

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

A Deep Learning Model for 3D Skeleton-Based Temporal

Hand Gesture Localization

Jingtao Chen 1 and Jieyu Zhao 1 and Kedi Shen 1

1 Ningbo University

Abstract. Temporal action localization has recently garnered widespread atten-

tion. Current studies on temporal action localization mostly focus on 2D temporal

action localization for the human body, with little research on more complex hand

gestures. 2D-based temporal hand gesture localization has notable drawbacks,

such as motion ambiguity and difficulty in handling complex gestures. To ad-

dress these issues, we innovatively designed a 3D skeleton-based temporal action

localization model, which processes 3D hand skeleton sequences and has a more

robust capacity for learning and representing complex hand gestures. As far as

we know, this is the first 3D skeleton-based method for temporal action localiza-

tion.The model includes a backbone network, a temporal action localization mod-

ule, and a classification head. The GCN-based backbone network is responsible

for feature extraction from the skeleton sequence. The temporal action localiza-

tion module fuses multi-scale temporal features through a pyramid structure, then

performs action localization. The classification head predicts the action category.

Additionally, we designed an innovative loss function to guide the model's learn-

ing. We validated our model on a self-constructed 3D hand skeleton dataset, and

the results show that our model demonstrates good performance in temporal hand

gesture localization.

Keywords: Temporal action localization, hand gesture, skeleton, multi-view.

1 Introduction

Unlike simple action recognition, temporal action localization involves not only iden-

tifying the action category but also determining the precise temporal boundaries of ac-

tions. This requires the model to effectively distinguish between target actions and

background, necessitating a deep understanding of the spatial and temporal dependen-

cies within the action sequences.

Early approaches involved manual feature extraction or key point detection [1]-[4],

but these methods struggled to effectively handle complex actions. The rise of deep

learning has been a breakthrough for pattern recognition, as studies show that utilizing

deep learning networks [5]-[9] significantly improves the capacity for repre-senting and

learning complex hand gestures. Most existing temporal action localiza-tion methods

rely on 2D video data, where frame sequences are extracted from vide-os for recogni-

tion and detection [10]-[12]. These methods have limited capability for precise action

localization tasks.Consequently, we shifted our focus to 3D methods.

On one hand, 3D action sequences inherently provide richer spatiotemporal seman-

tics, facilitating a clearer distinction between different actions. On the other hand, 3D

action representation can alleviate occlusion issues to some extent.

Skeleton-based representations provide a compact and efficient means of describing

3D action sequences, while graph structures are particularly suited to capture the topo-

logical spatial relationships inherent in skeleton data. Since the introduction of ST-GCN

[13], graph-based approaches to action recognition have gained significant attention

[14]-[17], demonstrating notable success in various applications. Therefore, we chose

a graph-based skeleton representation method and developed our temporal hand gesture

localization model.

Our model processes 3D skeleton input data in an end-to-end manner and consists

of three main components: a backbone, a Temporal Action Localization module, and a

Classification Head. The backbone takes skeleton action sequences as input and ex-

tracts meaningful 3D motion features. The Temporal Action Localization module iden-

tifies action boundaries by predicting the start and end frame indices, while the Classi-

fication Head determines the action category. The overall pipeline of our method is

illustrated in Fig. 1. First, frames are extracted from the original video, and 3D skeleton

data is extracted frame by frame. Then, the skeleton data is preprocessed and input into

the model, ultimately producing the output results.

Fig. 1. The overall pipeline of the recognition algorithm.

Similar to 2D object detection tasks, temporal action localization can be viewed as

a one-dimensional object detection problem, where the goal is to identify the action

intervals along a time axis. Mainstream object detection methods [19] frame the task as

a regression problem. Drawing inspiration from these methods, we formulated the tem-

poral action detection task as a regression problem, where the model predicts frame

indices to localize actions in time.

Research on 3D skeleton-based temporal action localization remains limited, and

there is a lack of comprehensive related datasets. To validate our proposed model and

methods, we collected a hand gesture dataset that includes skeleton sequences, class

labels, and action localization annotations. Furthermore, we developed a comprehen-

sive suite of tools for data annotation, skeleton extraction, and data augmentation, de-

signed to support dataset construction, model training, and inference processes.

The contributions of this paper are summarized as follows:

• We propose a compact and efficient deep learning model for temporal action locali-

zation, specifically designed for hand gestures using 3D skeleton data.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

• We collected and curated a 3D hand skeleton dataset to facilitate the evaluation of

our model's performance.

• We trained and validated the model on our self-constructed dataset, achieving prom-

ising performance.

2 Related Work

2.1 Skeleton-based Method

Early approaches for skeleton-based methods [20]-[26] relied on Convolu-tional Neural

Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term

Memory (LSTM) networks. These methods have achieved certain results, but they suf-

fer from limited receptive fields and are unable to effectively handle long-term depend-

encies.

With the emergence of Graph Convolutional Networks (GCN) [27], an increasing

number of studies have started to explore GCN-based methods. The initial ST-GCN

[13] introduced the spatio-temporal graph convolutional structure, providing a new per-

spective for research in GCN-based methods. Since then, a large number of GCN-based

approaches have emerged. Existing methods either focus on constructing different

graph structures from a data perspective to capture richer spatio-temporal semantics

[28], [29], or meticulously design network architectures to enhance learning perfor-

mance [14], [30]-[32].

However, most current methods suffer from severe parameterization issues, result-

ing in low inference efficiency and limiting their practicality in real-world applications.

The Efficient GCN [18] introduces a lightweight action recognition baseline. This

method innovatively utilizes joint, velocity, and skeleton branches to process three dis-

tinct features, integrating them into the main stream via mid-level fusion, while em-

ploying separable convolutions to reduce the computational load.

2.2 Temporal Action Localization

Temporal action localization aims to accurately identify the start and end frame indices

of actions based on the recognized action categories. This task requires high precision

in learning action patterns and distinguishing the foreground from the background. Cur-

rent mainstream methods [33]-[36] use feature pyramid networks (FPN) [37] for multi-

scale learning of action features, followed by the extraction of temporal dimension fea-

tures using various approaches.

3 Temporal Action Localization for Hand Gestures Based

on 3D Skeletons

This section primarily discusses the implementation details of our method. The first

part introduces the design details of the network, the second part describes the model's

loss function, the third part introduces the data preprocessing methods, and the fourth

part covers the training and inference processes.

3.1 Network Design

The network is divided into three main parts: the backbone network, Temporal Action

Localization, and the Classification Head, as shown in the Fig. 2. In the figure, both the

Temporal Action Localization and Classification Head modules receive the output fea-

tures from the backbone network as input. The former is responsible for hand gesture

localization, outputting the start and end frame indices of the action, while the latter is

independent of the former and is responsible for predicting hand gesture categories. We

have verified the necessity and effectiveness of this configuration through experiments,

as detailed in the Experiment Section 4.3.

Fig. 2. Network structure schematic. It mainly includes a backbone, Temporal Action Localiza-

tion module and classification head. The Temporal Action Localization includes a feature pyra-

mid network(FPN), LSTM, and a full connection layer, while the Classification Head consists of

global average pooling, dropout, and fully connected layers.

Backbone Network. The backbone network takes the 3D skeleton action sequence as

input and extracts key spatiotemporal action features. To select the most suitable net-

work as the backbone, we compared the performance of several GCN-based models

and ultimately chose EfficientGCN-B0 as the backbone network, as detailed in the Ex-

periment Section 4.2.

Temporal Action Localization. The Temporal Action Localization module consists

of an FPN (Feature Pyramid Network) and a Detector. The FPN downsamples the fea-

tures extracted by the backbone to different resolutions, and then performs upsampling

and fusion step by step from lower to higher resolutions.

The specific implementation of FPN can be written as the following equation

 𝐿𝑎𝑦𝑒𝑟𝑖+1 = 𝐴𝑃(𝐿𝑎𝑦𝑒𝑟𝑖) (1)

 𝑓 = 𝐶𝑜𝑛𝑣(𝐿𝑎𝑦𝑒𝑟𝑖+1) ⊕ 𝑈𝑝(𝐿𝑎𝑦𝑒𝑟𝑖+1
′) (2)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

 𝐿𝑎𝑦𝑒𝑟𝑖
′ = 𝐴𝑃(𝑓) (2)

𝐿𝑎𝑦𝑒𝑟𝑖 represents the i-th layer in the top-down path on the left side, while 𝐿𝑎𝑦𝑒𝑟𝑖
′

represents the i-th layer in the bottom-up path. Conv refers to a 1×1 convolution, Up

indicates interpolation-based upsampling, and AP stands for global average pooling.

The final output is 𝑎𝑦𝑒𝑟0
′ , which is the highest resolution upsampling layer. Unlike

traditional FPN networks, the FPN here only retains the highest resolution features as

output, in order to reduce the computational burden.We can also see the structure of the

FPN from the Temporal Action Localization module in Fig. 2 .

By fusing features from different time steps, the FPN maximizes the extraction of

multi-scale features, which helps generalize to actions with varying time spans. Finally,

the fused features are passed to the Detector. The Detector consists of an LSTM and

fully connected layers. The LSTM extracts features from the time series (Experiment

Section 4.3 verified the effectiveness of LSTM feature extraction), and the fully con-

nected layer outputs the localization predictions. By converting the action frame local-

ization task into a regression problem, the detector only needs to predict the center

frame of the action and the action proportion. The start and end frame indices can then

be calculated.

Classification Head. The Classification Head includes a global average pooling layer,

Dropout, and fully connected layers. A 3D average pooling layer is used for temporal

downsampling to obtain video-level features. A 3D convolution implements the final

fully connected layer, which is responsible for predicting the action class and outputting

the action’s one-hot encoding.

3.2 Loss Function

The model's loss function consists of three components: classification loss, localization

loss, and confidence loss.

The classification loss ℒclass measures the discrepancy between the predicted cate-

gories and the actual categories, using cross-entropy as with other methods. As shown

in the following equation.

 ℒclass = −
1

𝑁
∑  𝑁
𝑖=1 ∑  𝐶

𝑐=1 𝑦𝑖𝑐log⁡(𝑦̂𝑖𝑐) (3)

𝑁 represents the number of samples, 𝐶 represents the number of categories, 𝑦𝑖𝑐 rep-

resents the predicted probability that the i-th sample belongs to category 𝑐⁡, and 𝑦̂𝑖𝑐

represents the actual probability that the i-th sample belongs to category 𝑐.

The intermediate frame loss ℒmid is used to measure the discrepancy between the

predicted positions of the intermediate frames within the action range and their actual

positions. 𝑚 represents the index of the predicted intermediate frame, and 𝑚̂ represents

the index of the actual intermediate frame. As illustrated in the following equation,

 ℒmid =
1

𝑁
∑  𝑁
𝑖=1 (𝑚̂𝑖 −𝑚𝑖)

2 (4)

The action proportion loss measures the discrepancy between the predicted proportion

of frames occupied by an action and the actual proportion. Here, 𝑟𝑖 represents the pre-

dicted proportion of the total number of frames taken up by the action, and 𝑟̂𝑖 represents

the actual proportion. The square root is used to mitigate the differences caused by the

duration of long or short actions.

 ℒrate =
1

𝑁
∑  𝑁
𝑖=1 (√𝑟̂𝑖 − √𝑟𝑖)

2 (5)

The confidence loss ℒconf measures the gap between the actual confidence and the pre-

diction, guiding the model to predict confidence that is more biased towards results

with a higher Intersection over Union (IoU).

 ℒconf = −
1

𝑁
∑  𝑁
𝑖=1 𝑐𝑖IoU𝑖log(𝑐̂𝑖) (6)

Here, 𝑐𝑖 represents the model's output confidence, and 𝑐̂𝑖 is set to 1, while IoU𝑖 is the

result of the Intersection over Union between the model's output action localization and

the ground truth.

To balance the multiple losses, we set several hyperparameters, as shown in the fol-

lowing equation. We determined these hyperparameters through experiments, as de-

scribed in Section 4.4.

 ℒtotal = 𝜆classℒclass + 𝜆midℒmid + 𝜆rateℒrate + 𝜆confℒconf (7)

3.3 Data Preprocessing

Data Preprocessing. The input is constructed using the EfficientGCN [18] structure,

forming a graph based on the topology of a 21-point hand skeleton model. The original

3D skeleton sequence is processed into joint positions, velocities, and bone segment

characteristics, as illustrated in Fig. 3.

Fig. 3. Input data representation. (a) represents the relative position of joints, (b) represents joint

motion velocity, and (c) represents the 3D length and angle of a bone segment.

Assume that the absolute position of the input joints is given by 𝒳 = {𝑥 ∈
ℝ𝐶𝑖𝑛×𝑇𝑖𝑛×𝑉𝑖𝑛}, where ℛ = {𝑟𝑖|𝑖 = 1,2, … , 𝑉𝑖𝑛} represents the relative position of each

point in a single frame with respect to the wrist joint. Together, 𝒳 and ℛ form the

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

joints. Joint motion velocity is divided into ℱ and 𝒮 , where ℱ = {𝑓𝑡|𝑡 = 1,2, … , 𝑇𝑖𝑛}
and = {𝑠𝑡|𝑡 = 1,2, … , 𝑇𝑖𝑛} , calculated by subtracting the coordinates of corresponding

joints in adjacent frames. The bones are represented by the three-dimensional bone

length ℒ = {𝑙𝑖|𝑖 = 1,2, … , 𝑉𝑖𝑛} and the three-dimensional angle = {𝑎𝑖|𝑖̅ =
1,2, … , 𝑉𝑖𝑛} . The details are shown in the formulas. Here, 𝑖 denotes the joint indices,

and 𝑐 represents the wrist joint index.

 𝑟𝑖 = 𝑥[: , : , 𝑖] − 𝑥[: , : , 𝑐] (8)

In the following equation, 𝑡 denotes the current frame index, 𝑓𝑡 refers to the fast ve-

locity calculated with a frame interval of 2, and 𝑠_𝑡 represents the slow velocity with

an interval of 1.

𝑓𝑡 = 𝑥[: , 𝑡 + 2, :] − 𝑥[: , 𝑡, :],

𝑠𝑡 = 𝑥[: , 𝑡 + 1, :] − 𝑥[: , 𝑡, :].
 (9)

The following equation represents the construction of bone data, 𝑖𝑎𝑑𝑗 represents the

adjacent joint index, and a denotes the angle on the ⁡𝑥⁡, 𝑦 , and 𝑧 axes, where 𝑤 ∈
{𝑥, 𝑦, 𝑧} .

𝑙𝑖 = 𝑥[: , : , 𝑖] − 𝑥[: , : , 𝑖𝑎𝑑𝑗],

𝑎𝑖,𝑤 = arccos⁡ (
𝑙𝑖,𝑤

√𝑙𝑖,𝑥
2 +𝑙𝑖,𝑦

2 +𝑙𝑖,𝑧
2
) ,

 (10)

This yields inputs for three branches with a shape of × 𝐶 × 𝑇 × 𝑉 ×𝑀 =
3 × 6 × 150 × 21 × 1 , where 𝑁 = 3 represents the three branches, C is the number of

channels (each branch has two channels, totaling six channels), 𝑇 denotes the number

of frames in the dataset, 𝑉 = 21 indicates the number of joints, and 𝑀⁡ = ⁡1 signifies

that there is one hand.

3.4 Training and Inference.

Training. The backbone network uses EfficientGCN, with the output structure adjusted

to 𝑁 × 𝑇 × 𝐶 × 𝑉 ×𝑀 for input to the Temporal Action Localization (TAL) module

and Classification Head. The model outputs the “rate” and “mid” through the TAL

module. We designed the model output as “mid” and “rate” , where “mid” represents

the predicted center frame index of the action, and “rate” represents the proportion of

the predicted action duration relative to the total input frames. This design is inspired

by [19]. Unlike the 2D detection problem addressed in that work, our task is a one-

dimensional detection problem in the temporal domain. Finally, we compute the pre-

dicted start and end frame indices, as shown in the following equation, which facilitates

the calculation of IoU.

𝑓pre

start = mid −
framegt×ratepre

2
,

𝑓pre
end = mid +

framegt×ratepre

2

 (11)

The Intersection over Union (IoU) of the predicted and ground truth segments is then

calculated, with the final confidence “𝑐𝑜𝑛𝑓” determined by multiplying IoU and the

predicted class probability, as shown in the following equation:

 conf = IoU × 𝑃class (12)

The model is optimized using losses ℒclass , ℒmid , ℒrate , and ℒconf .

Inference. During inference, the probability of the predicted class is directly used as

the value for “𝑐𝑜𝑛𝑓”, with the rest of the process following the same steps as in training.

4 Experiment

4.1 Data Collection and Skeleton Extraction

Data Collection and Video Acquisition. We designed 11 types of movements, includ-

ing reciprocating hand gestures such as “wave hand”, “No”, and gestures that are op-

posite in temporal sequences, such as “making a fist”, “opening the fist", and “upward”

and “downward swipes”.

Skeleton Extraction. To facilitate the loading of videos and the precise marking of

action boundaries, we created a semi-automatic annotation program. The program re-

quires only the manual selection of the video, after which it is automatically loaded,

and frames where the skeleton cannot be extracted are filtered out. Similar to video

editing software, users can quickly browse through the actions by dragging the video

playback slider. By clicking on the ruler, users can mark the start and end positions of

the action. Once confirmed, the program will automatically calculate and output the

position of the middle frame of the action and the proportion of the action, significantly

improving the efficiency of data annotation.

Since Google Mediapipe is used for extracting 3D skeletons, there may be instances

where abnormal skeletons are extracted. To address this, we have designed a skeleton

browsing module that allows users to preview the extracted 3D skeletons, ensuring their

correctness by dragging the slider.

Data Augmentation. Data augmentation techniques, including Gaussian noise, ran-

dom scaling, random rotation, and mirror processing, are employed to enhance the ro-

bustness of the model. However, for certain actions, such as “left swipe” and “right

swipe,” mirror processing would alter the nature of the action, causing them to be-

come distinct actions. As a result, mirror processing is not applied to these specific

actions. The final dataset includes 3D frame sequences, frames, and gesture localiza-

tion, with a total of 4,400 samples for the training and validation sets.

Fig. 4 visualizes the data and annotations for three actions.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Fig. 4. The figure illustrates three categories from our created dataset: “wave hand,” “open-fist,”

and “clench.”The “Sequence” includes the 3D skeletons for all frames, “Frames” represents the

total number of frames in the sequence, and “Location” denotes the action localization, which

includes mid and rate.

4.2 Comparison of Different Backbone Networks

Since classification and localization are performed in two separate stages, the perfor-

mance of the chosen backbone network plays a critical role in feature extraction effec-

tiveness. We compared the performance of several GCN-based networks, including

accuracy, number of parameters, FLOPs, evaluation time, and IoU metrics, as shown

in Table 1 . The performance of the two newer methods, HD-GCN and GAP, is not

ideal, possibly due to the incompatibility in the way the graph is constructed. In our

implementation, we uniformly modified the output of each backbone model to have a

shape of 𝑁 ∗ 𝑇 ∗ 𝐶 ∗ 𝑉 ∗ 𝑀 , applied 3D global average pooling in the pyramid module,

and implemented the fully connected layer with 3D convolution. After considering all

metrics, we selected EfficientGCN as the backbone network.

Table 1. Experimental results of different models serving as the backbone network.

BackBone Conference Mean ± Std. FLOPs #Param.
Eval

Time
IoU

ST-GCN AAAI2018 87.14 4.38 5.56 4.41s 89.21

MST-GCN AAAI2021 88.64 2.11 1.59 6.71s 78.91

CTR-GCN ICCV2021 68.95 2.63 3.91 6.10s 56.99

HD-GCN ACCV2023 79.05 2.44 3.83 7.37 58.28

GAP ACCV2023 70.95 2.63 3.91 6.00 59.46

DE-GCN TIP2024 90.41 1.93 3.77 8.99s 62.83

EfficientGCN TPAMI2022 94.50 2.49 1.62 5.25s 90.29

4.3 Module Validation and Ablation Study.

The Fig. 5 shows the confusion matrix of the predicted results for 11 categories. The

left subfigure in Fig. 5 represents the classification results using features output by the

pyramid module, while the right one represents the classification results using features

extracted by the backbone.It can be observed in left one, category 0 “wave index finger”

is easily misclassified as category 1 “wave palm,” and category 3 “double finger merge”

is confused with category 4 “double finger spread.” We believe that this may be due to

the loss of some spatiotemporal features after feature extraction by the pyramid, leading

to a decline in classification performance. In contrast, using the initially extracted fea-

tures directly yields better results, which may benefit from the robustness of the feature

extraction performance of the backbone network.

Fig. 5. Confusion matrix of classification results using features output at different stages.

Pyramid Module. Fig. 6 illustrates the confusion matrices of the classification results

with and without the pyramid module. After incorporating the pyramid module, the

model's performance improves by eliminating misclassifications in category 0 (“wave

index finger”) and reducing the confusion between category 3 (“double finger merge”)

and category 4 (“double finger spread”). Guided by the localization loss, the model is

able to learn more category-specific information. This resulted in an improvement in

accuracy, increasing the average Intersection over Union (IoU) from 85.15% to

90.29%.

Fig. 6. Confusion matrices of classification results with and without using the pyramid module.

Comparison of Different TAL Methods. Table 2 presents the accuracy results of im-

plementing the TAL layer using different methods. Among them, LSTM achieves the

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

best performance, followed by one-dimensional convolution, with attention-based

methods performing the worst. Although LSTM yields the best results, it also consumes

more computational resources.

Table 2. Comparison of different TAL methods

TAL Type Mean ±Std. FLOPs #Param. Eval Time IoU

MLP 81.95 2.45 1.33 4.54s 81.36

Attention 74.5 2.45 1.33 4.62s 65.54

Conv1d 85.64 2.45 1.33 6.48s 81.3

LSTM 94.5 2.49 1.62 5.25s 90.29

Comparison of Classification at Different Stages. Table 3 presents the classification

results using features from different stages. The experiment shows that the model with

the pyramid module achieves the best classification performance when using features

output by the backbone network. The model without the pyramid module performs sec-

ond best, while using features extracted from the pyramid for classification yields the

worst results. This is likely due to the loss of certain temporal features during the

downsampling process in the pyramid, which further validates the effectiveness of the

pyramid module. The results indicate that the pyramid module helps the model learn

time-related features, effectively improving classification accuracy.

Table 3. Comparison of Classification at Different Stages

Type Mean ± Std. FLOPs #Param. Eval Time IoU

w/o_TAL 89 0.63 0.24 4.24s 85.15

TAL_cls 75.86 2.49 1.62 5.35s 67.14

w_TAL_cls 94.5 2.49 1.62 5.25s 90.29

Comparison of Fusion at Different Stages. We conducted ablation studies on feature

fusion at different stages, with the results shown in Table 4 . The experimental config-

urations were divided into two setups: one with four stages and another with three

stages. Fusion experiments were performed after the 1st, 2nd, and 3rd stages for both

configurations, as well as after the 1st and 2nd stages. The results indicated that the

configuration with fusion after the first stage of the three-stage model exhibited the best

overall performance.

Table 4. Ablation study on the selection of fusion stages.

Type Mean ± Std. FLOPs #Param. Eval Time IoU

after stage1 93.14 2.48 1.62 5.47s 86.32

after stage2 92.95 2.54 1.64 5.76 71.34

after stage3 89.45 2.78 1.73 6.26 78.41

3stages - - - - -

after stage1 94.5 2.49 1.62 5.25s 90.29

after stage2 91.05 2.71 1.7 5.64s 93.09

4.4 Balancing the Loss Function Coefficients

Using grid search, the optimal loss function coefficients were obtained, with 𝜆mid ,

𝜆rate , and 𝜆conf set to 0.1, 0.1, and 0.2, respectively. For 𝜆class , after testing values of

0.2, 0.3, 0.5, 0.7, and 1.0, it was found that a setting of 1.0 yielded the highest accuracy.

We ultimately adopted this configuration as the final setup.

5 Conclusion

We innovatively developed a 3D skeleton-based temporal hand gesture localization

model, using a new loss function to guide the model's learning. To facilitate the training

and validation of the model, we col-lected and estab-lished a 3D skeleton dataset con-

taining 11 actions, including action and localiza-tion labels. We conducted effective-

ness validation and performance evaluation of the model on this dataset. The results

indicate that our model performs effec-tively, demonstrating the validity and practical-

ity of the proposed architecture.

Acknowledgements. This research is supported by the National Natural Science Foun-

dation of China under grant no. 62471266, the Natural Science Foundation of Zhejiang

Province under grant no. LZ22F020001,and the 2025 Key Technological Innovation

Program of Ningbo City under grant no. 2023Z224

References

1. Fang, Y., Wang, K., Cheng, J., Lu, H.: A real-time hand gesture recognition method. In:

Multimedia and Expo, 2007 IEEE International Conference on. IEEE (2007)

2. Li, Y.: Hand gesture recognition using Kinect. In: 2012 IEEE International Conference on

Computer Science and Automation Engineering, pp. 196–199. IEEE (2012)

3. Pisharady, P.K., Saerbeck, M.: Recent methods and databases in vision-based hand gesture

recognition: A review. Computer Vision and Image Understanding 141, 152–165 (2015)

4. Kılınç Boz, N.Ç., Güdükbay, U.: A hand gesture recognition technique for human-computer

interaction. Journal of Visual Communication and Image Representation 28, 97–104 (2015)

5. Molchanov, P., Gupta, S., Kim, K., Kautz, J.: Hand gesture recognition with 3D convolu-

tional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops (CVPRW). IEEE (2015)

6. Oyedotun, O.K., Khashman, A.: Deep learning in vision-based static hand gesture recogni-

tion. Neural Computing and Applications 28(12), 3941–3951 (2016)

7. Li, G., Tang, H., Sun, Y., Kong, J., Jiang, G., Jiang, D., Tao, B., Xu, S., Liu, H.: Hand

gesture recognition based on convolution neural network. Cluster Computing 22(S2), 2719–

2729 (2017)

8. Al-Hammadi, M., Muhammad, G., Abdul, W., Alsulaiman, M., Bencherif, M.A.,

Mekhtiche, M.A.: Hand gesture recognition for sign language using 3DCNN. IEEE Access

8, 79491–79509 (2020)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

9. Gao, Q., Chen, Y., Ju, Z., Liang, Y.: Dynamic hand gesture recognition based on 3D hand

pose estimation for human–robot interaction. IEEE Sensors Journal 22(18), 17421–17430

(2022)

10. Yang, L., Peng, H., Zhang, D., Fu, J., Han, J.: Revisiting anchor mechanisms for temporal

action localization. IEEE Transactions on Image Processing 29, 8535–8548 (2020)

11. Liu, Y., Wang, L., Wang, Y., Ma, X., Qiao, Y.: FineAction: A fine-grained video dataset for

temporal action localization. IEEE Transactions on Image Processing 31, 6937–6950 (2022)

12. Zhai, Y., Wang, L., Tang, W., Zhang, Q., Zheng, N., Doermann, D., Yuan, J., Hua, G.:

Adaptive two-stream consensus network for weakly-supervised temporal action localiza-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(4), 4136–4151

(2023)

13. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-

based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 32, no. 1 (2018)

14. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convo-

lutional networks for skeleton-based action recognition. In: 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE (2019)

15. Li, B., Li, X., Zhang, Z., Wu, F.: Spatio-temporal graph routing for skeleton-based action

recognition. Proceedings of the AAAI Conference on Artificial Intelligence 33(01), 8561–

8568 (2019)

16. Zhang, X., Xu, C., Tao, D.: Context aware graph convolution for skeleton-based action

recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE (2020)

17. Plizzari, C., Cannici, M., Matteucci, M.: Skeleton-based action recognition via spatial and

temporal transformer networks. Computer Vision and Image Understanding 208–209,

103219 (2021)

18. Song, Y.-F., Zhang, Z., Shan, C., Wang, L.: Constructing stronger and faster baselines for

skeleton-based action recognition. IEEE Transactions on Pattern Analysis and Machine In-

telligence 45(2), 1474–1488 (2022)

19. Redmon, J.: You only look once: Unified, real-time object detection. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (2016)

20. Liu, J., Shahroudy, A., Xu, D., Kot, A.C., Wang, G.: Skeleton-based action recognition using

spatio-temporal LSTM network with trust gates. IEEE Transactions on Pattern Analysis and

Machine Intelligence 40(12), 3007–3021 (2018)

21. Cao, C., Lan, C., Zhang, Y., Zeng, W., Lu, H., Zhang, Y.: Skeleton-based action recognition

with gated convolutional neural networks. IEEE Transactions on Circuits and Systems for

Video Technology 29(11), 3247–3257 (2019)

22. Lai, K., Yanushkevich, S.N.: CNN+RNN depth and skeleton based dynamic hand gesture

recognition. In: 2018 24th International Conference on Pattern Recognition (ICPR). IEEE

(2018)

23. Zhang, S., Yang, Y., Xiao, J., Liu, X., Yang, Y., Xie, D., Zhuang, Y.: Fusing geometric

features for skeleton-based action recognition using multilayer LSTM networks. IEEE

Transactions on Multimedia 20(9), 2330–2343 (2018)

24. Tu, J., Liu, M., Liu, H.: Skeleton-based human action recognition using spatial temporal 3D

convolutional neural networks. In: 2018 IEEE International Conference on Multimedia and

Expo (ICME). IEEE (2018)

25. Zheng, W., Li, L., Zhang, Z., Huang, Y., Wang, L.: Relational network for skeleton-based

action recognition. In: 2019 IEEE International Conference on Multimedia and Expo

(ICME). IEEE (2019)

26. Duan, H., Zhao, Y., Chen, K., Lin, D., Dai, B.: Revisiting skeleton-based action recognition.

In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

IEEE (2022)

27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907 (2016)

28. Lee, J., Lee, M., Lee, D., Lee, S.: Hierarchically decomposed graph convolutional networks

for skeleton-based action recognition. In: 2023 IEEE/CVF International Conference on

Computer Vision (ICCV). IEEE (2023)

29. Myung, W., Su, N., Xue, J.-H., Wang, G.: DeGCN: Deformable graph convolutional net-

works for skeleton-based action recognition. IEEE Transactions on Image Processing 33,

2477–2490 (2024)

30. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph

neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR). IEEE (2019)

31. Chen, Z., Li, S., Yang, B., Li, Q., Liu, H.: Multi-scale spatial temporal graph convolutional

network for skeleton-based action recognition. Proceedings of the AAAI Conference on Ar-

tificial Intelligence 35(2), 1113–1122 (2021)

32. Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W.: Channel-wise topology refinement

graph convolution for skeleton-based action recognition. In: 2021 IEEE/CVF International

Conference on Computer Vision (ICCV). IEEE (2021)

33. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with

structured segment networks. In: 2017 IEEE International Conference on Computer Vision

(ICCV). IEEE (2017)

34. Lin, C., Xu, C., Luo, D., Wang, Y., Tai, Y., Wang, C., Li, J., Huang, F., Fu, Y.: Learning

salient boundary feature for anchor-free temporal action localization. In: 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2021)

35. Liu, X., Bai, S., Bai, X.: An empirical study of end-to-end temporal action detection. In:

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

(2022)

36. Shi, D., Zhong, Y., Cao, Q., Ma, L., Lit, J., Tao, D.: TriDet: Temporal action detection with

relative boundary modeling. In: 2023 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR). IEEE (2023)

37. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid

networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). IEEE (2017)

