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Abstract. Keyphrases can concisely describe the high-level topics discussed in a 

document that usually possesses hierarchical topic structures.Thus, it is crucial to 

understand the hierarchical topic structuresand employ it to guide the keyphrase 

identification.However, existing works that integrates the hierarchical topic in-

formation into a deep keyphrase generation model still remain in Euclidean 

space. Their ability to capture the hierarchical structures is limited by the nature 

of Euclidean space. To this end, we design a new hyperbolic hierarchical topic-

based keyphrase generation method(Hyper-HTKG) to effectively exploit the hi-

erarchical topic to improve the keyphrase generationperformance. Concretely, 

we propose a novel hyperbolic hierarchical topic-guided sequence generation 

method for keyphrase generation, which consists of two major modules: a hyper-

bolic hierarchical topic model that learns the latent topic tree across the whole 

corpus of documents, and a hyperbolic keyphrase generation model to generate 

keyphrases under hierarchical topic guidance.Finally, these two modules are 

jointly trained to help them learn complementary information from eachother.To 

the best of our knowledge, this is the first study to explore ahyperbolic hierar-

chical topic-based network for keyphrase generation. Compared with seven base-

line methods, Hyper-HTKG demonstrates superior performance in experiments 

conducted on five benchmark datasets. 

Keywords:Hyperbolic keyphrase generation,Hyperbolic hierarchical topic 

model, Hyperbolic keyphrase generation model. 

1 Introduction 

Keyphrase prediction is the task of automatically generating a set of representative 

phrases related to the main topic discussed in a given document. Due to their ability to 

provide advanced topic descriptions for documents, keyphrases are advantageous for 

many natural language processing (NLP) tasks, such as information extraction [1, 2], 

text summarization [3], opinion mining [4] and question answering [5].However, the 

performance of existing methods is still far from being satisfactory. The main reason is 

that it is very challenging to determine if a phrase or a set of phrases accurately capture 

the main topics (i.e., salient information) presented in a document. 



Automatic keyphrase prediction models can be broadly divided into traditional ex-

traction and deep generation approaches. In particular, traditional extraction methods 

can only extract presentkeyphrases that appear in a given document, while deep gener-

ation methods can generate both present keyphrases as well asabsent keyphrases that 

do not appear in the given document. 

In recent years, some topic-based methods for keyphrase prediction (including ex-

traction and generation) have been proposed, mainly including topic-based extraction 

methods such as topic-based clustering methods [6, 7] and topical graph-based ranking 

methods [8, 9, 10, 11, 12, 13]. The work [14] allows the joint learning of the latent flat 

topic representations.Although these topic-based methods have achieved promising re-

sults for the keyphrase prediction task, they all assume that topics are independent of 

one another and induce topics as flat structures, making generated keyphrases fall into 

a single topic (i.e., generating duplicate/similar keyphrases). The other work [15] is the 

first one to leverage the neural hierarchical topics to guide deep keyphrase generation. 

However, the ability to capture the hierarchical structures is limited by the nature of 

Euclidean space. Recently, hyperbolic representation methods [16, 17] have been de-

veloped to model the latent hierarchical nature of data and demonstrated encouraging 

results.To effciently utilize hyperbolic embeddings in downstream tasks, researchers 

have proposed some advanced hyperbolic deep networks, such as hyperbolic neural 

networks [18] and hyperbolic attention network [19].Though the work [20] is the only 

hyperbolic topic-based keyphrase generation method, it remains focusing on flat topic 

representations. 

Different from existing deep keyphrase generation approaches which directly encode 

from a source document and decode to its keyphrases, our proposed method introduces 

the latent variables to explicitly model underlying hierarchical topics of a source docu-

ment and to guide the keyphrase generation via collaborative joint training of both the 

generation model and the hierarchical topic model. This makes our method more effec-

tive to capture the semantic hierarchical relations discussed in a document and thus 

generate keyphrases based on its semantic understanding with good topic coverage and 

accuracy. To summarize, our main contributions are as follows: 

(1)To the best of our knowledge, this is the first attempt to leverage the hierarchical 

topics to guide deep keyphrase generation in hyperbolic space.  

(2) We propose a novel hierarchical topic-guided keyphrase generation model, that not 

only effectively captures the long and strong dependencies between neighboring target 

words, but also utilizes the high-level topics discovered for keyphrase generation. 

(3)We compare our Hyper-HTKG method with seven seq2seq keyphrase generation 

methods. Comprehensive experimental results demonstrate that our proposed method 

outperforms state-of-the-art baseline methods acrossfive publicly-available datasets 

consistently. 

The remaining part of this paper is organized as follows. We first summarize state-

of-the-art approaches of keyphrase prediction and text generation in Section 2. Then 

we introduce the related properties of hyperbolic space in section 3. And the proposed 

Hyper-HTKG model is presented in Section 4. Finally, we introduce our datasets and 

experimental results in Section 5, before concluding the paper in Section 6. 
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Fig. 1.The hierarchical topic tree structure of this paper.Three high-level topic(t1, t2, t3) de-

scription are selected as keyphrases (kp) finally. 

2 Related Work 

2.1 Topic-based Keyphrase Generation 

The traditional extraction methods can be further classified into supervised and unsu-

pervised approaches. In particular, supervised approaches treat keyphrase extraction as 

a binary classification task, using some classifiers, such as Naïve Bayes classifier [21, 

22], boosted decision trees [23] and conditional random fields [24, 25]. In contrast, 

unsupervised approaches directly treat keyphrase extraction as a ranking problem, scor-

ing each candidate using different kinds of unsupervised learning techniques, such as 

clustering [6, 7] and graph-based ranking [8, 9, 10, 11, 12, 26].  

Topic information is used mainly in graph-based methods and most attempts involve 

biasing the ranking function towards topic distribution. Existing graph-based methods 

incorporating topic information induced by latent Dirichlet allocation (LDA) [27] in-

clude TopicalPageRank [10], cTPR [12], TPR [28], MIKE [11] and SalienceRank [13]. 

The other two works [8, 9] represent a given document as a multipartite graph of both 

topics and keyphrase candidates, and then select keyphrases from the top-ranked can-

didates, in which topics are defined as clusters of similar candidates. Nevertheless, in 

all these topic-based extraction methods, topics are independent of one another and 

organized as flat structures. Inaddition, compared with the newly developed generation 

methods, the traditional approaches suffer from poor performance [29]. 

2.2 Deep Keyphrase Generation 

CopyRNN [29] is the first to employ the attentional sequence to sequence (seq2seq) 

framework [30] with the copying mechanism [31] to generate both present and absent 

keyphrases for a document. Following this work, numerous extensions have been pro-

posed to boost its generation ability. For instance, some studies incorporate different 

types of side information into seq2seq neural networks to improve keyphrase genera-

tion, such as correlation among keyphrases [32], title of source document [33], syntactic 

constraints [34] and topic information [35]. In addition, Ye et al., [36] propose a semi-

supervised keyphrase generation model that utilizes both abundant unlabeled data and 

limited labeled data.  

The above-mentioned early methods which use the standard seq2seq network can 

not generate multiple keyphrases and determine the appropriate number of keyphrases 

at a time for a target document. To overcome this drawback, Yuan et al., [37] introduce 

a new One2Seq training paradigm in the seq2seq network to generatemultiple 



keyphrases and decide the suitable number of keyphrases for a target document. Ye et 

al., [38] propose a One2Set paradigm to predict the keyphrases as a set, which elimi-

nates the bias caused by the predefined order in One2Seq paradigm [37]. In addition, 

some works focus on improving the decoding process of seq2seq networks. Chen et al., 

[39] propose an exclusive hierarchical decoding framework and use either a soft or a 

hard exclusion mechanism to reduce duplication. Ahmad et al., [40] introduce an ex-

tractor-generator in the decoding to jointly extract and generate keyphrases from a tar-

get document. Bahuleyan et al., [41] adopt neural an unlikelihood objective to avoid 

generating duplicate keyphrases.  

Besides the seq2seq networks (which can be implemented by the long short-term 

memory (LSTM) [42] or gated recurrent units (GRU) [43]), the neural graph-based 

networks, that extend traditional graph-based keyphrase ranking, have been used in 

keyphrase generation. Prasad et al., [44] firstly combine the advantages of traditional 

graph-based ranking methods and recent neural network-based approaches. Specifi-

cally, this method incorporates the global information (i.e., TextRank ranking scores) 

into a graph attention network (GAT) [45] to extract keyphrases. Sun et al., [46] employ 

a graph convolutional neural network (GCN) [47] to encode the word graph into the 

corresponding representations and then adopt a pointer network [48] with diversity en-

abled attentions to generate keyphrases. Subsequently, Kim et al., [49] extend the word 

graph with structure information, and use GCN to extract the keyphrases for Web doc-

uments. Ye et al., [50] also enrich the word graph with related references and employ a 

GAT to generate the keyphrases.  

We observe that almost all the existing deep keyphrase prediction approaches do not 

consider integrating the latent hierarchical topic information into the seq2seq frame-

work to improve keyphrase prediction. In this paper, we first incorporate the hierar-

chical topical information into the sequence generation model, which can ensure that 

the generated keyphrases cover comprehensive topics and thus provide high-level topic 

description. 

 
2.3 Hyperbolic Representation 

An increasing number of research has shown that many types of complex data exhibit 

non-Euclidean structures [51]. Recently, hyperbolic embedding methods have been 

proposed to learn the latent representation of hierarchical data and demonstrated en-

couraging results. In the field of NLP, hyperbolic representation learning has been suc-

cessfully applied to generating word embeddings [52] and sentence representations 

[53], and inferring concept hierarchies from large text corpora [54]. In addition, hyper-

bolic geometry has been integrated into recent advanced hyperbolic deep learning 

frameworks, such as hyperbolic neural networks [18], and hyperbolic attention network 

[19]. 
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3 Preliminaries 

Hyperbolic space, specifically referring to a simply connected manifolds with constant 

negative curvature [55], can be thought of as a continuous analogue of tree and is more 

suitable for learning data with hierarchical structures. The hyperbolic space can be con-

structed using various isomorphic models (i.e., these models can be converted into each  

other). In this paper, we follow the majority of NLP works and employ the Poincaréball 

model with the curvature set as -1, whose distance function is differentiable. 

 

Poincaré ball model The n-dimensional Poincaré ball model Pn = (Bn, ɡP ) is defined 

by a Riemannian manifold Bn= {x ∈ n | ‖x‖ < 1} with the metric tensor ɡP(x) = 

(
2

1−‖𝐱‖2)2ɡɛ , where ‖·‖ denotes the Euclidean norm, and ɡɛ = In is the Euclidean metric 

tensor. The induced distance between two points x, y∈Pn is defined as  

 𝑑𝑝(𝐱, 𝐲) = cosh−1(1 +
2‖𝐱−𝐲‖2

(1−‖𝐱‖2)(1−‖𝐲‖2)
) (1) 

wherecosh−1(𝑥) = ln(𝑥 + √𝑥2 − 1) is an inverse hyperbolic cosine function.  

The induced distance can place root node near the center of the ball and leaf nodes 

near the boundary of the ball to ensure that the distance from the root node to each of 

leaf nodes is relatively small while the distance between leaf nodes is relatively large.  

This explains why hyperbolic space can be seen as a tree-like hierarchical structure.  

 

Klein model To define the hyperbolic average, we employ the Klein model of hyper-

bolic space. The n-dimensional Klein modelKn= (Bn, ɡK) is also defined in a manifold 

Bn with the different metric tensor ɡK. The Poincaré model and Klein model describe 

the same hyperbolic space using different coordinates. Thus, these two models can be 

converted into each other. Given a point xP ∈Pn in the Poincaré ball model, we convert 

it to the Klein model by 

 𝐱𝑘 =
2𝐱𝑝

1+‖𝐱𝑝‖2 (2) 

Similarly, a point xk ∈kn in Klein model can be converted into Poincaré ball model as 

 𝐱𝑝 =
𝐱𝑘

1+√1−‖𝐱𝑘‖2
 (3) 

 



 
Fig. 2.The overall architecture of the proposed Hyper-HTKG model. 

4 Methodology 

4.1 Problem Definition and Framework 

Given a corpus of documents  D = {𝑑i}i=1
|𝐷|

, where each document d (d ∈ D) is treated 

as a sequence of words X = (𝑥1, . . . , 𝑥𝑇𝑑
) with length 𝑇𝑑, the goal of a keyphrase 

generation method is to find a model to generate a set of keyphrases K = {𝑝j}j=1
|𝐾|

 for 

document , where each keyphrase p can be treated as a sequence of words Y= (𝑦1, ..., 

𝑦|𝑝| ). Note that as in existing deep text generation models, we use X and Y to denote 

the word sequence of an input document and the word sequence of its keyphrase, re-

spectively.  

The overall architecture of our proposed method is shown in Figure 2. It consists 

of two main modules: (1) a hyperbolic hierarchical topic model that computes a topic 

distribution over a tree for each word occurrence in a corpus, and (2) a hyperbolic 

keyphrase generation model to generate keyphrases with designated topic guidance. 

We jointly train them with an inconsistency loss so that they can learn complementary 

information from each other accurately. Below we first introduce the two main modules 

and then describe how they are jointly trained in detail. 

 

4.2 Hyperbolic Hierarchical Topic Model 

One innovation of this study is that it incorporates hierarchical topical information into 

keyphrase generation explicitly. Based on the current development of topic modeling, 

we follow the spirit of the hierarchical topic models [56] and adapt it to discover latent 

hierarchical topics. In this subsection, we first introduce the technical background and 

preliminaries and then describe the details of this model. 
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4.2.1 Technical Background and Preliminaries 

Constructing a topic tree involves mainly two aspects: how to infer the latent topics in 

the text corpus, and how to organize these topics into a hierarchy. Traditional hierar-

chical topic models such as HLDA[59], nHDP [60] and rCRP [61], use conventional 

inference algorithms such as collapsed Gibbs sampling [62] and mean-field approxi-

mation [63], to infer the latent hierarchical topics. Current hierarchical topic models 

TSNTM [57], HTV [58] and nTSNTM [56], leverage the autoencoder variational Bayes 

framework, which can be trained together with networks and therefore has better adapt-

ability and scales to large datasets.  

To construct a topic tree with an infinite number of branches and levels, the existing 

methods follow the classical hierarchical LDA model nCRP [59, 63], which draws the 

path distribution from a nested stick-breaking construction as followings  

 𝑣𝑘~𝐵𝑒𝑡𝑎(1, 𝛾), 𝜋𝑘 = 𝜋𝑝𝑎𝑟(𝑘)𝑣𝑘 ∏ (1 − 𝑣𝑗)𝑘−1
𝑗=1  (4) 

and draws the level distribution from a stick-breaking construction as followings  

 𝜂𝑙~𝐵𝑒𝑡𝑎(1, 𝛼), 𝜃𝑙 = 𝜂𝑙 ∏ (1 − 𝜂𝑗)𝑙−1
𝑗=1  (5) 

wherek ∈ {1, ..., K} and par(k) denote respectively the k-th topic and its parent. l ∈ 

{1, ..., L} denotes the l-th level. 𝑣𝑘 and 𝜂𝑙 are stick proportions of topic k and level l, 

respectively 

 
4.2.2 Generative Process 

Given a document d, we process it into a bag-of-words vector 𝑋𝑏  ∈ Z+
|𝑉|

, with Z+ de-

noting non-negative integers and V representing the vocabulary, in which each element 

reflects the number of times the corresponding word occurs in thedocument. To sample 

a topic for a word 𝑥𝑛 in document d, a path 𝑐𝑛 from the root to a leaf node and a level 

𝑙𝑛 are drawn. Let 𝜷𝑐𝑛
,𝑙𝑛be the topic distribution of the topic in path 𝑐𝑛 and at level 𝑙𝑛. 

The full generative process of each word is given as follows  

1. For a document d,  

Draw a breaking proportions: 𝒗𝑑~ Beta(𝛼0, 𝛽0) 

Obtain a path distribution: 𝝅𝑑 = 𝑓𝑠𝑏(𝑣𝑑) 

Draw a Gaussian vector: 𝒈𝑑~𝑁 (0, 𝑰2 ) 

Obtain a level distribution: 𝝉𝑑 = 𝑓𝜏(𝒈𝑑) 

2. For a word 𝑥𝑛 in document d,  

Draw a path: 𝑐𝑛~Mult(𝝅𝑑 ), for n∈ [1, 𝑁𝑑 ]  

Draw a level: 𝑙𝑛~Mult(𝝉𝑑  ), for n ∈ [1, 𝑁𝑑 ]  

Draw a word: 𝑥𝑛~Mult(𝜷𝑐𝑛
, 𝑙𝑛), for n ∈ [1, 𝑁𝑑 ]  

where 𝑓𝑠𝑏(·) is a stick-breaking construction function, and 𝑓𝜏(·) is a neural perceptron 

with softmax activation to transform a Gaussian sample to a level distribution. 

 



4.3 Hyperbolic Keyphrase Generation Guided by Hierarchical Topic  

Different from traditional seq2seq keyphrase generation methodssuch as CopyRNN 

[67] and SEG-Net [40], our keyphrase generation model is a sequence generation 

model, based on the seq2seq framework model in hyperbolic space. Specifically, we 

introduce a latent variable, which is guided by the hierarchical topic model described 

in the previous section, to model the underlying topic space as a global signal for 

keyphrase generation. Thus, it should be able to capture the high-level topic in a given 

document.  

 
4.3.1 Hyperbolic Encoder 

This module aims at encoding an input document into continuous vectors. Let X= 

(𝑥1, ..., 𝑥𝑇 ) be a sequence of words within an input document, and x= (𝑥1, ..., 𝑥𝑇 )be 

its corresponding sequence of word embeddings. We adopt a bidirectional gated recur-

rent unit (Hyper-BiGRU) [71] as the encoder, which maps the input word sequence X 

into a set of contextualized hidden states h= (𝒉𝟏, ..., 𝒉𝑇  ) as  

 𝒉𝟏, . . . , 𝒉𝑇 = Hyper − BiGRU(𝑥1, . . . , 𝑥𝑇) (6) 

In this way, each contextualized vector 𝒉𝒊 encodes informationabout the i-th word 

with respect to all the other surrounding words in the sequence. The last hidden state of 

the encoder 𝒉𝑇  is used to calculate the latent topic variable z.  

 
4.3.2 Hierarchical Topic-guided Gaussian Mixture Posterior 

In this model, we consider incorporating the topic information into latent variables. 

Each topic is drawn from a topic-dependent multivariate Gaussian distribution, com-

puted as  

 𝑝(𝑧|𝑿) = ∑ 𝜃𝑘(𝑿𝑏)𝐾
𝑘=1 𝑁(ẑ𝑘; 𝝁̂𝑘(𝑿), 𝝈̂𝑘

2(𝑿)) (7) 

where 𝜃𝑘 is the usage of topic k in a document, computed by our Hyperbolic HTM 

model. To estimate ẑ𝑘, we introduce the fully connected layer to obtain vectors 𝝁̂𝑘and 

log 𝝈̂𝑘as follows  

 
𝝁̂𝑘 = 𝑊𝝁𝑘

𝒉𝑇 + 𝒃𝝁𝑘

log 𝝈̂𝑘 = 𝑊𝝈𝑘
𝒉𝑇 + 𝒃𝝈𝑘

 (8) 

Finally, to obtain a representation for the latent topic variable z,we follow the repa-

rameterization trick ofVAE to implement it.  

 
4.3.3 Hyperbolic Decoder 

Given a source document X and a continuous latent topic variable z, the process to 

generate its keyphrase Y is defined as following conditional probability  



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 𝑝(𝒀|𝑿) = ∏ 𝑝(𝑦𝑡|𝒀<𝑡 , 𝒛, 𝑿)𝑝(𝒛|𝑿)
|𝒀|
𝑡=1  (9) 

where 𝒀<𝑡 = (𝑦1 , . . . , 𝑦𝑡−1) is a previously generated wordsequence.The decoder is an-

other forward GRU, which is used to generate the sequence of keyphrases by predicting 

the next word 𝑦𝑡based on the hidden state 𝑠𝑡 of the decoder at timestep t. Both 𝑦𝑡  and𝑠𝑡 

are conditioned on 𝑦𝑡−1 and 𝑐𝑡 of the input sequence. Formally, the hidden state 𝑠𝑡 and 

decoding function can be written as  

 
𝑠𝑡 = GRU𝑓(𝑦𝑡−1, 𝑠𝑡−1, 𝑐𝑡)

𝑝(𝑦𝑡|𝒀<𝑡 , 𝒛, 𝑿) = 𝑔(𝑦𝑡−1, 𝑠𝑡 , 𝑐𝑡)
 (10) 

where 𝑐𝑡 = ∑ 𝛼𝑡𝑖𝒉𝑖𝑖  is a source context vector computed as the weighted sum of the 

source hidden states {𝒉𝑖} using the attention mechanism [71], and 𝑔(·) is a nonlinear 

multi-layered function that outputs the probability of 𝑦𝑡 . The latent topic variable z is 

used to initialize the hidden state 𝑠0 in the decoder.  

Finally, we minimize the cross entropy loss function to train this generation model  

 𝓛𝑘𝑔 = − ∑ log(𝑝(𝑦𝑖|𝑿, 𝒀<𝑖 , 𝒛))𝑁
𝑖=1  (11) 

where N denotes the length of target keyphrases, and 𝒛 is the latenttopic of the given 

document.  

 
4.4 Joint Learning  

Since keyphrase generation and topic modeling both aim to distill salient information 

from input documents, we jointly train the two modules to help them learn complemen-

tary information from each other. The loss function of our model consists of three parts. 

Two of them, namely, hierarchical topic loss 𝓛ℎ𝑡 and keyphrase generation loss 𝓛𝑘𝑔, 

have been given in the previous subsections.  

To push the hierarchical topic-guided Gaussian mixture computed in VNKG towards 

the corresponding distribution computed in Hyperbolic HTM, we devise the third loss 

— an inconsistency loss 𝓛𝑖𝑐. For these two mixture Gaussian distributions  𝑝(𝒛|𝑿𝑏) =
∑ 𝜃𝑖𝑁(𝜇𝑖 , 𝜎𝑖

2)𝐾
𝑖=1 and 𝑝(𝒛|𝑿) = ∑ 𝜃𝑖𝑁(𝜇̂𝑖, 𝜎̂𝑖

2)𝐾
𝑖=1 , their Kullback–Leibler (KL) diver-

gence is upper-bounded by  

𝓛𝑖𝑐  = KL(𝑝(𝒛|𝑿𝑏))||𝑝(𝒛|𝑿) ≤ KL(𝜽||𝜽) + ∑ 𝜃𝑖KL(𝑁(𝜇𝑖, 𝜎𝑖
2)||𝑁(𝜇̂𝑖 , 𝜎̂𝑖

2))𝐾
𝑖=1  (12) 

where KL(𝜽||𝜽) is equal to 0. The general form of this formula hasbeen proven to be 

correct in the study [72].  

The final overall loss of the entire framework’s training objective is the linear com-

bination of the three parts, defined as  

 𝓛 = 𝓛ℎ𝑡 + 𝓛𝑘𝑔 + 𝓛𝑖𝑐 (13) 



5 Experiments 

5.1 Datasets 

We employ the dataset KP20k collected by Meng et al., [67], which contains a large 

amount of high-quality scientific metadata in the computer science domain from vari-

ous online digital libraries. In this dataset, each example contains a title and an abstract 

of a scientific publication as source text, and multiple author-assigned keywords as tar-

get keyphrases. Following previous works [37, 67], we split this dataset into training, 

validation and test sets, and use the training set to train all the deep seq2seq models. 

We use the validation set to find the optimal hyperparameters during the training pro-

cess. Finally, we apply our models in the test set and report their performance.  

In order to evaluate the proposed model comprehensively, we also test the model 

trained with KP20k on other four widely-adopted public datasets from the scientific 

domain, namely, Inspec [73], Krapivin [74], SemEval-2010 [75] and NUS [76]. The 

detailed statistic information of the above five datasets are shown in Table 1, along 

with the number of documents (#Docs), the number and the percentage of present 

keyphrases (#PKps and %PKps), the number and the percentage of absent keyphrases 

(#AKps and %AKps), and the average number of keyphrases per document 

(#Avg.Kps). 

Table 1.Summary of the training, validating and testing datasets. 

Dataset #Docs #PKps %PKps #AKps %AKps #Avg.Kps 

Train KP20k 509986 1696532 63.0 995744 37.0 5.28 

Valid KP20k 20000 66131 62.9 39041 37.1 5.26 

Test 

KP20k 20000 66441 62.9 39119 37.1 5.28 

Inspec 500 3602 73.6 1293 26.4 9.79 

Krapivin 400 1297 55.6 1037 44.4 5.84 

NUS 211 1191 52.2 1088 47.8 10.8 

SemEval 100 612 42.4 831 57.6 14.43 

 
5.2 Comparative Methods 

To comprehensively evaluate the performance of our Hyper-HTKG1 , we compare our 

method with  seven current deep seq2seq generation baselines on five benchmark da-

tasets as follows:  

(1) CopyRNN [29] is the first to use seq2seq network to generate keyphrases. 

Here, we replace it with CopyRNN+ which is re-implemented CopyRNN with best 

results [78].  

(2) CopyCNN [84] applies a convolutional neural network-based encoder-de-

coder framework to generate keyphrases.  

(3) KG-KE-KR-M [85] is a multi-task learning method using extractive and gen-

erative models to generate keyphrases.  
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(4) CatSeq [37] has the same framework as CopyRNN, with the key difference in 

training paradigm.  

(5) CatSeqTG-2RFl [86] is a simple extension of CatSeq using reinforcement 

learning to generate both sufficient and accurate keyphrases.  

(6) ExHiRD-h [39] uses an exclusive hierarchical decoder to avoid generating 

duplicated keyphrases.  

(7) One2Set [38] is a new training paradigm without predefining an order to con-

catenate the keyphrases. 

 
5.3 Evaluation Metrics 

For fairly comparing different approaches, we follow the literature and adopt top-N 

macro-averaged precision, recall and F1-measure as the evaluation metrics. In particu-

lar, precision is defined as the number of correctly predicted keyphrases over the num-

ber of all predicted keyphrases, recall is defined as the number of correctly predicted 

keyphrases over the total number of data records, and F1 is the harmonic mean of pre-

cision and recall.  

Note F1@k is used in almost all existing works on the keyphrase extraction and 

generation, in which k is a fixed number of top-N predictions. F1@O is recently pro-

posed in the work [37] as one of our evaluation metrics, in which O is the number of 

author-assigned keyphrases. This means that the number of predicted phrases taken for 

evaluation is the same as the number of ground truth keyphrases for each document.  

 

5.4 Experimental Setup 

We follow the previous works [29, 37] to pre-process the experimental data, including 

lowercasing, tokenizing, etc. Particularly, the top 50,000 and 10,000 most frequently-

occurred words in the training data are selected as the vocabulary shared in the sequence 

encoder and decoder, and as the bag-of-words vocabulary in the neural hierarchical 

topic model, respectively.  

For the hyperbolic hierarchical topic model, we set the size of hidden layers to 256. 

The parameters α0 and β0 for the topic-word distribution are empirically set to 1 and 10, 

respectively. For the neural keyphrase generation model, the word embeddings are ini-

tialized first using normal distribution by the method, and the size of word embedding 

is set as 150. The size of hidden state of hyperbolic Bi-GRU encoder is set as 150, and 

the size of hidden state of forward GRU decoder is set as 300.  

In the training process, we adopt One2One training paradigm [67]and use Adam as 

optimizer to optimize all the parameters. The initial learning rate is set as 0.001 and the 

gradient clipping is set as 1. The batch sizes of the topic model and the keyphrase gen-

eration model are set to 1024 and 128, respectively. We halve the learning rate when 

the validation performance drops, and stop training if it does not improve for three suc-

cessive iterations. In addition, we pre-train the hierarchical topic model for 100 epochs 

before thejoint training as the convergence speed of our hyperbolic keyphrase genera-

tion model is much faster than our hyperbolic hierarchical topic model. We employ the 

simple KL cost annealing technique. More specifically, we add a variable weight to the 



KL term in the loss function at training time. At the start of training, we set that weight 

to 0, and then we gradually increase this weight to 1 as the training progresses. In the 

testing process, our models use the beam search with a width of 200 and a max depth 

of6. 

 
Table 2.Present keyphrase prediction results on five datasets. The best performing 

score is highlighted in bold and the second best score is highlighted with underline. 

 

Table 3.Absent keyphrase prediction results on five datasets. The best performing 

score is highlighted in bold and the second best score is highlighted with underline. 

 

5.5 Performance Comparison 

We compare Hyper-HTKG with the baselines on five datasets, and the experimental 

results for present and absent keyphrase prediction are shown in Table 2 and 3, respec-

tively. Due to space limitations and metric specialization, we present only results ob-

tained with the most suitable metrics for each type of methods. Specifically, we choose 

F1@5 andF1@O for the present and absent methods. 

Model KP20k Inspec Krapivin NUS SemEval 

F1@5 F1@O F1@5 F1@O F1@5 F1@O F1@5 F1@O F1@5 F1@O 

CopyRNN 31.7 33.5 24.4 29.0 30.5 32.5 37.6 40.6 31.8 31.7 

CopyCNN 35.1 - 28.5 - 31.4 - 34.2 - 29.5 - 

KG-KE-KR-M 31.7 38.8 25.7 31.4 27.2 31.7 28.9 38.4 20.2 30.3 

CatSeq 31.4 31.9 29.0 30.7 30.7 32.4 35.9 38.3 30.2 31.0 

CatSeqTG 32.6 35.7 26.6 22.4 31.2 34.7 36.5 39.6 27.7 25.5 

Exhird-h 31.1 37.4 25.3 28.9 28.4 30.6 - - 29.2 26.6 

One2Set 35.5 36.9 28.2 25.4 31.5 34.3 39.7 39.5 34.0 30.2 

Hyper-HTKG 37.4 38.8 30.6 31.7 31.7 32.3 40.9 41.7 32.0 30.5 

Model KP20k Inspec Krapivin NUS SemEval 

F1@5 F1@O F1@5 F1@O F1@5 F1@O F1@5 F1@O F1@5 F1@O 

CopyRNN 3.23 3.97 1.44 1.23 5.14 5.54 3.35 3.25 2.05 2.20 

CatSeq 1.50 2.51 0.40 0.35 1.80 1.67 1.60 1.22 1.60 1.44 

CatSeqTG 2.78 2.16 1.12 0.82 2.97 1.88 2.46 2.10 2.04 1.78 

Exhird-h 1.57 3.22 1.03 1.52 2.06 2.49 - - 1.51 1.14 

One2Set 3.70 5.02 2.10 1.63 5.53 3.43 4.02 3.61 2.42 2.02 

Hyper-HTKG 4.20 5.27 2.24 1.59 5.41 5.82 4.96 4.82 2.99 2.67 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

5.5.1 Present keyphrase prediction 

From the results of predicting present keyphrases illustrated in Table 2, we can see that 

our Hyper-HTKG outperforms all the seq2seq baseline methods by significant margins 

in three out of five datasets (including KP20k, Inspec and NUS) in terms of all the 

metrics. Specifically, Hyper-HTKG achieves the improvement of 1.9F1@5 points 

points on KP20k over the best baselines, of 1.6 F1@5 pointsand 0.3F1@O points on 

Inspec, and of 1.2F1@5 points and 1.1F1@O points on NUS, respectively.  

These results illustrate Hyper-HTKG can achieve the average increase of 2.1 points 

on these metrics, which is a significant improvement in the current keyphrase prediction 

task. On both Krapivin and SemEval datasets, Hyper-HTKG performsslightly worse 

than the best baselines. This slight performance drop may be caused by the various 

topics discussed in the given datasets. For example, the selected articles in SemEval 

dataset belong to both computer science and economics domains.  

 
5.5.2 Absent keyphrase prediction 

Unlike present keyphrases, absent keyphrases do not appear in the target document, and 

thus predicting them is very challenging and requires comprehensive understanding the 

latent document semantic. From the results of predicting absent keyphrases presented 

in Table 3, we can see that Hyper-HTKG substantially outperforms the baselines ac-

cording to all the metrics, and correctly generates more absent keyphrases than the 

baselines on the five datasets, especially on KP20k (0.5F1@5 points and 0.25 F1@O 

points over the best existing methods), NUS (0.94F1@5 points and 1.21 F1@O points) 

andSemEval (0.57F1@5 points and 0.65 F1@O points). Overall, the absent keyphrase 

prediction results indicate that Hyper-HTKG is capable of understanding the underly-

ing document semantic better than all the baselines, and thus generating much better 

results. 

 
Table 4.Ablation study on five public datasets. 

 

 Model KP20k Inspec Krapivin NUS SemEval 

F1@5 F1@O F1@5 F1@O F1@5 F1@O F1@5 F1@O F1@5 F1@O 

p
re

se
n

t 

Hyper-

HTKG 
37.4 38.8 30.6 31.7 31.7 32.3 40.9 41.7 32.0 30.5 

w/o HT 34.1 36.3 27.4 28.0 26.9 28.4 34.6 36.2 28.2 27.5 

w/o TG 33.0 34.3 25.5 27.6 26.1 27.8 32.4 33.6 27.1 26.4 

ab
se

n
t 

Hyper-

HTKG 
4.20 5.27 2.24 1.59 5.41 5.82 4.96 4.82 2.99 2.67 

w/o HT 2.73 3.32 1.86 1.44 2.89 3.10 3.27 3.62 1.98 2.02 

w/o TG 1.99 2.20 1.46 1.27 2.05 2.26 2.07 2.42 1.69 1.80 



5.6 Ablation Study 

To analyze the relative contributions of different components to the model performance 

in predicting present and absent keyphrases, we compare our full model Hyper-HTKG 

with the following ablated variants: (1) w/o HT(hierarchical topic) where the hierar-

chical topic model is replaced by the flat topic model NTM, (2) w/o TG(topic guid-

ance), where we directly use the hyperbolic keyphrase generation model.  

From the results shown in Table 4, we have the following observations: (1) Replac-

ing the hierarchical topics with the flat topics leads to performance drops on all datasets, 

indicating that the hierarchical topic is effective information to improve keyphrase gen-

eration. (2) The simple concatenation results in significant performance drop on all da-

tasets. However, compared to the earliest baseline CopyRNN, slight improvements of 

the performance are observed in conjunction with the results shown in Table 2 and 

Table 3. These results indicate that NTM can effectively leverage the topic information 

to guide the keyphrase generation. 

6 Conclusion 

In this study, we propose a hyperbolic hierarchical topic-guided keyphrase generation 

method, which incorporates the hierarchical topic information into keyphrase genera-

tion explicitly. In particular, we jointly learn both latent hierarchical topics and 

keyphrases, allowing our model to better exploit the mutual reinforcement between 

them, and accurately capturing the topics and relations between them discussed in a 

given document. We conducted comprehensive experiments to demonstrate its ad-

vantages and effectiveness. In future, we plan to evaluate Hyper-HTKG on a large cor-

pus with comprehensive coverage of diverse topics. 
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