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Abstract. Temporal action localization has recently garnered widespread atten-

tion. Current studies on temporal action localization mostly focus on 2D temporal 

action localization for the human body, with little research on more complex hand 

gestures. 2D-based temporal hand gesture localization has notable drawbacks, 

such as motion ambiguity and difficulty in handling complex gestures. To ad-

dress these issues, we innovatively designed a 3D skeleton-based temporal action 

localization model, which processes 3D hand skeleton sequences and has a more 

robust capacity for learning and representing complex hand gestures. As far as 

we know, this is the first 3D skeleton-based method for temporal action localiza-

tion.The model includes a backbone network, a temporal action localization mod-

ule, and a classification head. The GCN-based backbone network is responsible 

for feature extraction from the skeleton sequence. The temporal action localiza-

tion module fuses multi-scale temporal features through a pyramid structure, then 

performs action localization. The classification head predicts the action category. 

Additionally, we designed an innovative loss function to guide the model's learn-

ing. We validated our model on a self-constructed 3D hand skeleton dataset, and 

the results show that our model demonstrates good performance in temporal hand 

gesture localization. 

Keywords: Temporal action localization, hand gesture, skeleton, multi-view. 

1 Introduction 

Unlike simple action recognition, temporal action localization involves not only iden-

tifying the action category but also determining the precise temporal boundaries of ac-

tions. This requires the model to effectively distinguish between target actions and 

background, necessitating a deep understanding of the spatial and temporal dependen-

cies within the action sequences. 

Early approaches involved manual feature extraction or key point detection [1]-[4], 

but these methods struggled to effectively handle complex actions. The rise of deep 

learning has been a breakthrough for pattern recognition, as studies show that utilizing 

deep learning networks [5]-[9] significantly improves the capacity for repre-senting and 

learning complex hand gestures. Most existing temporal action localiza-tion methods 

rely on 2D video data, where frame sequences are extracted from vide-os for recogni-

tion and detection [10]-[12]. These methods have limited capability for precise action 

localization tasks.Consequently, we shifted our focus to 3D methods. 



On one hand, 3D action sequences inherently provide richer spatiotemporal seman-

tics, facilitating a clearer distinction between different actions. On the other hand, 3D 

action representation can alleviate occlusion issues to some extent. 

Skeleton-based representations provide a compact and efficient means of describing 

3D action sequences, while graph structures are particularly suited to capture the topo-

logical spatial relationships inherent in skeleton data. Since the introduction of ST-GCN 

[13], graph-based approaches to action recognition have gained significant attention 

[14]-[17], demonstrating notable success in various applications. Therefore, we chose 

a graph-based skeleton representation method and developed our temporal hand gesture 

localization model. 

Our model processes 3D skeleton input data in an end-to-end manner and consists 

of three main components: a backbone, a Temporal Action Localization module, and a 

Classification Head. The backbone takes skeleton action sequences as input and ex-

tracts meaningful 3D motion features. The Temporal Action Localization module iden-

tifies action boundaries by predicting the start and end frame indices, while the Classi-

fication Head determines the action category. The overall pipeline of our method is 

illustrated in Fig. 1. First, frames are extracted from the original video, and 3D skeleton 

data is extracted frame by frame. Then, the skeleton data is preprocessed and input into 

the model, ultimately producing the output results. 

 

Fig. 1. The overall pipeline of the recognition algorithm. 

Similar to 2D object detection tasks, temporal action localization can be viewed as 

a one-dimensional object detection problem, where the goal is to identify the action 

intervals along a time axis. Mainstream object detection methods [19] frame the task as 

a regression problem. Drawing inspiration from these methods, we formulated the tem-

poral action detection task as a regression problem, where the model predicts frame 

indices to localize actions in time. 

Research on 3D skeleton-based temporal action localization remains limited, and 

there is a lack of comprehensive related datasets. To validate our proposed model and 

methods, we collected a hand gesture dataset that includes skeleton sequences, class 

labels, and action localization annotations. Furthermore, we developed a comprehen-

sive suite of tools for data annotation, skeleton extraction, and data augmentation, de-

signed to support dataset construction, model training, and inference processes.  

The contributions of this paper are summarized as follows: 

• We propose a compact and efficient deep learning model for temporal action locali-

zation, specifically designed for hand gestures using 3D skeleton data. 
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• We collected and curated a 3D hand skeleton dataset to facilitate the evaluation of 

our model's performance. 

• We trained and validated the model on our self-constructed dataset, achieving prom-

ising performance. 

2 Related Work 

2.1 Skeleton-based Method  

Early approaches for skeleton-based methods [20]-[26] relied on Convolu-tional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term 

Memory (LSTM) networks. These methods have achieved certain results, but they suf-

fer from limited receptive fields and are unable to effectively handle long-term depend-

encies. 

With the emergence of Graph Convolutional Networks (GCN) [27], an increasing 

number of studies have started to explore GCN-based methods. The initial ST-GCN 

[13] introduced the spatio-temporal graph convolutional structure, providing a new per-

spective for research in GCN-based methods. Since then, a large number of GCN-based 

approaches have emerged. Existing methods either focus on constructing different 

graph structures from a data perspective to capture richer spatio-temporal semantics 

[28], [29], or meticulously design network architectures to enhance learning perfor-

mance [14], [30]-[32]. 

However, most current methods suffer from severe parameterization issues, result-

ing in low inference efficiency and limiting their practicality in real-world applications. 

The Efficient GCN [18] introduces a lightweight action recognition baseline. This 

method innovatively utilizes joint, velocity, and skeleton branches to process three dis-

tinct features, integrating them into the main stream via mid-level fusion, while em-

ploying separable convolutions to reduce the computational load. 

2.2 Temporal Action Localization 

Temporal action localization aims to accurately identify the start and end frame indices 

of actions based on the recognized action categories. This task requires high precision 

in learning action patterns and distinguishing the foreground from the background. Cur-

rent mainstream methods [33]-[36] use feature pyramid networks (FPN) [37] for multi-

scale learning of action features, followed by the extraction of temporal dimension fea-

tures using various approaches. 

3 Temporal Action Localization for Hand Gestures Based 

on 3D Skeletons 

This section primarily discusses the implementation details of our method. The first 

part introduces the design details of the network, the second part describes the model's 



loss function, the third part introduces the data preprocessing methods, and the fourth 

part covers the training and inference processes. 

3.1 Network Design  

The network is divided into three main parts: the backbone network, Temporal Action 

Localization, and the Classification Head, as shown in the Fig. 2. In the figure, both the 

Temporal Action Localization and Classification Head modules receive the output fea-

tures from the backbone network as input. The former is responsible for hand gesture 

localization, outputting the start and end frame indices of the action, while the latter is 

independent of the former and is responsible for predicting hand gesture categories. We 

have verified the necessity and effectiveness of this configuration through experiments, 

as detailed in the Experiment Section 4.3. 

 

Fig. 2. Network structure schematic. It mainly includes a backbone, Temporal Action Localiza-

tion module and classification head. The Temporal Action Localization includes a feature pyra-

mid network(FPN), LSTM, and a full connection layer, while the Classification Head consists of 

global average pooling, dropout, and fully connected layers. 

Backbone Network. The backbone network takes the 3D skeleton action sequence as 

input and extracts key spatiotemporal action features. To select the most suitable net-

work as the backbone, we compared the performance of several GCN-based models 

and ultimately chose EfficientGCN-B0 as the backbone network, as detailed in the Ex-

periment Section 4.2. 

Temporal Action Localization. The Temporal Action Localization module consists 

of an FPN (Feature Pyramid Network) and a Detector. The FPN downsamples the fea-

tures extracted by the backbone to different resolutions, and then performs upsampling 

and fusion step by step from lower to higher resolutions.  

The specific implementation of FPN can be written as the following equation 

 𝐿𝑎𝑦𝑒𝑟𝑖+1 = 𝐴𝑃(𝐿𝑎𝑦𝑒𝑟𝑖) (1) 

 𝑓 = 𝐶𝑜𝑛𝑣(𝐿𝑎𝑦𝑒𝑟𝑖+1) ⊕ 𝑈𝑝(𝐿𝑎𝑦𝑒𝑟𝑖+1
′ ) (2) 
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 𝐿𝑎𝑦𝑒𝑟𝑖
′ = 𝐴𝑃(𝑓) (2) 

𝐿𝑎𝑦𝑒𝑟𝑖 represents the i-th layer in the top-down path on the left side, while 𝐿𝑎𝑦𝑒𝑟𝑖
′ 

represents the i-th layer in the bottom-up path. Conv refers to a 1×1 convolution, Up 

indicates interpolation-based upsampling, and AP stands for global average pooling. 

The final output is 𝑎𝑦𝑒𝑟0
′ , which is the highest resolution upsampling layer. Unlike 

traditional FPN networks, the FPN here only retains the highest resolution features as 

output, in order to reduce the computational burden.We can also see the structure of the 

FPN from the Temporal Action Localization module in Fig. 2 . 

By fusing features from different time steps, the FPN maximizes the extraction of 

multi-scale features, which helps generalize to actions with varying time spans. Finally, 

the fused features are passed to the Detector. The Detector consists of an LSTM and 

fully connected layers. The LSTM extracts features from the time series (Experiment 

Section 4.3 verified the effectiveness of LSTM feature extraction), and the fully con-

nected layer outputs the localization predictions. By converting the action frame local-

ization task into a regression problem, the detector only needs to predict the center 

frame of the action and the action proportion. The start and end frame indices can then 

be calculated. 

Classification Head. The Classification Head includes a global average pooling layer, 

Dropout, and fully connected layers. A 3D average pooling layer is used for temporal 

downsampling to obtain video-level features. A 3D convolution implements the final 

fully connected layer, which is responsible for predicting the action class and outputting 

the action’s one-hot encoding. 

3.2 Loss Function 

The model's loss function consists of three components: classification loss, localization 

loss, and confidence loss. 

The classification loss ℒclass  measures the discrepancy between the predicted cate-

gories and the actual categories, using cross-entropy as with other methods. As shown 

in the following equation. 

 ℒclass = −
1

𝑁
∑  𝑁
𝑖=1 ∑  𝐶

𝑐=1 𝑦𝑖𝑐log⁡(𝑦̂𝑖𝑐) (3) 

𝑁 represents the number of samples, 𝐶 represents the number of categories, 𝑦𝑖𝑐  rep-

resents the predicted probability that the i-th sample belongs to category 𝑐⁡, and 𝑦̂𝑖𝑐 

represents the actual probability that the i-th sample belongs to category 𝑐. 

The intermediate frame loss ℒmid is used to measure the discrepancy between the 

predicted positions of the intermediate frames within the action range and their actual 

positions. 𝑚 represents the index of the predicted intermediate frame, and 𝑚̂ represents 

the index of the actual intermediate frame. As illustrated in the following equation, 

 ℒmid =
1

𝑁
∑  𝑁
𝑖=1 (𝑚̂𝑖 −𝑚𝑖)

2  (4) 



The action proportion loss measures the discrepancy between the predicted proportion 

of frames occupied by an action and the actual proportion. Here, 𝑟𝑖 represents the pre-

dicted proportion of the total number of frames taken up by the action, and 𝑟̂𝑖 represents 

the actual proportion. The square root is used to mitigate the differences caused by the 

duration of long or short actions. 

 ℒrate =
1

𝑁
∑  𝑁
𝑖=1 (√𝑟̂𝑖 − √𝑟𝑖)

2 (5) 

The confidence loss ℒconf measures the gap between the actual confidence and the pre-

diction, guiding the model to predict confidence that is more biased towards results 

with a higher Intersection over Union (IoU).  

 ℒconf = −
1

𝑁
∑  𝑁
𝑖=1 𝑐𝑖IoU𝑖log(𝑐̂𝑖) (6) 

Here, 𝑐𝑖 represents the model's output confidence, and 𝑐̂𝑖 is set to 1, while IoU𝑖 is the 

result of the Intersection over Union between the model's output action localization and 

the ground truth. 

To balance the multiple losses, we set several hyperparameters, as shown in the fol-

lowing equation. We determined these hyperparameters through experiments, as de-

scribed in Section 4.4. 

 ℒtotal = 𝜆classℒclass + 𝜆midℒmid + 𝜆rateℒrate + 𝜆confℒconf  (7) 

3.3 Data Preprocessing 

Data Preprocessing. The input is constructed using the EfficientGCN [18] structure, 

forming a graph based on the topology of a 21-point hand skeleton model. The original 

3D skeleton sequence is processed into joint positions, velocities, and bone segment 

characteristics, as illustrated in  Fig. 3. 

 

Fig. 3. Input data representation. (a) represents the relative position of joints, (b) represents joint 

motion velocity, and (c) represents the 3D length and angle of a bone segment. 

Assume that the absolute position of the input joints is given by 𝒳 = {𝑥 ∈
ℝ𝐶𝑖𝑛×𝑇𝑖𝑛×𝑉𝑖𝑛}, where ℛ = {𝑟𝑖|𝑖 = 1,2, … , 𝑉𝑖𝑛} represents the relative position of each 

point in a single frame with respect to the wrist joint. Together, 𝒳 and ℛ form the 
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joints. Joint motion velocity is divided into ℱ and  𝒮 , where ℱ = {𝑓𝑡|𝑡 = 1,2, … , 𝑇𝑖𝑛} 
and = {𝑠𝑡|𝑡 = 1,2, … , 𝑇𝑖𝑛} , calculated by subtracting the coordinates of corresponding 

joints in adjacent frames. The bones are represented by the three-dimensional bone 

length ℒ = {𝑙𝑖|𝑖 = 1,2, … , 𝑉𝑖𝑛}  and the three-dimensional angle = {𝑎𝑖|𝑖̅ =
1,2, … , 𝑉𝑖𝑛} . The details are shown in the formulas. Here, 𝑖 denotes the joint indices, 

and 𝑐 represents the wrist joint index. 

 𝑟𝑖 = 𝑥[: , : , 𝑖] − 𝑥[: , : , 𝑐] (8) 

In the following equation, 𝑡 denotes the current frame index, 𝑓𝑡 refers to the fast ve-

locity calculated with a frame interval of 2, and 𝑠_𝑡 represents the slow velocity with 

an interval of 1. 

 
𝑓𝑡 = 𝑥[: , 𝑡 + 2, : ] − 𝑥[: , 𝑡, : ],

𝑠𝑡 = 𝑥[: , 𝑡 + 1, : ] − 𝑥[: , 𝑡, : ].
 (9) 

The following equation represents the construction of bone data,  𝑖𝑎𝑑𝑗  represents the 

adjacent joint index, and a denotes the angle on the ⁡𝑥⁡, 𝑦  , and 𝑧  axes, where 𝑤 ∈
{𝑥, 𝑦, 𝑧} . 

 

𝑙𝑖 = 𝑥[: , : , 𝑖] − 𝑥[: , : , 𝑖𝑎𝑑𝑗],

𝑎𝑖,𝑤 = arccos⁡ (
𝑙𝑖,𝑤

√𝑙𝑖,𝑥
2 +𝑙𝑖,𝑦

2 +𝑙𝑖,𝑧
2
) ,

 (10) 

This yields inputs for three branches with a shape of × 𝐶 × 𝑇 × 𝑉 ×𝑀 =
3 × 6 × 150 × 21 × 1 , where 𝑁 = 3 represents the three branches, C is the number of 

channels (each branch has two channels, totaling six channels), 𝑇 denotes the number 

of frames in the dataset, 𝑉 = 21 indicates the number of joints, and 𝑀⁡ = ⁡1 signifies 

that there is one hand. 

3.4 Training and Inference. 

Training. The backbone network uses EfficientGCN, with the output structure adjusted 

to 𝑁 × 𝑇 × 𝐶 × 𝑉 ×𝑀 for input to the Temporal Action Localization (TAL) module 

and Classification Head. The model outputs the “rate” and “mid” through the TAL 

module. We designed the model output as “mid” and “rate” , where “mid” represents 

the predicted center frame index of the action, and “rate” represents the proportion of 

the predicted action duration relative to the total input frames. This design is inspired 

by [19]. Unlike the 2D detection problem addressed in that work, our task is a one-

dimensional detection problem in the temporal domain. Finally, we compute the pre-

dicted start and end frame indices, as shown in the following equation, which facilitates 

the calculation of IoU. 

 
𝑓pre

start = mid −
framegt×ratepre

2
,

𝑓pre
end = mid +

framegt×ratepre

2

 (11) 



The Intersection over Union (IoU) of the predicted and ground truth segments is then 

calculated, with the final confidence “𝑐𝑜𝑛𝑓” determined by multiplying IoU and the 

predicted class probability, as shown in the following equation: 

 conf = IoU × 𝑃class (12) 

The model is optimized using losses ℒclass , ℒmid , ℒrate , and ℒconf . 

Inference. During inference, the probability of the predicted class is directly used as 

the value for “𝑐𝑜𝑛𝑓”, with the rest of the process following the same steps as in training. 

4 Experiment 

4.1 Data Collection and Skeleton Extraction 

Data Collection and Video Acquisition. We designed 11 types of movements, includ-

ing reciprocating hand gestures such as “wave hand”, “No”, and gestures that are op-

posite in temporal sequences, such as “making a fist”, “opening the fist", and “upward” 

and “downward swipes”.  

Skeleton Extraction. To facilitate the loading of videos and the precise marking of 

action boundaries, we created a semi-automatic annotation program. The program re-

quires only the manual selection of the video, after which it is automatically loaded, 

and frames where the skeleton cannot be extracted are filtered out. Similar to video 

editing software, users can quickly browse through the actions by dragging the video 

playback slider. By clicking on the ruler, users can mark the start and end positions of 

the action. Once confirmed, the program will automatically calculate and output the 

position of the middle frame of the action and the proportion of the action, significantly 

improving the efficiency of data annotation. 

Since Google Mediapipe is used for extracting 3D skeletons, there may be instances 

where abnormal skeletons are extracted. To address this, we have designed a skeleton 

browsing module that allows users to preview the extracted 3D skeletons, ensuring their 

correctness by dragging the slider. 

Data Augmentation. Data augmentation techniques, including Gaussian noise, ran-

dom scaling, random rotation, and mirror processing, are employed to enhance the ro-

bustness of the model. However, for certain actions, such as “left swipe” and “right 

swipe,” mirror processing would alter the nature of the action, causing them to be-

come distinct actions. As a result, mirror processing is not applied to these specific 

actions. The final dataset includes 3D frame sequences, frames, and gesture localiza-

tion, with a total of 4,400 samples for the training and validation sets.  

Fig. 4 visualizes the data and annotations for three actions. 
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Fig. 4. The figure illustrates three categories from our created dataset: “wave hand,” “open-fist,” 

and “clench.”The “Sequence” includes the 3D skeletons for all frames, “Frames” represents the 

total number of frames in the sequence, and “Location” denotes the action localization, which 

includes mid and rate. 

4.2 Comparison of Different Backbone Networks 

Since classification and localization are performed in two separate stages, the perfor-

mance of the chosen backbone network plays a critical role in feature extraction effec-

tiveness.  We compared the performance of several GCN-based networks, including 

accuracy, number of parameters, FLOPs, evaluation time, and IoU metrics, as shown 

in Table 1 . The performance of the two newer methods, HD-GCN and GAP, is not 

ideal, possibly due to the incompatibility in the way the graph is constructed. In our 

implementation, we uniformly modified the output of each backbone model to have a 

shape of 𝑁 ∗ 𝑇 ∗ 𝐶 ∗ 𝑉 ∗ 𝑀 , applied 3D global average pooling in the pyramid module, 

and implemented the fully connected layer with 3D convolution. After considering all 

metrics, we selected EfficientGCN as the backbone network.  

Table 1. Experimental results of different models serving as the backbone network. 

BackBone Conference Mean ± Std. FLOPs #Param. 
Eval 

Time 
IoU 

ST-GCN AAAI2018 87.14 4.38 5.56 4.41s 89.21 

MST-GCN AAAI2021 88.64 2.11 1.59 6.71s 78.91 

CTR-GCN ICCV2021 68.95 2.63 3.91 6.10s 56.99 

HD-GCN ACCV2023 79.05 2.44 3.83 7.37 58.28 

GAP ACCV2023 70.95 2.63 3.91 6.00 59.46 

DE-GCN TIP2024 90.41 1.93 3.77 8.99s 62.83 

EfficientGCN TPAMI2022 94.50 2.49 1.62 5.25s 90.29 



4.3 Module Validation and Ablation Study. 

The Fig. 5 shows the confusion matrix of the predicted results for 11 categories. The 

left subfigure in Fig. 5 represents the classification results using features output by the 

pyramid module, while the right one represents the classification results using features 

extracted by the backbone.It can be observed in left one, category 0 “wave index finger” 

is easily misclassified as category 1 “wave palm,” and category 3 “double finger merge” 

is confused with category 4 “double finger spread.” We believe that this may be due to 

the loss of some spatiotemporal features after feature extraction by the pyramid, leading 

to a decline in classification performance. In contrast, using the initially extracted fea-

tures directly yields better results, which may benefit from the robustness of the feature 

extraction performance of the backbone network. 

 

Fig. 5. Confusion matrix of classification results using features output at different stages. 

Pyramid Module. Fig. 6 illustrates the confusion matrices of the classification results 

with and without the pyramid module. After incorporating the pyramid module, the 

model's performance improves by eliminating misclassifications in category 0 (“wave 

index finger”) and reducing the confusion between category 3 (“double finger merge”) 

and category 4 (“double finger spread”). Guided by the localization loss, the model is 

able to learn more category-specific information. This resulted in an improvement in 

accuracy, increasing the average Intersection over Union (IoU) from 85.15% to 

90.29%. 

 

Fig. 6. Confusion matrices of classification results with and without using the pyramid module. 

Comparison of Different TAL Methods. Table 2 presents the accuracy results of im-

plementing the TAL layer using different methods. Among them, LSTM achieves the 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

best performance, followed by one-dimensional convolution, with attention-based 

methods performing the worst. Although LSTM yields the best results, it also consumes 

more computational resources. 

Table 2. Comparison of different TAL methods 

TAL Type Mean ±Std. FLOPs #Param. Eval Time IoU 

MLP 81.95 2.45 1.33 4.54s 81.36 

Attention 74.5 2.45 1.33 4.62s 65.54 

Conv1d 85.64 2.45 1.33 6.48s 81.3 

LSTM 94.5 2.49 1.62 5.25s 90.29 

Comparison of Classification at Different Stages. Table 3 presents the classification 

results using features from different stages. The experiment shows that the model with 

the pyramid module achieves the best classification performance when using features 

output by the backbone network. The model without the pyramid module performs sec-

ond best, while using features extracted from the pyramid for classification yields the 

worst results. This is likely due to the loss of certain temporal features during the 

downsampling process in the pyramid, which further validates the effectiveness of the 

pyramid module. The results indicate that the pyramid module helps the model learn 

time-related features, effectively improving classification accuracy. 

Table 3. Comparison of Classification at Different Stages 

Type Mean ± Std. FLOPs #Param. Eval Time IoU 

w/o_TAL 89 0.63 0.24 4.24s 85.15 

TAL_cls 75.86 2.49 1.62 5.35s 67.14 

w_TAL_cls 94.5 2.49 1.62 5.25s 90.29 

Comparison of Fusion at Different Stages. We conducted ablation studies on feature 

fusion at different stages, with the results shown in Table 4 . The experimental config-

urations were divided into two setups: one with four stages and another with three 

stages. Fusion experiments were performed after the 1st, 2nd, and 3rd stages for both 

configurations, as well as after the 1st and 2nd stages. The results indicated that the 

configuration with fusion after the first stage of the three-stage model exhibited the best 

overall performance. 

Table 4. Ablation study on the selection of fusion stages. 

Type Mean ± Std. FLOPs #Param. Eval Time IoU 

after stage1 93.14 2.48 1.62 5.47s 86.32 

after stage2 92.95 2.54 1.64 5.76 71.34 

after stage3 89.45 2.78 1.73 6.26 78.41 

3stages - - - - - 

after stage1 94.5 2.49 1.62 5.25s 90.29 

after stage2 91.05 2.71 1.7 5.64s 93.09 



4.4 Balancing the Loss Function Coefficients 

Using grid search, the optimal loss function coefficients were obtained, with 𝜆mid  , 

𝜆rate , and 𝜆conf set to 0.1, 0.1, and 0.2, respectively. For 𝜆class , after testing values of 

0.2, 0.3, 0.5, 0.7, and 1.0, it was found that a setting of 1.0 yielded the highest accuracy. 

We ultimately adopted this configuration as the final setup. 

5 Conclusion 

We innovatively developed a 3D skeleton-based temporal hand gesture localization 

model, using a new loss function to guide the model's learning. To facilitate the training 

and validation of the model, we col-lected and estab-lished a 3D skeleton dataset con-

taining 11 actions, including action and localiza-tion labels. We conducted effective-

ness validation and performance evaluation of the model on this dataset. The results 

indicate that our model performs effec-tively, demonstrating the validity and practical-

ity of the proposed architecture.   
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