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Abstract. In the task of fault detection in power transmission lines, certain fault 

categories suffer from the problem of insufficient samples, leading to inefficien-

cies in traditional object detection algorithms. Meta-learning, which employs 

multi-task learning and fine-tuning to extract common features across different 

tasks, performs well in few-shot object detection and demonstrates excellent gen-

eralization capabilities for new tasks. For this reason, an improved few-shot fault 

detection method based on meta-learning (FDML) is proposed in this paper. 

Firstly, to address the problem of distribution difference in data domains, a two-

stage meta-learning training method is introduced to achieve model migration 

through meta fine-tuning. Secondly, we propose a support and query feature 

matching module (SQFM) to make the utmost of support features to assist detec-

tion, in which prototype features of the support class are accurately extracted in 

the first three stages of the backbone and then assigned to the query set features 

to highlight the class-specific representative features. To further integrate high-

level feature before model prediction, a high-level semantic feature fusion mod-

ule (HSFF) is designed to fuse RoI features and prototype features via combining 

the four feature fusion ways. Experimental results show that FDML effectively 

improves the few-shot object detection accuracy on the public dataset 

PASCALVOC and the fault dataset InsPLAD-fault, compared to the classic few-

shot algorithms. Under the conditions of K= {5, 10, 20} shot in the fault dataset 

InsPLAD-fault, the mAP50 values are respectively 5.7%, 7.2% and 4.2% higher 

than the baseline network, which provides a solution for few-shot transmission 

line fault detection. 

Keywords: transmission lines; fault detection; few-shot; meta learning; SQFM; 

HSFF 

1 Introduction 

With the development of contemporary society, the growing demand for electricity to 

sustain normal operations has driven the expansion of the national grid. As the main 



part of the grid, the stability of ultra-high voltage transmission lines plays a crucial role 

in ensuring the reliable operation of the entire system. However, due to prolonged ex-

posure to the field (i.e., suffer from natural violations and external forces), the compo-

nents on the lines are susceptible to damage, leading to various faults. Once faults oc-

cur, it will inevitably produce safety accidents without timely maintenance. Therefore, 

it is crucial to identify and repair faults in transmission lines promptly to prevent greater 

harm [1-3]. 

In recent years, UAV aerial photography and deep learning have been widely applied 

in transmission line inspections [4]. That is to say, the inspection method combining 

UAV aerial images and object detection algorithms has largely replaced the traditional 

manual inspection methods. Through the analysis of aerial images, faults and defects 

can be quickly identified and located for immediate repair. For instance, Zhou et al. 

proposed an automatic insulator fault detection method via leveraging the unique char-

acteristics of insulators and optimizing YOLOv5 from four different aspects [5]. In or-

der to overcome the challenge of real-time detection, Niu et al. proposed a lightweight 

algorithm named Comprehensive-YOLOv5, focusing on rapid localization and accu-

rate identification of three common defects [6]. Similarly, reference [7] designed an 

improved insulator defect detection model based on YOLOv4 (ID-YOLO), aimed at 

detecting the relatively small insulator fault areas (e.g., bunch-drop) in aerial images. 

For addressing the problems of low accuracy and high computation cost in existing 

fault detection models, Yi et al. proposed the insulator and defect detection model 

YOLO-S, which provides an in-depth analysis of insulator localization and defect di-

agnosis [8]. In [9], Wang et al. enhanced insulator defect detection by constructing the 

ML-YOLOv5 model using knowledge distillation, with YOLOv5m as the teacher 

model. Via constructing a prior knowledge transfer model based on visual saliency, 

Hao et al. proposed a prior knowledge transfer and attention mechanism network 

(PKAMNet) to detect faulty insulator parallel gaps, which can ameliorate the phenom-

enon of missed and erroneous detection [10]. 

Although above deep learning-based methods have achieved lots of success in trans-

mission line fault detection, there are still a difficult issue to be addressed. In practice, 

the majority of transmission line components are in normal working condition. So, due 

to various factors such as temperature, weather, and human fallibility, there are many 

fault types with the scarcity of samples. At the same time, it is essential to collect suf-

ficient samples for training while using object detection algorithms based on deep learn-

ing. That is to say, the limited availability of samples often restricts the effectiveness 

of these methods, resulting in low detection accuracy. Consequently, how to effectively 

perform fault detection in scenarios with few samples has become one challenging task.   

Few-shot learning is a hot-spot and promising approach to address the problem of 

limited training samples in the field of target detection, which can alleviate the phe-

nomenons in deep-learning models such as over-fitting, difficult convergence and poor 

generalization [11]. This approach mainly includes transfer learning, meta learning, 

metric learning, data augmentation and so on. For example, Zhang et al. designed Meta-

DETR, which operates entirely at image level without any region proposals to circum-

vent the constraint of inaccurate proposals in prevalent few-shot methods [12]. In [13], 

Zha et al. developed a novel two-stage weakly-supervised framework to address the 
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few-shot fine-grained recognition task, in which well-designed modules are instantiated 

to achieve the background suppression and foreground alignment. To solve the issue of 

category confusion, Li et al. propose a two-stage fine-tuning approach via classification 

score calibration for remote sensing images, which follows the flowchart of base train-

ing and few-shot fine-tuning to train the detector [14]. At present, there are few studies 

on few-shot fault detection for transmission lines and this problem should be given 

wider attention. For instance, reference [15] designed a few-shot learning based two-

stage insulator defect detection algorithm InsDef consisting of two stages: the insulator 

extraction stage and the defect recognition stage. Via constructing a multi-scale feature 

re-weighting network, Wang et al. proposed a two-stage method for insulator anomaly 

detection [16]. Shi et al. proposed a few-shot defect detection method (Meta-PowerNet) 

with a Meta-attention RPN and feature reconstruction module for transmission lines 

based on meta-learning [17].  

Despite these advancements, existing methods struggle with extremely scarce sam-

ples. Besides, there are low differentiation and confusing feature between different fault 

types of the same component. So, it is also a great challenge to achieve fine-grained 

identification with few samples. In response to the aforementioned analysis, hereinaf-

ter, we propose an improved few-shot fault detection method based on meta-learning 

named FDML. The main contribution are as follows. 

(1) For alleviating the problem of distribution difference in data domains, a two-stage 

meta-learning training method is introduced to achieve model migration through meta 

fine-tuning.  

(2) To make the utmost of support features to assist detection, a support and query 

feature matching module (SQFM) is designed to highlight the class-specific representa-

tive features, in which prototype features of the support class are accurately extracted 

and assigned to the query set features.  

(3) A high-level semantic feature fusion module (HSFF) is designed to integrate RoI 

features and prototype features, which can effectively support the final model predic-

tion. 

(4) Via fusing the modules proposed above together, FDML is finally put forward. The 

experiments conducted on the datasets PASCALVOC and InsPLAD-fault demonstrate 

its superiority over other few-shot learning methods.  

The rest of this study is organized as follows: The data preparation and related works 

on meta-learning are discussed and reviewed in Section 2. Section 3 describes the pro-

posed algorithm for fault detection in detail. In Section 4, experimental results as well 

as performance evaluation and analysis are presented. In the end, we briefly summarize 

this article and provide the prospect for future research in Section 5. 

 

 

 

 

 

 



2 Materials and Related Works 

2.1 Data preparation and processing 

Recently, a new dataset named InsPLAD [18] is proposed for inspecting power line 

assets to address multiple research gaps in the field. In the dataset, there are five differ-

ent types of defects annotated on an image level (339 defect samples in total, cropped 

from the UAV images), allowing the evaluation of image classification and unsuper-

vised anomaly detection methods. Table 1 shows the five fault types and the corre-

sponding sample numbers. At the same time, InsPLAD-fault assets are shown in Figure 

1. The first row represents the normal conditions, and the second row represents the 

fault samples. 

Table 1. Description of InsPALD-fault. 

Asset category Fault type Sample number 

Yoke Suspension rusty 49 

Glass Insulator missing cap 90 

Polymer Insulator Upper Shackle rusty 102 

Lightning Rod Suspension rusty 50 

Vari-grip rusty 48 

 

 

Fig. 1. Sample images of InsPLAD, including normal and fault conditions. 

Due to the low number of faults in transmission lines, in the article [18], InsPLAD-

fault was adapted into two approaches: supervised fault classification and unsupervised 

anomaly detection. However, the proposed method aims to solve this problem via 

adopting few-shot learning methods as well as detect the precise location of the fault. 

For this goal, the Labelme image annotation tool was used to label the fault targets with 

rectangular boxes, as shown in Figure 2. Moreover, the fault dataset constructed in this 

study adopted the PASCAL VOC format, which consisted of three folders, including 

images in jpg format, annotation files in xml format, and image lists. 
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Fig. 2. Example of annotation, in which different color of rectangular boxes represent different 

fault types. 

2.2 Few-Shot Training Method Based on Meta-Learning 

2.2.1.  Meta-Learning  

Meta-learning, also known as learning to learn, is a promising method for few-shot 

object detection. Different from the traditional deep learning, meta-learning paradigm 

takes tasks as input units for iteration, and each task consists of support set images and 

query set images, which goal is to find the target belonging to the category of support 

set in query set images [31]. In other words, the model is tested on the query set data 

via learning the features of the support set data to verify the effect. The core idea of 

meta-learning is to increase the generalization ability in multi-tasking. Specifically, a 

set of initialization parameters can be obtained through meta-training, which can be 

effectively applied in different tasks and then, performing a few fine-tuning iteration 

for specific few-shot tasks can obtain satisfactory results. The architecture of meta-

learning is shown correspondingly in Figure 3. 

 

Fig. 3. The architecture of meta-learning. 

2.2.2.  Training Process  

At present, meta-learning method adopts the standard setup of FSOD, given two dis-

joint sets of classes named the base class and the novel class. In the base-class dataset, 



there are sufficient annotated samples with bounding box annotations for each category, 

while each class has only K-shot annotated targets in the novel-class dataset. Generally, 

due to the scarcity of samples in the new task, the trained meta-learning model is di-

rectly used to test, which may result in poor meta-migration by excessive difference 

between data domains. 

 

Fig. 4. The training process of meta-learning. 

To address this issue, we adopt the two-stage training paradigm commonly used in 

transfer learning methods, as shown in Figure 4. In the meta-training stage, the model 

is trained on abundant samples of base classes. After, in the fine-tuning phase, the meta-

learning model is fine-tuned via using a balanced dataset consisting of both base and 

novel classes, which contains N classes and only K-shot samples as the supporting set, 

referred to as the N-way-K-shot task. By this means, the proposed method helps the 

model better adapt to the new data distribution, and alleviate the distribution differences 

of data domains. Specially, public datasets with rich data, such as PASCALVOC, 

COCO, etc. are usually selected as base classes while adopting specific few-shot dataset 

as novel classes for meta-learning object detection. 

3 Methods 

3.1 Overview of the Proposed Method 

In this paper, the few-shot transmission-line fault detection method based on meta-

learning is improved to deal with sample scarcity. The overall structure of improved 

method is shown in Figure 5, which mainly consists of feature extraction backbone, 

RPN, detecting head and two proposed modules, i.e., support and query feature 
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matching module (SQFM) and high-level semantic feature fusion module (HSFF). Spe-

cifically, the model is built as a few-shot detector based on the two-stage algorithm 

Faster R-CNN [19], following the setting of Meta R-CNN framework [20]. For the 

feature extraction network, FDML establish the dual branch connected network, in 

which Resnet-101 [21] pre-trained on Imagenet is adopted as the backbone. At the same 

time, it should be noted that the weight parameters are shared in the feature extraction 

process between supports branch and query branch. Moreover, through the proposed 

SQFM, the class prototype of support set is built via extracting the middle-level features 

in the first three stages of the backbone and assigned to the query branch for feature 

reconstruction. Subsequently, the query branch is RoI aligned through the RPN net-

work, where the query characteristics after interacting with the supporting branch can 

be provided. After alignment, we employ the last stage of the backbone to extract the 

high-level semantic feature of two branches, namely, the RoI features generated by the 

query branch and the class-level prototype features of the support branch. At last, these 

features are input into the HSFF for more efficient feature fusion, and then output to 

the detection head for final prediction. It is worth noting that the support set images are 

resized to 224*224 as the support branch input after clipping the instance, and the single 

scale feature map is adopted for object detection without FPN structure [22]. 

 

Fig. 5. Overview of the proposed method (FDML). 

3.2 Support and Query Feature Matching Module (SQFM) 

As mentioned before, the interaction between support features and query features is 

very critical in meta-learning methods. At present, the query features is usually recon-

structed by the support features which are pooled. Generally, the mid-level features 

with more detailed information in the early stages of the network are not fully utilized. 

Therefore, inspired by the fine-grained feature aggregation module (FFA) [23], we 

hereinafter propose a novel module SQFM (seeing Figure 6), which can be divided into 

prototype extraction stage and prototype assignment stage.  

 



 

Fig. 6. The illustration of SQFM composed of prototypes extraction stage and prototypes assign-

ment stage. 

Broadly speaking, support features are extracted into the class-level fine-grained 

prototype via modeling the relationship between classes and then assigned to the query 

features, which helps the model extract and learn key information. 

 

Fig. 7. Attention heat-maps of feature queries. The attention mask is generated from the attention 

mechanism of supportset class prototypes extraction in SQFM. 

In the supportset class prototype extraction stage, inspired by the idea of incorporat-

ing object queries to encode location information in DETR [24], we introduce a new 

component named feature queries as learnable embedding to extract class-level proto-

types and refine them into a representative set of features as a guide. As shown in Figure 

7, different details of class-related feature can be successfully captured in these feature 

queries. Specifically, given a set of features queries Q and the support set feature Fs of 

the feature extraction network, we employ the linear layer to adjust the dimension of Fs 

and then apply the cross-attention mechanism to realize class prototypes extraction. The 

specific formula is as follows. 
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In the equation, d represents the feature dimension of feature queries. In addition, 

W0 is the linear matrix that projects Fs into the dimension space of Q, while P denotes 

the extracted class-level fine-grained prototype. Notably, each category has its unique 

feature query, and here Q represents the collection of feature query for all categories. 

After prototypes extraction, it is crucial to match fine-grained prototype to the 

queryset feature map. To this end, we also employ two attention mechanisms to achieve 

the prototypes assignment. Specifically, in order to highlight the significant features of 

queryset, the self-attention mechanism is adopted to process the query features firstly. 

By this means, the enhanced query features are conducive to the subsequent feature 

matching. Further, given the enhanced queryset feature Fq and the extracted class-level 

prototype P, we adjust their feature dimension through the fully connected layer as in-

put, and the cross-attention mechanism is used for prototypes assignment as well. The 

specific formulas for the above process are as follows. 

( , , )qF Selfattention q k v=
                                     (2) 

              
1 1

1 1

( )( )
( , , ) max( )

T

q

a q

F W PW
F Attention F W PW P soft P

d
= =               (3) 

where q, k, and v are obtained by linear transformation of the original query features, 

while W1 represents the linear matrix shared by Fq and P, aiming to project them into 

the same feature dimension. According to the method, Fa which denotes the feature 

obtained by prototypes assignment are generated. 

Finally, the residual connecting method is adopted to aggregate the prototype assign-

ment feature Fa and the original query features Fq to generate final features Fout after 

complete feature matching. The computation can be written as follows. 

                                               aqout FFF +=                                                        (4) 

In the meta-training stage, feature queries of base classes are randomly initialized 

and trained extensively. In the fine-tuning phase, it is challenging to train feature que-

ries from scratch since there are only limited examples of novel classes. So, to address 

this issue, the most compatible feature queries from base classes are copied to apply in 

novel classes detection [23]. In a word, SQFM not only effectively makes a distinction 

between targets and background via learning the expression of inter-class similarity and 

difference between different objects, but also focuses on the representative class-spe-

cific features while filtering out the features unrelated to the support classes which is 

more suitable for shallow fine-grained information extraction. In addition, the residual 

connection retains more original feature information, which is conducive to the subse-

quent high-level feature fusion. 

 

3.3 High-Level Semantic Feature Fusion Module (HSFF) 

While adopting the meta-learning method for FSOD, it is vital to perform feature fusion 

for high-level semantic information alignment before final detection. That is, feature 

fusion between the RoI features generated by query images and class-level prototype 



features is an indispensable step in meta-learning method [25]. Up to now, many pre-

vious meta-learning methods employ element-wise multiplication to achieve the fusion 

process, i.e., highlighting related features. However, in this way, the model can only 

learn the similarities in the same class, ignoring the differences between classes. For 

this goal, we propose a novel high-level semantic feature fusion module (HSFF) via 

combining element-wise multiplication, addition, subtraction and channel cascade 

methods to measure the intra-class similarity and inter-class difference between fea-

tures for mutual complementation, as shown in Figure 8. 

 

Fig. 8. The illustration of HSFF composed of four fusion ways. 

Specifically, the common features can be highlighted through element-wise multi-

plication, while performing element-wise addition operations enable the network to fo-

cus on specific features being equivalent to utilize attention weights. Via element-wise 

subtraction, the distance between RoI features and prototype features can be directly 

measured, i.e., the difference between features can be obtained. At the same time, ap-

plying channel concat operation for feature fusion is a self-learning operation method 

that automatically learn how to combine features. Subsequently, after refining the rela-

tionship of features through the aforementioned four feature fusion methods, we con-

nect them with the original features in order to retain the original RoI information. The 

specific formula is as follows. 

1 2 3 4( ( ), ( ), ( ), ( , ), )RoI p RoI p RoI p RoI p RoIF concat f F F f F F f F F f F F F= 放 -  (5) 

Where f1 to f4 are independent fully connected layer to adjust dimension. FRoI repre-

sents the RoI feature of the query branch, while FP denotes the class-level prototype 

feature generated by the support branch. Finally, the fused features are cascaded 

through channels and adjusted to the output feature F for prediction. 

Generally speaking, through the proposed HSFF, the model effectively focuses on 

class-specific features and fuse high-level semantic features via combining the infor-

mation from the support and the query for final detection. 

4 Results and Analysis 

In this section, we realize a lot of experiments on FDML and compare the experimental 

results with other representative few-shot object detection algorithms. To confirm the 

effectiveness of each module, the contributions of different modules are discussed and 

the visual detection results are presented. 
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4.1 Dataset 

To validate the effect of proposed method, we use both a public dateset and the few-

shot fault dataset on transmission lines (i.e. InsPLAD-fault mentioned before). For the 

public dataset, the PASCAL VOC 2007 and 2012 few-shot dataset are adopted, con-

taining 20 common classes which are divide into 15 base classes and 5 novel classes. It 

should be noted that there are three different class divisions for a more comprehensive 

evaluation which are shown in table 2, and experiments are performed under K= {1, 2, 

3, 5, 10} shot settings. Following the evaluation standard widely used in FSOD, 

VOC2007 and VOC2012 training sets are used for training while VOC2007 test set is 

used for evaluation. For InsPLAD-fault, the training set and test set are divided in a 

ratio of 1:1 as well, and the base classes remain the 15 classes from the Pascal VOC 

dataset, while the novel classes are replaced with the 5 fault classes. Due to the chal-

lenge of fine-grained recognition in transmission line faults, this paper set the support 

set sample number to 5, 10, and 20 in each task (i.e., K= {5, 10, 20} shot). 

 

Table 2. Class divisions of Pascal VOC datasets 

Split set Novel classes Base classes 

Novel Split 1 bird, bus, cow, motorbike, sofa 49 

Novel Split 2 aeroplane, bottle, cow, horse, sofa 90 

Novel Split 3 boat, cat, motorbike, sheep, sofa 102 

 

4.2 Experimental Setup and Evaluation Metrics 

In this paper, the experimental hardware configuration comprises 24GB memory, an 

Intel i7-14700K CPU and an NVIDIA GeForce RTX4090 GPU, while the model ex-

periment environment includes Python 3.8, CUDA 11.8 and Pytorch 2.0. While model 

training, the stochastic gradient descent (SGD) optimizer is adopted to update the pa-

rameters with a batch size of 8 scenes. In the meta training stage, the model is trained 

20k iterations on the base classes dataset, while the learning rate is set to 0.005, and 

decayed at 17k iteration by a factor of 0.1. In the fine-tuning stage, the learning rate is 

set to 0.001 and the model is fine-tuned to convergence via using the balanced dataset 

of base classes and novel classes under K-shot, in which the relevant Settings follow 

the Meta R-CNN framework.  

In order to comprehensively evaluate the performance of the proposed method, the 

mAP50 is used as the evaluation metric, which represents the mean average precision 

of total class calculated at an IOU threshold of 0.5. The specific formulas are shown in 

Equation (6)-(9). 

                                                      
TP

Precision
TP FP

=
+

                                         (6) 

                                                      
TP

Recall
TP FN

=
+

                                         (7) 



                                                      
1

0
( ) ( )AP P R d R=ò                                             (8) 

                                                      ( )

AP
mAP

Num Classes
= å

                                   (9) 

In the four mentioned equations, TP represents the number of objects correctly lo-

cated and recognized by the model, FP represents the number of false positive samples 

predicted mistakenly as positive by the model, and FN denotes the number of targets 

failed to correctly detect. 

 

4.3 Comparative Experiment 

In order to verify the effectiveness and generalization of FDML, we compare it with 

other mainstream few-shot object detection methods, including FSRW, Meta R-CNN, 

TFA, FSDetView, MPSR, FSCE, Meta DETR, and FPD [12, 23, 26-30], on three splits 

of public dataset PASCAL VOC. Table 3 lists quantitative results correspondingly. 

Table 3. FSOD results (mAP50) on the three splits of Pascal VOC dataset. 

Set Novel Split 1 Novel Split 2 Novel Split 3 

Method/shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 

FSRW 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9 

Meta R-CNN 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1 

Meta DETR 40.6 51.4 58.0 59.2 63.6 37.0 36.6 43.7 49.1 54.6 41.6 45.9 52.7 58.9 60.6 

TFA 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8 

FSCE 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5 

FPD 40.1 55.3 58.2 62.3 64.9 24.8 36.8 44.9 47.6 51.8 38.5 44.8 49.7 57.9 59.0 

FDML(ours) 45.1 56.4 61.6 63.2 65.3 35.1 40.1 47.9 50.4 53.9 42.5 49.9 55.8 61.1 62.3 

Obviously, the experimental results show that FDML achieves better performance 

than other methods, especially in terms of 2-shot and 3-shot with the most significant 

advantages. While adopting split 1, the values of mAP associated with FDML are the 

greatest under all shot settings. Specifically, FDML improves mAP by 3.4% compared 

with the best classical method FPD under 3-shot. Furthermore, the algorithm achieves 

the highest or sub-optimal detection accuracy in the split 2, in which it has a significant 

mAP improvement of 3.3%, 3.0%, 1.3% respectively than the best result of other meth-

ods, under K={2, 3, 5} shot. As for the split 3 condition, our approach demonstrates 

enhanced mAP by a margin of 2.2% in comparison to the optimal algorithm (i.e., Meta 

DETR) under 5-shot setting. At the same time, it can be concluded that the method 

maintain great performance while increasing the sample size gradually. However, when 

the sample size is extremely scarce, such as 1-shot, the propose method is not as effec-

tive as some methods like Meta-DETR. This is because the designed SQFM may be 

difficult to capture more class representative features and the feature fusion of HSFF is 

limited, which make detection challenging. Overall, these results demonstrate that 

FDML is more apt for few-shot object detection. 

In order to verify the applicability and superiority of proposed method in fault de-

tection, our research conducts comparative experiments with the latest few-shot 
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learning methods (especially meta-learning method), e.g., Meta R-CNN, FSDetView, 

FSCE and FPD [20, 23, 28, 30]. It should be noted that, via applying the idea of model 

migration, the model trained on the common dataset (i.e., base classes) is directly used 

for fine-tuning to be adapted to the fault domain (i.e., novel classes).  

Table 4. Comparison experiment in InsPLAD-fault. 

Method/shot 5 10 20 

Meta R-CNN 29.5 45.8 53.1 

FsDetView 27.3 34.9 40.6 

FSCE 42.1 56.4 61.1 

FPD 39.0 54.3 58.9 

FDML (ours) 43.9 58.1 62.6 

Without loss of generality, Table 4 lists the quantitative results of different methods 

on InsPLAD-fault, from which one can see that FDML exhibits the most superior per-

formance among mainstream methods under all conditions of sample size. This indicate 

that FDML is more apt for fault detection tasks of transmission line. To be specific, 

FDML respectively achieves 43.9%, 58.1%, 62.6% average precision under K={5, 10, 

20} shot, which outperforms the above methods by 1.8%-16.6%, 1.7%-23.2%, and 

1.5%-20.0%, respectively. So, these experimental results demonstrate that FDML can 

not only extract useful features, but also thoroughly explore the relations between fea-

tures for model predicting. At the same time, these significant improvements verifies 

that the improved method can be better adapted to specific scenes than other methods, 

i.e., has better generalization performance. Overall, FDML has strong engineering ap-

plication value. 

4.4 Ablation Study 

To validate the effectiveness of two improved modules proposed in this paper, corre-

sponding ablation experiments are conducted via enabling them progressively. Table 5 

quantifies the effect of each module. 

Table 5. Results of ablation experiment in PASCAL VOC. 

Set Novel Split 1 Novel Split 2 Novel Split 3 

Method/shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 

Baseline 39.3 51.2 54.3 58.8 60.7 30.2 33.9 42.3 44.6 48.9 36.1 44.3 48.3 54.5 55.4 

+SQFM 43.7 53.2 57.8 62.8 64.4 34.9 37.3 47.2 49.8 52.7 38.1 47.5 51.7 57.9 58.2 

+HSFF 40.7 51.7 55.1 61.6 63.8 31.2 34.6 44.1 47.8 50.3 39.9 46.4 49.0 56.9 57.7 

Both 45.1 56.4 61.6 63.2 65.3 35.1 40.1 47.9 50.4 53.9 42.5 49.9 55.8 61.1 62.3 

It is clear that, all the metrics are significantly improved after introducing SQFM. 

Specifically, compared to the baseline, the values are respectively improved by 4.0%, 

5.2% and 3.4% of three splits under 5-shot setting. As for 10-shot setting, the detection 

mAP increased by 3.7%, 3.8%, 2.8%, respectively. Also, the metrics of the rest shot 

settings are significantly improved compared with the baseline, demonstrating that 

SQFM can not only effectively extract prototype features, but also assign them to the 

query branch for highlighting class-specific features. To further illustrate the 



effectiveness of SQFM, the feature heat map visualization technology Grad-CAM is 

adopted to display the feature assignment and provide a more intuitive understanding, 

as shown in Figure 9. Comparing the second and third column, one can find that the 

representative feature can be enhanced through the class-specific prototype assignment. 

So, this directly proves that SQFM is beneficial to the model prediction.  

 

 

Fig. 9. The visualization of SQFM in which the first column is original image, the second column 

represents query feature, and the third column represents feature through SQFM. 

After incorporating the HSFF alone, it can be observed that the larger the sample 

size, more significant the improvement of the proposed method. Specifically, the met-

rics are improved by 3.1%, 1.4% and 2.3% respectively, under 10-shot setting. This 

indicates that RoI features and prototype features can be fused effectively via combin-

ing multiple fusion methods through HSFF before the final prediction. Due to insuffi-

cient feature fusion caused by too few samples, the improvement under 1-shot and 2-

shot conditions are very limited. This is because the randomness dominated by sample 

personality characteristics is too high. 

Up until now, we have separately demonstrated the validity of two sub-modules. The 

last row in table 6 is the combination of two modules. Obviously, the detection perfor-

mance is greater than that of any module alone which verifies that two modules do not 

conflict with each other. Compared to the baseline, the values are respectively improved 

by 4.6%, 5.0%, and 6.9% under 10-shot condition. In summary, the SQFM has a more 

obvious improvement on detection performance and we can further enhance the effect 

while adopting two modules together. 

In order to further analyze the effectiveness of each module in transmission line fault 

detection, we conducted several ablation experiments on the dataset InsPLAD-fault. 

Four models are established, which are the baseline, the baseline with SQFM, the 
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baseline with HSFF and the FDML (i.e., with both two modules). The ablation experi-

mental results on the test set are correspondingly presented in Table 6. 

Table 6. Results of ablation experiment in InsPLAD-fault. 

Baseline SQFM HSFF 
shot 

5 10 20 

√   38.2 50.9 58.4 

√ √  39.5 52.4 60.5 

√  √ 40.2 56.9 61.2 

√ √ √ 43.9 58.1 62.6 

 

Obviously, from the second line, one can be seen that the detection accuracy can be 

improved by 1.3%, 1.5% and 2.1% under K={5, 10, 20} shot, respectively. So, this 

directly demonstrates that the SQFM can effectively extract the prototypes of fault to 

highlight the representative features as well. Comparing the first and third rows in Table 

6, the values are respectively improved by 2.0%, 6.0% and 2.8% after adopting HSFF. 

This is because HSFF can fuse high-level features for exploring the relations between 

them. The last row denotes that two modules are integrated. It is clear that, the metrics 

in it are all greater compared to the other rows. Specifically, FDML increases mAP50 

by 5.7%, 7.2% and 4.2%, respectively. As a result, this verifies that the strategies in 

these modules are reasonable and our model improve the most under 10-shot in fault 

detection. In conclusion, in the field of transmission line fault detection, the SQFM can 

slightly improve the detection performance and the HSFF has a more significant im-

provement, which is more suitable for fault detection scenarios. 

 

Fig. 10. Detection results. 

4.5 Detection Result Visualization 

To provide a more intuitive presentation of the effectiveness of the improved algorithm on fault 

detection, the detection results before and after improvement are visualized and compared, as 



shown in Figure 10. The left column represents the detection results of baseline model while the 

right column denotes the detection results of FDML. 

As can be seen, there are a large number of false alarms in the left column, which proves that 

the it is difficult for the baseline algorithm to distinguish between the different fault classes. By 

contrast, FDML has the ability of accurate recognition. At the same time, it is evident that our 

model exhibits significantly improved confidence scores compared to the baseline for all types 

of faults. Of cause, we will focus on designing modules for glass insulator missing cap which is 

very different from other faults. 

5 Conclusion 

In this paper, we propose an improved few-shot fault detection method based on meta-learning. 

First, a two-stage meta-learning training method is introduced to address the problem of distri-

bution difference in data domains. Second, a support and query feature matching module (SQFM) 

is proposed to optimize the use of support features to assist detection via highlighting class-spe-

cific representative features. Moreover, a high-level semantic feature fusion module (HSFF) is 

designed to further integrate high-level feature before model prediction via combining the four 

feature fusion ways along with identity. Experimental results demonstrate the effectiveness and 

superiority of FDML compared to other mainstream few-shot object detection (FSOD) methods. 

On average, the mAP50 values are respectively 5.7%, 7.2% and 4.2% higher than the baseline 

under K= {5, 10, 20} shot. 

6 Limitation 

As for future work, we will make the attempt to explore the seperation of localization and clas-

sification tasks while adopting UAV images which are large in size. At the same time, more 

open-source fault detection data from transmission lines will be introduced for training to develop 

a model with improved generalization and adaptability. 
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