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Abstract. A significant challenge faced by numerous small- and medium-sized 

banks in the field of credit risk prediction lies in the limitations of available data, 

high non-performing loan ratios, and stringent data privacy regulations. Feder-

ated learning (FL) offers a promising solution by enabling collaborative model 

training across multiple institutions without the need to share sensitive data, thus 

safeguarding privacy while enhancing the accuracy of credit risk predictions. 

This study focuses on borrower default prediction as a practical application sce-

nario for small- and medium-sized banks and introduces a lightweight federated 

learning framework (pLFL) designed to optimize model performance. The pro-

posed framework integrates an enhanced tADA data preprocessing technique 

with an improved pFed aggregation algorithm, effectively addressing the afore-

mentioned challenges. To evaluate the efficacy of the pLFL framework, experi-

ments were conducted on two real-world datasets. The results demonstrate sub-

stantial performance improvements: on the credit card dataset, the F1 score of the 

model increased to 81.5%, with Precision reaching 91.5%. On the Lending Club 

Loan Data dataset, communication overhead was significantly reduced, and the 

global model's convergence rate accelerated to 1.8 times its original speed. Fur-

thermore, the pLFL framework incorporates parameter quantization and asyn-

chronous communication strategies to minimize system resource consumption, 

underscoring its practicality for small- and medium-sized financial institutions. 

This research presents an efficient and privacy-preserving solution for credit risk 

prediction in the financial sector, particularly in scenarios requiring cross-insti-

tutional collaboration with heterogeneous data distributions. 
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1 Introduction 

Credit risk prediction is an essential tool for financial institutions, particularly banks, 

in managing credit risk and optimizing loan decisions. Traditional methods of credit 

risk assessment often rely on inductive reasoning[1], with mathematical and statistical 

analyses being conducted on carefully selected, hypothesis-driven data. These methods 

typically focus on the structural features of the data, with inferences and decisions being 

made based on model assumptions. In contrast, modern advanced methods emphasize 

data-driven approaches, in which patterns are automatically learned from the data to 

adapt to its complexity and nonlinearity. Compared to traditional methods, data-driven 

models offer greater flexibility and adaptability, as they are capable of extracting un-

derlying patterns from noisy, nonlinear, and heterogeneous data, often yielding superior 

predictive performance in practice. However, regardless of whether traditional or mod-

ern methods are used, both are highly dependent on the quality and quantity of data. 

The availability of better-quality data allows models to capture real-world risk charac-

teristics more accurately, thereby improving the reliability of predictions. Therefore, 

data availability is crucial for financial institutions; a scarcity of data often leads to a 

decline in predictive performance, which in turn affects the quality of decision-making. 

For small and medium-sized financial institutions, particularly small and medium-

sized banks that account for over 85% of the market in China, data scarcity and privacy 

protection are the primary challenges faced[2]. Although cross-institutional data shar-

ing has the potential to significantly improve the performance of credit risk prediction 

models, it is often impeded by barriers stemming from the financial industry's sensitiv-

ity to data privacy, control, and legal risks. To address this, federated learning, an 

emerging distributed learning approach, is proposed as a solution. 

Federated learning allows multiple parties to collaboratively train a model without 

exchanging raw data, sharing only model parameter updates, thereby reducing the risk 

of data leakage[3]. This approach not only improves the feasibility of cross-institutional 

collaboration but also ensures compliance with data protection regulations (such as 

GDPR). However, several challenges remain in the practical application of federated 

learning: the issue of data imbalance in credit risk prediction tasks, particularly the 

scarcity of default samples, which may be exacerbated in federated learning environ-

ments[4]; second, data heterogeneity across institutions may affect the generalization 

ability of the global model; furthermore, the communication overhead resulting from 

frequent model updates and parameter exchanges may lead to inefficiencies in training, 

particularly in resource-constrained small and medium-sized financial institutions. 

To address the challenges outlined above, this study proposes a lightweight federated 

learning framework, termed pLFL, designed to enhance both the accuracy of credit risk 

prediction and the efficiency of model training through carefully crafted methodolo-

gies. The pLFL framework incorporates an improved tADA sampling technique to mit-

igate issues arising from data imbalance, thereby significantly boosting model perfor-

mance. At the central server, the framework employs the pFed aggregation algorithm, 

which adjusts the weights of participating clients to counteract the effects of data het-

erogeneity. To reduce communication overhead, pLFL leverages parameter quantiza-
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tion techniques to compress model parameters, coupled with an asynchronous commu-

nication strategy that substantially accelerates training processes. The key contributions 

of this paper are summarized as follows: 

• Improved tADA data preprocessing method:To address the pervasive issue of data 

imbalance in credit datasets, this study introduces an enhanced sampling approach 

based on the ADASYS algorithm, referred to as the tADA method. This improved 

technique strategically adjusts sample boundaries and cluster weights to maximize 

the utility of imbalanced samples, thereby mitigating the adverse effects of data im-

balance on model training. Consequently, the proposed method significantly en-

hances the model’s ability to accurately identify minority class instances, particu-

larly defaulting customers. 

• Dynamically weighted pFed aggregation algorithm: In response to the data hetero-

geneity issue in federated learning, the pFed algorithm, based on the FedProx algo-

rithm, is proposed. By dynamically adjusting the weight assigned to each participant 

in the global model update, the pFed algorithm enhances model stability and gener-

alization ability, while reducing the detrimental effects of data heterogeneity on 

training performance. 

• Novel pLFL Lightweight Framework: To enhance the overall training efficiency of 

federated learning, a parameter quantization and asynchronous communication strat-

egy has been introduced. Specifically, the model parameters are quantized after local 

training, converting 32-bit floating-point values into 8-bit integers, thereby reducing 

the communication overhead during model uploads. Additionally, the asynchronous 

communication strategy embedded within the pFed aggregation algorithm mitigates 

the training delay caused by speed discrepancies between devices, further boosting 

training efficiency. 

This lightweight federated learning framework offers an efficient and scalable solu-

tion for credit risk prediction in financial institutions, particularly in cross-institutional 

collaboration scenarios where data privacy must be ensured. By leveraging carefully 

designed preprocessing methods, optimization algorithms, and a lightweight architec-

ture, the proposed framework demonstrates significant advantages in addressing the 

complexities inherent in financial data. 

2 Related Work 

2.1 Credit risk prediction 

Credit risk prediction is one of the core challenges faced by financial institutions, par-

ticularly banks. With the evolution of financial markets, risk prediction has become an 

integral part of financial risk management. In recent years, both domestic and interna-

tional research has primarily focused on the optimization and exploration of various 

predictive models. Early credit risk prediction models were predominantly based on 



statistical methods, such as regression analysis and discriminant analysis. Meyer et 

al.[5] were the first to apply logistic regression (LR) to the financial sector, demonstrat-

ing its superiority over discriminant analysis. Sami et al. [6] introduced a time-effect 

enhanced logistic regression model, which also performed well in predicting bank 

credit risks. However, with the rise of artificial intelligence, machine learning has grad-

ually replaced traditional statistical methods. Xu et al.[7] employed random forests 

(RF) for credit risk modeling, achieving significant predictive performance. Hsieh et 

al. [8] enhanced prediction accuracy by integrating multiple classifiers, while Xiao et 

al. [9] proposed a supervised clustering model that outperformed single classifiers. As 

a representative AI method, neural networks have also made groundbreaking advances 

in credit risk prediction. Chen et al. [10] evaluated credit risk using a multi-layer per-

ceptron (MLP) model, demonstrating excellent accuracy and stability. Kim et al. [11] 

employed deep dense neural networks, surpassing traditional machine learning meth-

ods with their automatic feature extraction capabilities. Su et al.[12] proposed a hybrid 

neural network credit scoring model, which showed advantages in improving prediction 

effectiveness. As the demand for model performance has increased, ensemble models 

have become a research trend in credit risk prediction. For example, Zhu et al.[13] pro-

posed the RS-MultiBoosting enhanced hybrid ensemble method, which significantly 

improved the accuracy of small and medium-sized enterprise credit risk prediction. 

Wang et al. [14] combined CNN and LSTM in the LSTM-CNN model, significantly 

improving prediction performance by integrating behavioral and temporal features, fur-

ther validating the method’s advantages in credit risk prediction. 

However, model performance is not solely influenced by algorithms; data quality 

and quantity are equally critical[15]. Small and medium-sized banks often face chal-

lenges related to insufficient and low-quality data, which significantly impacts model 

performance. Additionally, data privacy protection laws and considerations regarding 

corporate competitiveness have restricted the progress of data sharing. 

2.2 Lightweight federated learning 

Federated Learning (FL), as a distributed machine learning approach, operates as fol-

lows (see Fig. 1): The central server first selects clients and the machine learning model, 

which is then distributed to the clients for local training. The clients return their trained 

results to the server, which aggregates the updates and sends the new model for the next 

round of training, continuing until the predefined number of iterations or performance 

targets are reached. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Fig. 1.  Federated learning training process 

Research in federated learning can be categorized into three main directions. Firstly, 

at the client-side, the focus is on addressing issues of data heterogeneity and imbalance, 

optimizing data preprocessing (such as feature selection and data augmentation), and 

enhancing the accuracy and robustness of local training using either deep learning or 

traditional algorithms. Secondly, at the server-side, optimizing model aggregation al-

gorithms is critical. The traditional FedAvg algorithm has evolved into methods like 

FedProx and FedSGD to handle data distribution heterogeneity and improve the gener-

alization capability of the global model. Lastly, the frequent communication require-

ments incur high costs and privacy risks. Consequently, researchers often employ tech-

niques such as pruning and quantization to reduce communication overhead while in-

corporating methods like differential privacy, homomorphic encryption, and multi-

party secure computation to ensure data privacy and security. 

The emergence of Lightweight Federated Learning (LFL) addresses the technical 

challenges of federated learning in resource-constrained environments[16]. Traditional 

FL relies on frequent synchronization between clients and servers, leading to significant 

communication overhead when there are numerous participants or large-scale models. 

Moreover, the high computational demands of model training pose a bottleneck for 

resource-limited devices, such as mobile devices and edge nodes. The core objective of 

LFL is to reduce resource demands through model simplification, communication op-

timization, and computational efficiency. Lightweight techniques, such as pruning, 

quantization, and knowledge distillation, are employed: pruning reduces storage and 

computational burden by eliminating redundant parameters; quantization converts 

high-precision floating-point numbers to low-precision integers; and knowledge distil-

lation enables smaller models to learn from larger ones, maintaining performance while 



reducing computational needs. Communication optimization strategies, such as gradi-

ent compression, sparse synchronization, and local update frequency adjustment, effec-

tively reduce communication overhead between devices. Through these techniques, 

LFL significantly enhances the scalability and practical applicability of FL. 

As federated learning gradually finds applications in the financial services sector, 

related research has been steadily increasing. Initially, researchers explored how to sim-

plify model structures to maintain strong performance while adapting to hardware lim-

itations of devices. For instance, Guo et al.[17] demonstrated the advantages of light-

weight models by compressing client-side CNN model parameters for distributed 

anomaly detection in logs. Subsequently, research focused on applying LFL in various 

scenarios such as IoT and edge computing. For example, Yan et al.[18] proposed the 

Heroes framework for heterogeneous edge networks. In 2024, Qi et al.[19] presented 

the first comprehensive review of LFL. 

While existing research has demonstrated the potential of LFL in real-world scenar-

ios, there remains a significant gap in the literature regarding its application to financial 

domains, particularly in the context of real credit datasets from small- and medium-

sized financial institutions. Moreover, current federated learning frameworks suffer 

from excessive parameter exchange, leading to inefficiencies in communication, as well 

as substantial computational constraints. To bridge this gap, this study investigates how 

LFL can be leveraged to develop an efficient credit risk prediction model by integrating 

real-world credit data from financial institutions of varying scales, thereby addressing 

both communication bottlenecks and computational limitations. 

3 Methodology 

3.1 Client –tADA algorithm 

In the field of credit risk prediction, data imbalance is a pervasive  issue.  The  uneven  

distribution  of  samples  can skew the predictions of various models, including feder-

ated learning-based   classifiers,   towards   the   majority   class, undermining   model   

robustness.   In   federated   learning scenarios, data imbalance may also arise dur-

ing communication between participating clients and the server. If not promptly ad-

dressed, this imbalance can degrade the performance   of   local   models   on   each   

client,   thereby compromising the overall performance of the global model and poten-

tially leading to the failure of federated learning- based model training[20]. 
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Fig. 2.  Principles of the tADA algorithm 

To construct a high-quality dataset with balanced intra- class  and  inter-class  distribu-

tions,  thereby  improving  the performance  of  credit risk  prediction models  on  mi-

nority classes,  this  paper  proposes  an  innovative  approach  by enhancing  the  tADA  

algorithm  with  ADASYS.  The  key workflow is illustrated in Fig. 2, and the core 

steps are outlined as follows: 

a) Noise Filtering and Minority Class Sample Optimi -zation:. To enhance the 

quality of minority class samples, the TomekLinks algorithm[21] is first employed to 

filter out noise. TomekLinks identifies and removes nearest neighbor pairs between 

classes, effectively eliminating noisy data points that could negatively impact model 

training. This process generates a refined set of minority class samples, which serve as 

the input for subsequent clustering steps. The procedure can be formally described as 

follows:  

                     Tomeks(𝑥𝑖, 𝑥𝑗)  if  ||𝑥𝑖-𝑥𝑗 || = min||𝑥𝑖 − 𝑥𝑗||(𝑥𝑗 ∈ 𝑥𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦)                  (1) 

where 𝑥𝑖 and 𝑥𝑗 represent minority class samples, and 𝑥𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦  denotes the set of mi-

nority class samples after noise filtering. 



b) Clustering and Sample Grouping:. Building upon the noise-filtered minority 

class samples, the DBSCAN clustering algorithm[22] is applied to partition the minor-

ity class samples into distinct sub-clusters, thereby improving the data's representa-

tional capacity. DBSCAN identifies clusters based on density connectivity, with the 

parameters ϵ(neighborhood radius) and MinPts(minimum number of points) determin-

ing cluster formation. The resulting sub-clusters are used as input for the subsequent 

oversampling step. The process can be expressed as: 

                                               DBSCAN(𝑥𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 , ϵ,MinPts)                                     (2) 

where 𝑥𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦  is the noise-filtered minority class sample set. 

c) Oversampling and Weight Optimization:. On the clustered minority sub-clas-

ses, the ADASYN algorithm[23] is utilized for oversampling, prioritizing the genera-

tion of synthetic samples for hard-to-classify instances and assigning greater attention 

to high-impact samples. The weight for each minority sample 𝑥𝑖 is calculated as fol-

lows:  

                                              ω(𝑥𝑖) = 
1

𝑘𝑖
∑ ||𝑗∈ϰk(𝑥𝑖) 𝑥𝑖-𝑥𝑗 ||                                            (3) 

where 𝜔(𝑥𝑖)represents the weight of minority sample 𝑥𝑖, and ϰk(𝑥𝑖) is the number of 

nearest neighbors. Based on these weights, ADASYN generates synthetic samples, par-

ticularly for challenging minority class instances. The output of this step is a synthetic 

sample set 𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐, with minority class information, which contributes to construct-

ing a balanced intra-class and inter-class dataset. 

d) Post-Oversampling Noise Filtering and Sample Refinement:. Finally, the 

TomekLinks algorithm is reapplied to the oversampled minority class set 𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐  to 

remove overlapping samples and noise introduced during the ADASYN process. This 

refinement step optimizes the final dataset, ensuring minimal noise and overlap. The 

resulting dataset, denoted as 𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 ′, is a balanced, high-quality synthetic dataset 

ready for model training. The process is described as:  

                   Tomeks(𝑥𝑖, 𝑥𝑗)  if  ||𝑥𝑖-𝑥𝑗 || = min||𝑥𝑖 − 𝑥𝑗||(𝑥𝑗 ∈ 𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐)                     (4) 

where 𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐  represents the synthetic sample set generated in the previous step. 

3.2 Server – pFed aggregation 

Despite the significant improvements brought by tADA in client-side data prepro-

cessing, data heterogeneity and communication efficiency between clients and the cen-

tral server remain critical challenges affecting the performance of the global model in 

a FL environment [24]. Thus, optimizing the aggregation algorithm at the server side is 

crucial. FedProx partially addresses the non-IID data issue by introducing a regulariza-

tion term to mitigate the divergence between local and global models [25]. However, it 

does not fully resolve the heterogeneity problem.To further alleviate the impact of data 

heterogeneity, this study proposes an improved federated optimization algorithm, pFed, 

based on FedProx. The proposed method not only mitigates the slow convergence of 
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the global model caused by increasing local update iterations under non-IID settings 

but also enhances the overall predictive accuracy by improving server-side optimiza-

tion flexibility. The specific workflow of pFed is presented in Algorithm 1. The key 

idea is to incorporate dynamic weight aggregation during global optimization, which 

effectively accounts for the local data characteristics of each participating client, reduc-

ing the adverse effects of data heterogeneity. Additionally, an asynchronous communi-

cation strategy[26] is employed to prevent straggler devices from slowing down global 

updates, thereby improving the overall convergence efficiency. In the context of credit 

risk prediction, pFed effectively mitigates challenges posed by non-IID data distribu-

tions.The introduction of dynamic weights 𝛼𝜅 in pFed is guided by two critical factors:  

1) Device-Specific Data Volume ( ):. Devices with larger local datasets contribute 

more significantly to global model updates[27]. Therefore, higher aggregation weights 

are assigned to these devices, reflecting their greater importance in the learning process.  

2) Update Magnitude Penalization ( ):. A larger update magnitude from a de-

vice may indicate substantial divergence between its local data distribution and the 

global model, potentially introducing instability. To counteract this, a penalization 

mechanism is introduced to limit excessive updates, thereby reducing noise and im-

proving the stability of global model aggregation. This adaptive weight computation 

strategy balances the contributions of different devices, mitigating the impact of non-

IID distributions. 

In federated learning, asynchronous communication refers to a mechanism where 

clients independently complete local training and upload model updates without wait-

ing for other devices to finish. The server maintains a priority queue based on local data 

quality and computational capacity, allowing clients to submit model updates at any 

time. Consequently, each client's update is immediately integrated into the global model 

without being delayed by slower devices. 

Let θt represent the global model parameters at time step, and let Δθt denote the 

local model update from client k. The asynchronous update process as follows: 

                                            𝜃𝑡+1=𝜃𝑡+𝛼 ∑ 𝜔𝑘
𝑘
𝑘=1 Δ𝜃𝑘                                             （5） 

where: 

 𝜃𝑡+1 epresents the global model parameters at time t+1, 

 α is the global learning rate, 

ωk denotes the weight assigned to client k, 

Δ𝜃𝑘 is the local model update uploaded by client k. 

In this asynchronous setting, client k can upload its model updates at any given time, 

and the global model is updated dynamically upon receiving new contributions. This 

strategy offers three distinct advantages: 

• Higher Device Utilization: Asynchronous updates eliminate the need for the 

server to wait for all clients to complete local training before aggregation. Instead, 



it continuously integrates updates as they arrive. This mechanism better accom-

modates real-world device heterogeneity (e.g., varying computational power and 

network latency), improving overall system efficiency. 

• Faster Global Model Updates: Since the server does not need to synchronize up-

dates across all clients, the global model can be updated more frequently, accel-

erating convergence, particularly in large-scale FL scenarios. 

• Enhanced Robustness: The asynchronous update mechanism reduces reliance on 

strict client synchronization, ensuring that the system remains operational even 

if some devices become unresponsive . This enhances the robustness of the FL 

framework. 

3.3 pLFL  framework 

Although pFed partially addresses the issues arising from device speed discrepancies 

through asynchronous communication, the challenge of further reducing communica-

tion overhead and improving efficiency for resource-constrained devices remains. To 

this end, this paper proposes the adoption of a lightweight federated learning frame-

work, pLFL, aimed at mitigating this overhead. The term “lightweight” is specifically 

Algorithm 1 Asynchronous pFed 
Require: K (Total devices), T (Max iterations), μ(Proximal term weight), γ 

(Learning rate), w0(Initial global model), N (Total data points across devices), 

pk (Probability of device k beings selected), k = 1,..., N 

1: Initialize: Server maintains global model wt and a queue Q for receiving 

model updates asynchronously. 

2: for t = 0,...,T - 1 do 

3:   Server selects a subset St of devices at random, where each device k is chosen 

with probability pk. 

4:   Server sends global model wt to all selected devices St. 

5:   for all device k ∈ St, (in parallel) do 

6:     Solve the local optimization problem: 

𝑤𝑘
𝑡+1 ≈ argmin

𝑤
𝐹𝑘(𝑤) +

𝜇

2
∥ 𝑤 − 𝑤𝑡 ∥2 

where Fk(w) is the local loss function on device k. 

7:     Compute the model delta: 
Δwk = wk

t+1 − wt 

8:     Upload (∆wk , nk , ||∆wk||) to the server. 

9:   end for 

10:  while Server receives (∆wk , nk , ||∆wk||) from devices asynchronously do 
11:  Compute the dynamic aggregation weight: 

αk =

nk

N
1+∥ Δwk ∥

 

12:  Incrementally update the global model: 
wt+1 = wt + γ ⋅ αk ⋅ Δwk 

13:  end while 

14:  Optionally: Broadcast updated global model wt+1 to devices. 

15: end for 
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embodied in two aspects(Fig. 3): On the one hand, during interactions between the cli-

ent and server, parameter quantization[28] is employed. After local model training is 

completed, a post-training quantization process is applied, reducing the model param-

eters from 32-bit floating-point values to 8-bit integers to minimize upload communi-

cation costs. Upon receiving the 8-bit integer parameters, the central server then de-

quantizes them back to 32-bit floating-point values for global aggregation. On the other, 

in synchronous federated learning, each training round requires waiting for all partici-

pating devices to finish uploading their models before aggregation can occur. Due to 

the variance in device resources and training data, faster devices must wait for slower 

ones, significantly hindering the efficiency of federated learning. However, in asyn-

chronous federated learning, the model aggregation server immediately performs 

global aggregation once a minimal set of local models has been collected, thus avoiding 

the delays caused by slower devices. 

 

Fig. 3.   pLFL framework 

4 Experiment 

This  section  presents  the  experimental  results  of  the credit risk prediction model, 

pLFL, based on the federated learning   framework.   The   model   integrates   the tADA 

algorithm,  pFed  aggregation,  and  a  lightweight federated learning architecture. To 

assess the effectiveness of the proposed approach, extensive experimental analysis was 



conducted on two real-world publicly available credit risk datasets. The evaluation met-

rics include prediction accuracy, recall, precision, and F1 score, among others. 

4.1 Data Source and Data Preprocessing 

This experiment utilizes two publicly available credit risk datasets: Credit Card, 

sourced from Kaggle, and Lending Club Loan Data, obtained from a peer-to-peer lend-

ing platform in the United States. 

Credit Card dataset. comprises anonymized transaction data from European card-

holders and includes a variety of financial transactions of varying scales and complex-

ities. Its primary purpose is to evaluate model performance in real-world scenarios. This 

dataset features transactions that occurred over two days, with a total of 284,807 trans-

actions, of which only 492 were defaults. The ratio of positive to negative samples is 

approximately 578:1, creating a highly imbalanced dataset where the negative class 

(defaults) accounts for 0.172% of all transactions.  

Lending Club Loan dataset. spans loan data from 2007 to 2015, containing approx-

imately 890,000 observations. It includes real-world information on individual borrow-

ers, such as age, gender, employment type, housing status, savings, checking accounts, 

credit amount, loan term, and loan purpose. The ratio of positive to negative samples 

in this dataset is approximately 7:1. 

In this study, to address the issue of class imbalance in credit risk prediction, stand-

ard preprocessing steps were applied to the datasets, including missing value imputa-

tion, outlier detection, feature normalization. Missing values were filled using mean or 

median imputation, and outliers were identified and removed using boxplots and Z-

Score methods. Numerical features were standardized using Min-Max normalization, 

while categorical features were encoded using one-hot encoding. Subsequently, tADA 

sampling was performed on the training data to ensure that the resulting distribution 

aligned with the training requirements of the model. 

4.2 Experimental Setup 

The dataset was partitioned into training, testing, and validation sets at a ratio of 6:2:2. 

To thoroughly evaluate the effectiveness of the proposed method, a comparison was 

made with several traditional baseline models. For a fair comparison, all models were 

trained under the same hardware conditions (RTX 3090, CUDA 11.8) using the open-

source machine learning framework PyTorch. During federated training, we configured 

the number of clients to be 10, with a random selection rate of ε = (0.3, 0.6). The training 

was conducted over 50 communication rounds, with a maximum of 5 local epochs per 

round. Additionally, an early stopping strategy was employed to prevent overfitting and 

ensure efficient training. 
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4.3 Evaluation Metrics 

We employed a set of standard metrics to assess the performance of the model: Accu-

racy, Recall, Precision, and F1 Score. These four key metrics serve as a comprehensive 

summary of performance for any classification task. True Positive (TP): Instances cor-

rectly predicted as the positive class by the model. For example, if a sample is actually 

positive and the model also predicts it as positive, it is a true positive. True Negative 

(TN): Instances correctly predicted as the negative class by the model. If a sample is 

actually negative and the model predicts it as negative, it is a true negative. False Pos-

itive (FP): Instances incorrectly predicted as the positive class by the model. False Neg-

ative (FN): Instances incorrectly predicted as the negative class by the model. 

Based on these classification outcomes, the following evaluation metrics are de-

fined:Describes the proportion of correct predictions out of the total predictions 

made.Recall: Describes the proportion of actual positive instances that were correctly 

classified as positive.Precision: Describes the proportion of correctly classified positive 

instances out of all instances predicted as positive.F1 Score: The harmonic mean of 

Recall and Precision, combining the balance between the two. It is particularly useful 

for evaluating model performance in imbalanced class problems.The definitions of the 

metrics used are as follows: 

 
TP TN

Accuracy
TP FP TN FN

+
=

+ + +
 (6) 

 TP
Recall

TP FN
=

+  

(7) 

 TP
Precision

TP FP
=

+                                              

(8) 

 
1

2 (Precision Recall)

Precision Recall
F

 
=

+                     

(9) 

4.4 Results 

a) Comparative Analysis of tADA Algorithm on Data Imbalance Issues：. We 

compared six traditional sampling methods with the tADA algorithm. Fig. 4 presents a 

detailed comparison of all the methods. Although tADA slightly lags behind in terms 

of Precision for some models, it consistently outperforms the others in F1-Score and 

ROC-AUC, indicating that the algorithm is more effective at distinguishing between 

positive and negative samples in imbalanced datasets. 



b) Advantages of the pFed Algorithm Over Traditional Methods：. To evaluate 

the performance of different aggregation algorithms under varying data distribution 

conditions, we conducted experiments using the Lending Club Loan Data dataset, 

which has a relatively low sample imbalance rate. The results are summarized in Table 

1. Since pFed is an improved version of FedProx, we primarily focus on the comparison 

between these two algorithms.The experimental results indicate that, under the non-

independent and identically distributed (Non-IID，ε=0.3) data setting, the pFed algo-

rithm outperforms FedProx in both accuracy (increasing from 0.889 to 0.902) and con-

vergence speed (reducing training time by 47%). These findings underscore the ad-

vantages of pFed in addressing data heterogeneity and its potential for more efficient 

training in federated learning environments. 

c) Performance of pLFL on Real-World Datasets：. Table 2 presents a clear illus-

tration of the exceptional performance of the pLFL framework across two real-world 

datasets. The results indicate that, despite a reduction in the model's  parameter Scale, 

the proposed pLFL method continues to achieve outstanding performance across vari-

ous metrics. Specifically, the pLFL model exceeds 90% accuracy and achieves F1 

scores above 80% on both datasets. Moreover, the quantization and asynchronous com-

munication within the pLFL framework significantly enhances its performance, partic-

ularly in terms of ROC_AUC and recall. These results demonstrate the feasibility and 

effectiveness of pLFL for applications in small to medium-sized financial institutions. 

Table 1. Comparison of the Lending Club Loan dataset under three distribution settings 

Dataset Data distribution Method Precision Convergence speed 

Lending Club  

Loan Data 

IID 

FedAvg 0.802  62 

FedProx 0.775  78（0.79×） 

pFed 0.792 42（1.48×） 

Non-IID 

(ε=0.3) 

FedAvg 0.722  78 

FedProx 0.789  86（0.91×） 

pFed 0.801 45（1.73×） 

Non-IID 

(ε=0.6) 

FedAvg 0.732  94 

FedProx 0.794  107（0.88×） 

pFed 0.798 52（1.81×） 
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Fig. 4.  The PR plots of the two datasets in different models using each sampling method 



Table 2. Comparison of pLFL(ours) with other methods 

Dataset 

 

Method 

 

Approach 

 

Overall Metrics 

Precision Recall F1_Score ROC_AUC 

Credit 

Card 

FedAvg  No Quant/Async 0.743  0.641  0.685  0.863  

FedAvg  Quant/Asyn 0.717  0.643  0.679  0.884  

FedProx  No Quant/Async 0.645  0.655  0.694  0.877  

FedSGD  No Quant/Async 0.675  0.634  0.679    0.845  

Scaffold No Quant/Async 0.733   0.618  0.681  0.859  

pFed No Quant/Async 0.741   0.649  0.675  0.824  

PLFL(pFed) Quant/Async 0.815  0.650 0.715 0.878 

Lend-

ing 

Club 

Loan 

Data 

FedAvg  No Quant/Async 0.748  0.665  0.657  0.863  

FedAvg  Quant/Asyn 0.731  0.676  0.665  0.858  

FedProx  No Quant/Async 0.759  0.683  0.681  0.860  

FedSGD  No Quant/Async 0.741  0.625  0.639  0.867  

Scaffold No Quant/Async 0.704  0.616  0.633  0.832  

pFed No Quant/Async 0.714  0.690  0.709  0.829  

PLFL(pFed) Quant/Async 0.802 0.697 0.714 0.882 

5 Conclusion 

This paper  introduces  a lightweight  federated  learning- based credit risk prediction 

model, pLFL, which integrates the tADA algorithm and the pFed optimization method 

to effectively  address  challenges  such  as  data  imbalance, heterogeneity, and com-

munication overhead. By employing data   balancing   and   dynamic aggregation   op-

timization strategies at the client level, the proposed approach achieves both   high   

predictive   accuracy   and   system   efficiency. Extensive experiments on real-world 

credit datasets validate the effectiveness of the proposed method.Furthermore, the ex-

perimental   findings   highlight   that   smaller   financial institutions, by leveraging a 

lightweight federated learning framework   and   collaborating   with   other   entities,   

can significantly enhance their application potential and adaptability   in   resource-

constrained   environments.   This provides  these  institutions  with  a  more  competi-

tive  and robust solution for credit risk prediction. 
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