-

hances generalization and classification performance.   

(2) The addition of 2D average pooling minimizes sensitivity to local noise and in-

creases model resilience with only a tiny parameter increase.   

(3) A comprehensive analysis of multiple publicly available datasets shows that the 

proposed model is more effective at classifying plant diseases. It provides a scalable 

solution with low computational complexity and high detection accuracy. 

2 Related Work 

2.1 RMT Methods 

In recent years, studies have shown that the central part of the VIT model that deals 

with self-attention is challenging to compute, doesn't give clear spatial information 

ahead of time, and becomes a bottleneck when processing substantial volumes of image 

data. Researchers have conducted multiple investigations to address these restrictions. 

To solve this problem, the Swin Transformer separates the tokens used in self-attention 

calculations using spatial prior information, windowing, and relative position encoding. 

RMT uses the Manhattan Self-Attention mechanism (MaSA) (Figure 1). This network 

model keeps linear complexity to a minimum while fixing the problems with the VIT 

network and making up for the lack of prior information. The MaSA decomposition 

determines the shape of each marker's receptive field. As it matches the shape of the 

whole MaSA's receptive field, our decomposition method keeps the explicit spatial 

precedence. RMT creates a two-dimensional, bidirectional spatial decay matrix using 

the Manhattan distance between tokens. The RETNET framework expands its temporal 

decay matrix to include the spatial domain. In this spatial decay matrix, the attention 

score of the target token diminishes as its distance from adjacent tokens increases. It 

means that tokens at different distances get different amounts of attention, as shown in 

Figure 4. 

2.2 Attention-Based Methods 

Attention mechanisms have become crucial in deep learning models to enhance the 

model's capacity to concentrate on pertinent information. The channel attention mech-

anism prioritizes the channel dimension of the feature map and is among the most often 

employed attention mechanisms. This method evaluates the importance of each channel 

by analyzing global data from all spatial regions. The spatial attention mechanism is 

essential since it affects the spatial dimensions of the feature map. The spatial attention 

mechanism allows the model to concentrate on prominent image areas, including object 

boundaries or regions with considerable fluctuations. Hybrid attention mechanisms that 
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integrate discrete channel and spatial attention processes are also present. These strat-

egies enhance your comprehension of incoming data by elucidating their interconnec-

tions in channel and geographical contexts. The Convolutional Block Attention Mod-

ule (CBAM) is a composite attention mechanism comprising channel and spatial at-

tention modules. Initially, the channel attention module performs average and max 

pooling operations on the feature map. Next, the channel attention module creates 

channel attention weights by passing these descriptors through a shared multilayer 

perceptron (MLP). The spatial attention module unites the averaged and max-pooled 

feature maps in two dimensions along the channel axis. It finds spatial attention 

weights. It employs a 7x7 convolution kernel. Figure 3 shows that these steps improve 

the model's ability to tell the difference between things and make more accurate pre-

dictions by focusing on relevant information more. 

 

Fig. 2. Overview of the PRMT model. In four stages, we implement a Manhattan distance-based 

Manhattan Self-Attention. Additionally, we integrate the channel and spatial attention modules 

to analyze plant disease images and improve the feature map effectively. The backbone network 

is subjected to 2D average pooling, enhancing reliability. 

 

Fig. 3. The CBAM block's architecture, which ⊗ represents the original feature map multiplied. 

 

Fig. 4. Spatial decay matrix in the decomposed MaSA. 



 

 

2.3 Pooling based methods 

In Convolutional Neural Networks (CNNs), pooling is a crucial procedure that reduces 

the spatial dimensions of feature maps while preserving the most significant infor-

mation. CNNs perform tasks by applying a 2D average pooling function to a small 

window of the input feature map, which computes the 2D average. The model gradually 

lowers the spatial resolution of the feature map by running pooling operations across 

multiple network layers. It makes the representation of the input data more concise and 

general. Besides reducing the computational complexity of the model, pooling provides 

a degree of translation invariance. Combining pooling with attention improves the mod-

el's representational capacity, enabling it to consolidate the most pertinent regions for 

the task preferentially. We specifically favor 2D average pooling for its simplicity and 

efficiency. It provides a continuous downsampled representation by averaging each 

two-dimensional window in the feature map. This research enhances the RMT model 

by including 2D average pooling. By implementing 2D average pooling in the back-

bone network, the model effectively handles the intricate spatial structure and multi-

scale information in agricultural imaging, thereby enhancing plant disease classifica-

tion tasks. 

3 Method 

3.1 Backbone Network 

The RMT model's core is the creative enhancement of the self-attention mechanism, 

which serves as its backbone network. RMT provides the self-attention mechanism with 

explicit prior knowledge by introducing a spatial attenuation matrix based on the Man-

hattan distance. RMT enhances the ability to feature expression and efficiently captures 

the spatial link between pixels. Specifically, RMT extends the temporal attenuation 

process of RetNet to the spatial domain and produces a two-dimensional bidirectional 

spatial attenuation matrix. The elements of the spatial decay matrix are defined as fol-

lows for any two tokens, 𝑇𝑖  and 𝑇𝑗： 

𝐷𝑖𝑗
2𝑑 = 𝛾|𝑥𝑖−𝑥𝑗|+|𝑦𝑖−𝑦𝑗| (1) 

In this case, (𝑥𝑖,𝑦𝑖) and (𝑥𝑗𝑦𝑗)represent the two-dimensional coordinates of 𝑇𝑖and 

𝑇𝑗 in the image, respectively, and γ is the attenuation factor, which controls the decay 

speed of attention with distance. RMT uses a form of decomposition that computes 

attention scores along the image's horizontal and vertical directions, followed by apply-

ing a 1D bidirectional decay matrix through Hadamard product (⊙) element-wise mul-

tiplication. Let 𝑄𝐻 , 𝐾𝐻, and V be the query, key, and value matrices in the horizontal 

direction, and 𝑄𝑊 and 𝐾𝑊 be the query and key matrices in the vertical direction. The 

horizontal and vertical attention scores, 𝐴𝑡𝑡𝑛𝐻 and 𝐴𝑡𝑡𝑛𝑊, are computed as follows: 

 𝐴𝑡𝑡𝑛𝐻 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐻𝐾𝐻
𝑇) ⊙ 𝐷𝐻 (2) 

 𝐴𝑡𝑡𝑛𝑊 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑊𝐾𝐻
𝑇) ⊙ 𝐷𝑊 (3) 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

In this case, 𝐷𝑖𝑗
𝐻  = 𝛾|𝑦𝑖−𝑦𝑗| and 𝐷𝑖𝑗

𝑊 = 𝛾|𝑥𝑖−𝑥𝑗| represent the two-dimensional coordi-

nates of  𝐷𝐻  and 𝐷𝑊 in the image. The attention results of the two directions are mul-

tiplied to produce the final self-attention output: MaSA(X) = 𝐴𝑡𝑡𝑛𝐻(𝐴𝑡𝑡𝑛𝑊𝑉)𝑇. This 

decomposition technique maintains the linear complexity of the model, efficiently mod-

els the global information without destroying the spatial decay matrix, and guarantees 

that the computational cost increases linearly with the size of the input data. The archi-

tecture of the RMT model comprises four stages, each of which processes the input 

feature map through a series of convolutional layers, normalization layers, and fully 

connected layers. To offer a strong feature representation for the following tasks, the 

original MaSA is employed in the final stage after the decomposed MaSA has been 

used in the first three stages to progressively extract high-level semantic characteristics 

of the image, as shown in Figure 2. 

3.2 Attention Blocks 

The Channel-based and Spatial Attention Mechanism (CBAM) module, added to the 

RMT model, improves picture feature expression so that the model can concentrate on 

the disease marker area. The Channel Attention Module (CAM) and the Spatial Atten-

tion Module (SAM), the two components of CBAM, collaborate to improve feature 

maps from the channel and spatial dimensions, respectively. Finding each channel's 

significance in the feature representation is the primary objective of the Channel Atten-

tion module (CAM). First, the input feature map F is subjected to the global average 

pooling (AvgPool) and max pooling (MaxPool) operations, which compress the feature 

map's spatial dimension to 1×1, producing two 1×1×C feature maps, where C is the 

number of channels. The formula follows: these two feature maps show the channel's 

maximum and average features. 

𝐹𝑎𝑣𝑔
𝑐 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹) (4) 

𝐹𝑚𝑎𝑥
𝑐 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹) (5) 

The two feature maps were then processed using a shared multilayer perceptron 

(MLP). The ReLU activation function sits between the two wholly connected layers of 

the MLP. MLP to reduce the parameter overhead, the first fully connected layer com-

presses the number of channels by a factor of 1/r, and the second fully connected layer 

returns the number of channels to the original value. The channel's attention weight t 

𝑀𝐶(𝐹) is computed as follows, assuming that 𝑊0 and 𝑊1 are the weight matrices of the 

MLP. 

𝑀𝑐(𝐹) = 𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹))) =  𝜎𝑊1(𝑊0)𝐹𝑚𝑎𝑥
𝑐 )))     (6) 



 

 

In this case, σ is the Sigmoid activation function that normalizes the attention 

weights to the [0,1] interval. Determining the significance of each spatial location and 

capturing the spatial dependencies in the feature map are the Spatial Attention Module's 

(SAM) goals. To derive the input feature 𝐹′: 𝐹′ =  𝑀𝑐(𝐹) ⊙ 𝐹 of the spatial attention 

module, the input feature map was first multiplied by the channel attention weight pro-

duced by CAM. Then, to create two H×W×1 feature maps for the first-order derivative 

of the capital letter 𝐹′, we used the 2D average pooling and max pooling procedures 

along the channel dimension, respectively, where H stands for the feature map's height 

and W for its width. The two feature maps are concatenated in the channel dimension 

to obtain an H×W×2 feature map, which is then reduced by a 7×7 convolutional layer. 

Finally, the Sigmoid activation function is used to generate the spatial attention weight 

𝑀𝑠(𝐹); the formula is as follows: 

𝑀𝑠(𝐹) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹′); 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹′)])) (7) 

Where the 7×7 convolution process is denoted by 𝑓7×7. The final attention feature 

map is produced by the CBAM module as a whole, combining the channel attention 

weights and spatial attention weights with element-by-element multiplication: 

𝐹𝑜𝑢𝑡  =  𝑀𝑆(𝐹) ⊙ 𝑀𝑐(𝐹) ⊙ 𝐹 (8) 

In this approach, CBAM may adaptively emphasize the critical channels and spatial 

locations in the input feature map, screen out the key disease information in the plant 

image, and boost the representation ability of the model for disease features. 

3.3 2D Average Pooling Module 

CBAM can filter essential disease information from the input image and adaptively 

emphasize important channels and spatial locations in the feature map, enhancing the 

model's ability to reflect disease characteristics.  Using a k × k pooling window (usually 

k = 2), the 2D average pooling process slides across the feature map, computes the 2D 

average of the elements inside each window and produces the output feature map F 

pool, which has a size of 
H

k
×

W

k
×C. The precise method of calculation is as follows: 

𝐹𝑝𝑜𝑜𝑙(𝑖,𝑗,𝑐) =
1

𝑘2
∑ ∑ 𝐹(𝑖 × 𝑘 + 𝑚, 𝑗 × 𝑘 + 𝑛, 𝑐)

𝑘−1

𝑛=0

𝑘−1

𝑚=0

(9) 

In this context, i, j, and c denote the output feature map indices corresponding to 

height, width, and channel dimensions, respectively, while m and n signify the posi-

tional indices within the pooling window. 

Thus, 2D average pooling effectively reduces the number of model parameters while 

improving computing efficiency and generalization ability without significantly dimin-

ishing model performance. The model's robustness to local fluctuations enables it to 

effectively identify plant disease traits despite diverse lighting conditions, background 

interference, and other difficult circumstances. 
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4 Experiments 

4.1 Datasets 

Experiments are conducted on four publicly available datasets to confirm the generality 

of our model in various settings. The dataset distribution's image information is shown 

in Table I. Figure 5 lists the number of photos and illness name information utilized for 

training, validation, and testing datasets. Figure 6 presents some samples of photo-

graphs before and after image augmentation for each dataset. We separated all datasets 

into training, validation, and test sets in an 8:1:1 ratio using random seeds to prevent 

loss or bias in the data distribution. We preprocess the photos for deep learning training 

better to capture the distribution and properties of the data and lower the chance of 

overfitting. Three-fold cross-validation is employed in this work, which performs pic-

ture-enhancing procedures by rotating, transforming, scaling, and color-transforming 

the existing data. 

Paddy: The paddy [23] is a dataset from a Kaggle competition. Nine rice leaves with 

particular diseases and one set of healthy rice leaves comprise the dataset's 13876 rice 

leaf samples. The dimension of each image is 480 × 640 × 3. There are 75% labeled 

and 25% unlabeled data in the dataset. We use labeled data (10,407 samples) for train-

ing and testing. 

Corn: Included in the corn [24] dataset are 3,852 photos of Blight (985 photos), 

Common Rust (1,192 photos), Gray Leaf Spot (513 photos), and Healthy (1,162 pho-

tos). All of the images are taken from the Plant Village dataset. The most widely used 

and accepted leaf picture dataset for identifying plant diseases is called Plant Village. 

Wheat: 4087 photos of various sizes representing seven distinct kinds of wheat [25] 

illnesses are included in the wheat dataset. These photos show environmental elements 

like the sky, soil, and weeds that make it challenging to identify wheat crops.  

Coffee: Three different kinds of coffee [26] leaves are included in the dataset: rust, 

red spider mite, and healthy. The leaves in each category contain photographs of precise 

size and resolution. The dataset's photos, which we collected in a natural field environ-

ment, show a range of background disturbances. We created a new dataset by selecting 

a thousand sample features for picture augmentation because certain features weren't 

significant enough. 

4.2 Experiment settings 

Table Ⅱ contains a detailed list of the hyperparameters used in this study. We estab-

lished the same parameters in each experiment to ensure a fair comparison. For 100 

epochs, we trained the model from scratch without using any pre-trained weights. We 

set the batch size and learning rate to 64 and 0.0001, respectively, using AdamW as the 

optimizer. In our experience, we minimized overfitting in the model using a weight 



 

 

decay value of 0.05. Changing the weight decay rate impacts the training process but 

does not affect the outcome. All photos are consistently resized to 224 × 224 and then 

augmented with data to improve the diversity of training samples and supplement the 

restricted data. Before training the network, We randomly rotate and centrally plant the 

samples in the training, validation, and test sets. Ultimately, we standardize all photos, 

utilizing the standard and mean square deviations. Table 2 delineates our hyperparam-

eter configurations for model training. 

 

(a) Statistics of Paddy dataset 

 

(b) Statistics of Corn dataset 

 

(c) Statistics of Corn dataset 

 

(d) Statistics of Coffee dataset 

Fig. 5. Data distributions for the datasets used in our comparative experiments. 
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Table 1. Distributions of datasets. 

Name id Name of disease Name id 

Coffee 
0 
1 
2 

Health 
Red spider mite 

Rust 
Corn 

0 
1 
2 
3 

Wheat 

0 Healthy 

Paddy 

0 
1 Rust 1 
2 Mildew 2 
3 Smut 3 
4 Root rot 4 
5 Scab 5 
6 Leaf spot 6 

  

7 

8 

9 

    
(a)Paddy (b) Corn  

    
(c) Wheat (d) Coffee 

Fig. 6. Examples of the dataset image. The image on the left is before enhancement, and the 

image on the right is after enhancement. 

Table 2. Hyperparameter settings for training. 

Name Value Description 

Epochs 100 Number of times the model was trained 

Batch Size 64 Number of samples selected for one training 

Optimizer AdamW Tool used to bootstrap network update parameters 

Learning Rate 0.0001 Tune parameters in optimization algorithms 

Loss function Cross entropy 
Evaluates the gap between the predicted value and the 
actual value 

 



 

 

4.3 Model evaluation 

This study used the top-1 accuracy, recall, precision, and specificity to evaluate the 

best-performing model. True and false positives (TP and FP, respectively) indicate the 

number of correctly and wrongly predicted positive samples. True and false negatives 

(TN and FN) reflect the number of correctly and wrongly predicted negative samples. 

We evaluated the inference speed and model complexity using the number of parame-

ters and the floating point operations per second (FLOPs). 

Table 3. Detailed ablation result. 

Network 
model 

Top-1 Accuracy (%) Parameters(M) FLOPs (G) 

Paddy corn wheat Cof-
fee 

  

ResNet-50 
SqueezeNet-1.0 
ShuffleNetV2-1.0 

CVT-Tiny 
VGG-16 

FasterNet-T0 

96.3 
89.3 
91.9 
94.5 
93.7 
95.1 

93.8 
92.1 
92.5 
91.7 
91.8 
92.1 

92.7 
70.1 
89.6 
93.6 
88.7 
89.6 

77.0 
79.7 
68.8 
82.0 
75.9 
77.2 

23.51 
0.74 
1.27 

19.63 
134.33 

2.63 

4.13 
0.73 
0.15 
4.08 

15.47 
0.34 

EfficientNet-B0 97.0 95.1 93.5 81.6 4.01 0.41 
PVT-tiny 95.2 95.4 92.2 78.1 23.58 3.69 

RepVGG-A0 95.3 95.1 93.5 77.0 9.11 1.53 
Swin-tiny 95.2 94.8 92.2 75.8 27.94 4.46 
MobileV3 94.3 93.2 88.5 75.8 1.52 0.06 

PRMT 97.4 95.9 95.7 85.0 13.39 2.33 

Top − 1 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(10) 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11) 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(12) 

 

Specificity =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
(13) 

4.4 Comparative Experiment 

We selected various standard CNN-based and VIT-based networks to compare with our 

approach. A selection of prominent deep learning models, such as ResNet [27], 

SqueezeNet [28], ShuffleNet [29], CVT [30], VGG [31], FasterNet [32], EfficientNet 
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[33], PVT [34], RepVGG [35], Swin [36], and MobileViT [37], was made based on 

comparative evaluations. The experiment utilizes multiple metrics to evaluate the mod-

el's performance thoroughly. These include accuracy, precision, recall, specificity, pa-

rameter count, and floating-point operations (FLOPs). The PRMT model has shown 

high accuracy across multiple data sets in Table Ⅲ. The PRMT model achieved an 

accuracy of 97.4% on the rice dataset, while ResNet-50 attained 96.3%, SqueezeNet-

1.0 reached 89.3%, and ShuffleNetV2-1.0 recorded 91.9%, among others. The PRMT 

model demonstrates superior performance relative to most comparative models, achiev-

ing an accuracy of 95.9% on the corn dataset. The accuracy rate of 95.7% on the wheat 

dataset is noteworthy. An accuracy of 85.0% on the coffee dataset exceeds that of many 

other models. The PRMT model demonstrates high reliability in classification tasks, 

evidenced by its elevated precision and recall rates, which effectively identify illness 

samples while minimizing false negatives and false positives. The PRMT model has 

distinct advantages concerning the number of parameters. The model diminished com-

putational resources for training and deployment, comprising 13.39 million parame-

ters—significantly fewer than larger models such as ResNet-50, which has 23.51 mil-

lion parameters. The PRMT model executes 2.33 billion floating-point operations 

(FLOPs). The PRMT model has exceptional accuracy and significant computational 

efficiency, facilitating swift analysis of picture data. This renders it appropriate for real-

time applications in agricultural disease detection. 

  
(a) Confusion matrix of the PRMT model on the 
Paddy dataset 

(b) Confusion matrix of the PRMT model on the 
Corn dataset 

  
(c) Confusion matrix of the PRMT model on the 
Wheat dataset 

(d) Confusion matrix of the PRMT model on the 
Coffee dataset 

Fig. 7. Confusion matrix of the PRMT model on the datasets 



 

 

   
(a) Evaluation Metrics of Paddy 

   
(b) Evaluation Metrics of Corn 

   
(c) Evaluation Metrics of Wheat 

   
(d) Evaluation Metrics of Coffee  

Fig. 8. Precision, recall, and specificity of the PRMT model on the datasets. 

Table 4. Ablation experiments investigating each component in the PRMT model (Bold text 

highlights the best-performing network). 

The PRMT model demonstrates significant stability when utilized on datasets with 

intricate backdrops and varying lighting conditions. Traditional models like VGG-16 

demonstrate less accuracy because they cannot extract features from complex back-

grounds. 

Using the RMT network to integrate the CBAM module and 2D average pooling 

layer, the PRMT model can more accurately depict the illness characteristics and suc-

cessfully handle the interference of complex settings. Figure 8 displays the precision 

and recall results for each category on this dataset, whereas Figure 7 depicts the confu-

sion matrix performance of the suggested fusion network topology on the four datasets. 

We display the RMT and PRMT heatmap predictions in Figure 9. The model's projected 

zones of high and low attention are easily discernible in the heatmap. Our approach 

Meth-
ods 

Top-1accuracy(%) Params(M) FLOPs(G) 

Paddy(%) Corn(%) Wheat(%) Coffee(%) 

RMT 94.3 94.8 93.7 77.0 13.2 2.32 

+CBAM 96.5(+2.2) 95.6(+0.8) 94.6(+0.9) 82.2(+5.2) 13.81(+0.61) 2.35(+0.03) 

+2D Avg 
pool 

97.1(+2.8) 95.0(+0.2) 93.8(+0.1) 79.3(+2.3) 13.19(-0.01) 2.32(+0.00) 

PRMT 97.4(+3.1) 95.9(+1.1) 95.7(+2.0) 85.0(+8.0) 13.39(+0.19) 2.33(+0.01) 
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learns more features than the RMT model, as the red area in Figure 9 indicates. This 

outcome confirms the efficiency of the suggested plant disease identification strategy 

in this experiment. 

   
Paddy sample RMT predicted Our method predicted 

   
Corn sample RMT predicted Our method predicted 

   
Wheat sample RMT predicted Our method predicted 

   
Coffee sample RMT predicted Our method predicted 

Fig. 9. Heat maps display predictions from the original RMT model and our proposed method 

for the Paddy, Corn, Wheat, and Coffee datasets. 

4.5 Experiment setup 

We list the precise hyperparameters used in this paper in Table Ⅱ. We preserve the 

experiment's objectivity by applying the same experimental settings to the results of 

many models. The Intel(R) Xeon(R) Platinum 8255C CPU, running at 2.50GHz, in-

cludes an NVIDIA GeForce RTX 2080Ti GPU, 12 vCPUs, and 43GB of RAM. We 

make the software compatible with Cuda 11.3, Python 3.8, and PyTorch 1.11.0. We do 

all of our testing on deep-learning cloud platforms. We are using Ubuntu 20.04 as our 

operating system. 



 

 

4.6 Ablation Studies 

Through comparison experiments, we thoroughly examine the individual and combined 

effects of the RMT network, CBAM module, and 2D average pooling method on our 

model's performance to investigate each component's efficacy. The information pro-

vided demonstrates how well each element of our model works in Table Ⅳ. +Avg pool 

denotes using a 2D average pooling layer, introduced after the Manhattan matrix in the 

RMT block, and +CBAM denotes integration with channel attention and spatial atten-

tion before the RMT block based on the RMT model. On top of RMT, PRMT is a new 

backbone network that uses 2D average pooling layers and CBAM modules. Ablation 

studies demonstrate that by adding spatial prior knowledge, the RMT network enhances 

the model's comprehension of the link between picture regions. To better focus the dis-

ease marker region and improve the model's ability to reflect crucial traits, we used the 

CBAM module. To further enhance the model's adaptability to local changes while re-

ducing the number of parameters, we included the 2D average pooling layer. PRMT 

allows the model to continue performing steadily in complex backgrounds, demonstrat-

ing the significance of each element of our PRMT method and how they interact. 

5 Conclusion 

In this paper, the PRMT model effectively addresses the issues that conventional and 

current deep learning models encounter. The feature extraction capability is success-

fully enhanced by integrating the CBAM module with the RMT network, and robust-

ness to local changes is improved by employing 2D average pooling. 

Comprehensive testing across several datasets validates the proposed model's supe-

riority, exceeding the accuracy and generality of existing standard models. This study 

presents a more practical approach to diagnosing agricultural diseases and facilitating 

future progress in agricultural image processing. 
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