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Abstract. In recent years, various deep learning frameworks have been 

introduced for hyperspectral image (HSI) classification. However, the proposed 

network models often exhibit high model complexity and fail to provide high 

classification accuracy when applied in few-shot learning scenarios. In this 

paper, we propose a Dual-Branch Deep Feature Fusion Network (DDF-Net) for 

few-shot hyperspectral image classification. DDF-Net extracts multi-layer 

features from hyperspectral images using a pre-trained CNN model and applies 

Principal Component Analysis (PCA) for dimensionality reduction. 

Subsequently, non-overlapping image patches are extracted from the 

reduced-dimensional features, and processed through two parallel streams: a 

3D-CNN stream for spatial feature extraction and a CV-CNN stream for spectral 

feature extraction. Additionally, to enhance model performance, the 

Squeeze-and-Excitation (SE) mechanism is incorporated. Finally, the features 

from the two branches are effectively integrated through concatenation fusion 

and enhancement by the SE module, and then input into an SVM for 

classification. Experiments conducted on multiple datasets demonstrate the 

effectiveness and efficiency of DDF-Net in hyperspectral image classification, 

outperforming state-of-the-art methods. 

Keywords: Hyperspectral Data;Few-Shot Learning, Deep Features, 

Convolutional Kernels, Dual-Branch. 



 

1 Introduction 

Hyperspectral image (HSI) classification addresses critical remote sensing tasks like 

tree species identification [1] and crop yield estimation [2]. However, limited labeled 

data in practical scenarios often triggers the Hughes phenomenon, risking overfitting 

due to the spectral-band-to-sample imbalance [3]. This has spurred research on 

small-sample HSI classification. 

Feature extraction is pivotal in HSI classification. Traditional shallow features (e.g., 

local binary patterns [4], morphological features [5]) require intensive domain 

expertise, prompting the shift to deep learning for automatic hierarchical feature 

learning [3]. Convolutional neural networks (CNNs), despite success in spatial-spectral 

feature extraction, face challenges in jointly modeling spatial structures and spectral 

characteristics efficiently. 

Early deep models, such as stacked autoencoders (SAE) [6] and deep belief 

networks (DBN) [7], lost spatial information by flattening spectral vectors. Later 

methods integrated principal component analysis (PCA) with 2D-CNNs to reduce 

dimensionality [8], but separated spatial-spectral processing. 3D-CNNs emerged to 

directly process high-dimensional data, enabling joint spatial-spectral feature 

extraction [9]. Notable frameworks like spectral-spatial feature-based classification 

(SSFC) [10] and supervised spatial-spectral residual networks (SSRN) [9] 

demonstrated improved performance, yet high computational complexity from 3D 

convolutions hindered edge deployment. Transformer-based approaches [11] 

introduced redundant computations by encoding all spectral/spatial tokens, 

underperforming 3D-CNNs in accuracy while escalating complexity. 

To balance efficiency and performance, complex-valued neural networks (CVNNs) 

[12], effective for radar/medical data, offer potential for HSI classification by 

leveraging complex-valued features. This study proposes a Dual-Branch Deep Feature 

Fusion Network (DDF-Net) for small-sample HSI classification, integrating 

CNN-based multi-layer feature extraction, PCA dimensionality reduction, and fast 

Fourier transform (FFT) spectral analysis via a dual-branch architecture. The 3D-CNN 

stream extracts spatial features from non-overlapping patches, while the CV-CNN 

stream processes spectral information. Features are fused via concatenation and 

enhanced by a squeeze-and-excitation (SE) module before classification by support 

vector machine (SVM). 

The main contributions of this study are as follows: 
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(1) A novel model, DDF-Net, is proposed for hyperspectral image classification in 

limited sample scenarios. This model improves classification accuracy and efficiency 

by processing both spatial and spectral information simultaneously through a 

dual-branch architecture. 

(2) PCA dimensionality reduction and FFT spectral analysis methods are 

introduced, effectively reducing computational complexity and eliminating redundant 

information, while capturing the spectral characteristics of images. 

(3) An advanced SE module is adopted to enhance the interdependencies among 

channels, further improving the model's performance. 

Through the research in this paper, we aim to provide new theoretical support and 

technical solutions for the development of hyperspectral image classification, pushing 

research in this field to a higher level. The remainder of this paper is organized as 

follows: Section 2 describes the proposed method; Section 3 presents experimental 

results on different datasets; finally, we conclude and propose suggestions for future 

work in Section 4. 

2 Method 

 

Figure 1. The overall framework of the proposed DDF-Net for scene classification, which 

consists of four main components: 1) multi-layer convolutional feature extraction using a 

pre-trained CNN; 2) the DBFF dual-branch structure; 3) the SE attention block; and 4) scene 

classification using a linear SVM classifier. 

For small-sample hyperspectral image (HSI) classification, the proposed 

Dual-Branch Deep Feature Fusion Network (DDF-Net) achieves efficient 

spatial-spectral feature integration by combining CNN-based multi-layer feature 

extraction, PCA dimensionality reduction, FFT spectral analysis, and SE attention 

mechanism. Comprising parallel 3D-CNN (spatial processing) and CV-CNN (spectral 



 

modeling) branches, DDF-Net extracts non-overlapping patch features, fuses them via 

concatenation at the feature fusion layer, enhances channel dependencies through SE 

weighting, and classifies using support vector machine (SVM). 

Figure 1 illustrates the overall framework of the proposed DBFF for scene 

classification. The details of this architecture are described below. 

2.1 Multi Layer Convolutional Feature Extraction 

Convolutional operations are the core component of CNNs, used to extract features 

from input data. In two-dimensional image processing, a convolutional operation can 

be represented as the dot product between the input image X and a convolutional kernel 

K, with a sliding window traversal of the entire image. Mathematically, the 

convolutional operation can be expressed as: 

 Y(i, j) = (X ⨂ K)(i, j) = ∑ ∑ X(i + m, j + n) ⋅ K(m, n)

nm

                    (1) 

Where Y(i,j) is the pixel value at the i-th row and j-th column of the convolved 

feature map, X⨂K  represents the convolutional operation, ∑ ∑  𝑛𝑚  indicates the 

summation over all elements of the convolutional kernel K, X(i+m,j+n) is the pixel 

value at the (i+m)-th row and (j+n)-th column of the input image X, and K(m,n) is the 

parameter value at the m-th row and n-th column of the convolutional kernel K. 

In CNNs, convolutional layers are often stacked to form a multi-layer convolutional 

structure. Each layer uses multiple different convolutional kernels to extract different 

features[13]. As the network depth increases, the convolutional layers can further 

combine the simple features extracted from previous layers to extract more complex 

features. 

Specifically, in a multi-layer convolutional structure, the output feature map of each 

layer is the result of the convolution operation between the input feature map of the 

previous layer and the convolution kernel of the current layer. Taking the ℓ layer as an 

example, its output feature map 𝑥𝑗
ℓ can be represented as: 

xj
ℓ = f(∑ xi

ℓ−1⨂kij
ℓ + bj

ℓ

i

)                                                (2) 
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Where 𝑥𝑖
ℓ−1  represents the output feature map of the previous layer (layer ℓ −

1),𝑘𝑖𝑗
ℓ  represents the convolutional kernel of the current layer (layer ℓ),𝑏𝑗

ℓ represents 

the bias term, and f(⋅) represents the activation function. 

2.2 DDF-Net Dual Branch Structure 

The DDF-Net leverages a distinctive dual-branch architecture, with one branch 

dedicated to processing the spatial structure of the original image patches features and 

the other branch focusing on the spectral properties of the image patches features. This 

design allows the network to capture both spatial context and spectral information in 

the image, enhancing its ability to comprehend the image. 

(1)Spatial Weighting Branch (3D-CNN Stream). 

The 3D-CNN architecture in our framework incorporates a hardwired layer, three 

convolutional layers, two downsampling layers, and a fully connected layer. Each 3D 

convolutional kernel convolves over a cube consisting of seven consecutive frames, 

with each frame having a patch size of 60x40, as illustrated in Figure 2. 

 

Figure 2. A 3D-CNN architecture for processing the spatial structure of the original image patch 

features. 

In the first layer, we apply a fixed, hardwired kernel to process the original frames, 

generating information across multiple channels. Each of these channels is then 

processed separately. Finally, the information from all channels is combined to obtain 

the final feature representation, as depicted in Figure 3. 



 

 

Figure 3. A fixed, hardwired kernel is applied to process the original frames, generating 

information across multiple channels. 

For each frame, five channels of information are extracted: grayscale, gradients in 

the x and y directions, and optical flow in the x and y directions. The first three can be 

computed for each frame individually. However, the horizontal and vertical optical 

flow fields require two consecutive frames to be determined. Therefore, the total 

number of feature maps is calculated as 7x3 + (7-1) x 2 = 33. 

The spatial weighting is achieved through a well-designed 3D Convolutional Neural 

Network (3D-CNN) stream. Here, the 3D-CNN captures the structural information in 

the image patches across spatial dimensions.Assuming X is the input original image 

patch, 𝑊𝑠 is the weight of the 3D-CNN, and 𝑏𝑠 is the bias term, then the spatially 

weighted feature 𝐹𝑠 can be expressed as: 

Fs = fs(X; Ws; bs)                                                         (3) 

Where 𝑓𝑠 represents the mapping function of the 3D-CNN. 

(2)Spectral Property Branch (FFT + CV-CNN Stream) 

A complex-valued neural network (CV-NN) maintains an inter-layer fully 

connected structure with complex-valued inputs, weights, and biases. In 

complex-valued convolutional neural networks (CV-CNNs), forward propagation 

applies nonlinear activation to the real and imaginary components of weighted sums 

separately, producing complex-valued outputs at each layer. Backward training 

employs complex-domain gradient descent for parameter optimization. 



 

 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

CV-CNNs utilize complex-valued convolutional layers and pooling operations, 

where both input feature maps and filter kernels are complex-valued—distinguishing 

them from real-valued CNNs—to directly process complex-valued data for 

spectral-spatial feature extraction in hyperspectral image (HSI) classification. 

The inputs and kernels for complex-valued convolutions can be expressed as： 

input：V =  Vr  +  jVi 

Convolutional Kernel：K =  Kr  + jKi 

K ∗  V =  (Kτ  +  jKi)  ∗  (Vτ  +  jVi)  

=  (Kτ  ∗  Vτ  −  Ki  ∗  Vi)  +  j(Kτ  ∗  Vi  +  Ki  ∗  Vτ)                 (4) 

First, the Fast Fourier Transform (FFT) is applied to the image patch to obtain its 

spectral representation, known as a complex patch. Then, these patches undergo 

channel weighting through an efficient Channel-wise Convolutional Neural Network 

(CV-CNN) stream, mining the spectral properties of the image. 

FFT: Assuming X is the input original image patch, its spectral representation 𝑋𝑓𝑓𝑡 

can be expressed as: 

Xfft = FFT(X)                                                           (5) 

CV-CNN: Assuming 𝑊𝑐 is the weight of the CV-CNN and 𝑏𝑐 is the bias term, then 

the channel-weighted spectral feature 𝐹𝑐 can be expressed as: 

𝐹𝑐 = 𝑓𝑐(𝑋𝑓𝑓𝑡; 𝑊𝑐; 𝑏𝑐)                                                (6) 

Where 𝑓𝑐 represents the mapping function of the CV-CNN. 

2.3 SE Attention Blocks 

The SE attention mechanism, is a channel-based attention mechanism designed to 

enhance the network's focus on different feature channels Its core idea lies in explicitly 

modeling the interdependencies between feature channels to adaptively recalibrate 

channel-wise feature responses[14]. 

The SE module's workflow comprises two main steps: Squeeze and Excitation[15]. 

Squeeze: Each channel's feature map is compressed into a scalar value using global 

average pooling, capturing global information for that channel.Assuming the input 

feature map X has dimensions (H,W,C), where H and W are the height and width, 



 

and C is the number of channels, the output after global average pooling has 

dimensions (1,1,C). 

Excitation: One or more fully connected layers are used to capture the dependencies 

between channels. This typically involves two fully connected layers, the first for 

dimensionality reduction and the second to restore the original channel count.Between 

these two fully connected layers, a ReLU activation function is often added for 

nonlinearity.Finally, a sigmoid activation function is used to limit the output to values 

between 0 and 1, representing the importance of each channel. 

Let the input feature map X have dimensions (H,W,C). The channel weights 𝑊𝑐 for 

the output feature map X′ after the SE module can be calculated as follows: 

Squeeze: 

zc = Fsq(uc) =
1

H × W
∑ ∑ uc(i, j)

W

j=1

H

i=1

                                    (7) 

Where 𝑢𝑐 is the feature map of the c-th channel in X, and 𝑧𝑐 is the global feature 

descriptor (i.e., the compressed scalar value) for that channel. 

Excitation: 

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z))                            (8) 

Where 𝑊1 ∈ 𝑅
𝐶

𝑇
×𝐶

 and 𝑊2 ∈ 𝑅𝐶×
𝐶

𝑇  are the weight matrices of the two fully 

connected layers, r is the reduction ratio, δ is the ReLU activation function, and σ is the 

sigmoid activation function. s is a vector of length C, representing the importance (i.e., 

weight) of each channel. 

Feature Rescaling: Finally, the obtained channel weights s are multiplied 

channel-wise with the original feature map X to obtain the output feature map X′: 

Xc
′ = Fscale(uc, sc) = sc ⋅ uc                                             (9) 

Where 𝑠𝑐  is the weight corresponding to the c-th channel in s, and 𝑋𝑐
′  is the feature 

map of the c-th channel in the output feature map X′. 

The principle of the compression excitation mechanism for SE attention is shown in 

Figure 4： 
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Figure 4. Schematic diagram of the compression excitation mechanism for SE attention 

2.4 SVM Classification  

Through the self-attention layer, the feature vectors with a dimension of K are derived 

for final classification. Before scene image classification, normalization is used to 

avoid overfitting. For the whole data set, the common operation is applied. Then, we 

randomly select feature vectors as training samples to train a linear SVM, while the rest 

of the feature vectors are used to test the effectiveness of our method. 

3 Experiment and Analysis  

3.1 Dataset 

To evaluate the feasibility and effectiveness of our method, we conducted experiments 

on several popular hyperspectral scene datasets.  

(1) Indian pines dataset 

The Indiana Pines dataset was collected in June 1992 by the AVIRIS Spectral 

Imager in the Indiana Pine Forest Experimental Area in northwestern Indiana, USA. 

The data image measures 145x145 pixels, with a spatial resolution of 20 meters. It 

encompasses 220 spectral bands within the wavelength range of 0.4-2.5 micrometers. 

Twenty bands corresponding to water vapor absorption and low signal-to-noise ratios 

were removed, leaving the remaining 200 bands for experimentation. This dataset 

includes 16 types of ground objects, such as grasslands, buildings, and crops. The 

spatial distribution of its samples is illustrated in Figure 5.  

(2) Pavia University dataset 

The Pavia University dataset was collected in 2001 by the ROSIS spectral imager in 

the Pavia region of northern Italy. The image measures 610x340 pixels and has a spatial 

resolution of 1.3 meters. It comprises 115 spectral bands within the wavelength range 

of 0.43-0.86 micrometers. Twelve bands containing strong noise and water vapor 



 

absorption were removed, leaving the remaining 103 bands for experimentation. This 

dataset includes nine ground objects, such as roads, trees, and rooftops, with the spatial 

distribution of different classes illustrated in Figure 6. 

(3) KSC dataset 

The Kennedy Space Center (KSC) dataset was collected on March 23, 1996, by the 

AVIRIS spectral imager at the Kennedy Space Center in Florida. AVIRIS acquired 224 

bands with a width of 10 nm, centered between 400-2500 nm. The spatial resolution of 

the KSC data, acquired from an altitude of approximately 20 kilometers, is 18 meters. 

After removing water absorption and low signal-to-noise ratio bands, 176 bands were 

used for analysis. The dataset defines 13 classes. The spatial distribution of its samples 

is illustrated in Figure 7. 

3.2 Experimental Setup 

In our experiments, we utilized the pre-trained CNN model VGG-VD16 to extract 

multi-layer deep features. The proposed method was compared with 3D-CNN [16], 

CA-GAN [17], DCFSL [18], 3D VS-CNN [19], S-DMM [20], TC-GAN [21], and the 

state-of-the-art method RPNet-RF [22]. Additionally, to evaluate the impact of the 

Attention SE block on model performance, experiments were conducted by removing 

this block and assessing the model's performance without it. Overall Accuracy (OA), 

Average Accuracy (AA), and Kappa statistic (Kappa) were reported to assess the 

performance of the proposed model. Furthermore, classification accuracy for each class 

was also provided. The experiments were conducted and repeated 10 times to validate 

the effectiveness of the 10 trials. For OA, AA, and Kappa, the average and standard 

deviation of all 10 trials were recorded. Three widely used hyperspectral datasets were 

employed: the Indian Pines dataset, the Pavia University dataset, and the KSC dataset. 

Figures 6, 7, and 8 display the reference data for these three datasets. 

For these three datasets, 15 labeled samples from each class were randomly selected 

for training, while the remaining samples were used for testing and evaluation. The 

patch size used was 13×13, and the number of principal components was set to 15, 

which were determined to be the optimal choices through experimentation. The model 

was trained for 100 epochs with a batch size of 16. During the model training process, 

an early stopping strategy was adopted. Specifically, if the model's performance did not 

improve within consecutive 10 epochs, the training process was terminated and the 

model was restored to its best weights. The optimization algorithm used was Adam, 
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with a learning rate set to 10−3 . The loss function employed was categorical 

cross-entropy. All models were implemented using the Python Keras framework and 

run with the TensorFlow backend. To ensure a fair comparison, all models were trained 

under the same conditions. 

Table 1. Classification accuracies for the proposed and compared HSI classification methods on 

the IP dataset (the best accuracy in each row is shown in bold). Fifteen labeled samples per class 

were randomly selected for training 

Class 

No 

3D-C

NN 

CA-G

AN 

DCF

SL 

3D 

VS-C

NN 

S-DM

M 

TC-G

AN 

RPNet-

RF 

DDF-

Net  

(no 

SE) 

DDF-

Net 

1 83.87 100.0 100.0 90.32 91.67 100.0 93.48 94.32 95.64 

2 38.08 61.78 60.79 75.94 47.18 78.77 81.30 85.46 87.06 

3 41.84 68.22 78.77 85.03 44.88 92.15 85.66 90.24 91.08 

4 52.70 92.34 94.59 95.95 33.04 99.10 83.31 92.14 93.87 

5 74.79 82.69 85.68 91.03 78.44 95.30 94.14 95.62 97.54 

6 87.27 89.51 96.64 97.34 92.50 95.94 95.15 96.38 97.65 

7 100.0 100.0 100.0 100.0 100.0 100.0 43.98 92.78 94.08 

8 94.38 99.78 92.22 97.84 85.26 100.0 97.76 97.12 98.26 

9 100.0 100.0 100.0 100.0 100.0 100.0 63.83 87.35 89.46 

10 64.26 76.28 71.89 80.88 66.74 86.00 83.07 82.04 84.68 

11 41.43 64.22 65.66 73.32 70.39 81.39 94.44 92.17 94.06 

12 41.70 78.72 73.18 88.41 40.82 73.18 82.96 81.04 83.37 

13 99.47 99.47 100.0 98.95 99.49 100.0 99.10 99.24 99.64 

14 84.24 82.32 93.28 84.24 81.35 97.28 99.77 97.65 98.23 

15 70.89 92.99 87.87 86.52 68.35 83.83 98.45 97.58 98.66 

16 97.44 92.31 100.0 98.72 98.80 100.0 97.60 97.50 98.76 

OA(%) 58.94 75.52 77.45 83.06 67.04 87.47 90.23 92.41 93.87 

AA(%) 73.27 81.21 87.54 90.28 74.93 92.68 87.12 89.22 90.86 

Kappa(

%) 

54.06 72.69 74.65 80.89 62.44 85.78 88.87 91.02 92.24 



 

Table 2. Classification accuracies for the proposed and compared HSI classification methods on 

the PU dataset (the best accuracy in each row is shown in bold). Fifteen labeled samples per class 

were randomly selected for training. 

Class 

No 

3D-C

NN 

CA-G

AN 

DCF

SL 

3D 

VS-C

NN 

S-DM

M 

TC-G

AN 

RPNet-

RF 

DDF-

Net   

(no 

SE) 

DDF-

Net 

1 70.41 60.16 74.55 83.27 96.97 89.07 96.37 97.06 98.12 

2 73.10 72.83 97.20 76.96 81.15 97.57 97.37 97.56 98.30 

3 73.80 98.03 80.57 81.91 92.69 67.08 97.19 97.49 98.45 

4 89.37 89.44 94.62 86.86 97.50 88.03 78.86 78.75 80.67 

5 96.39 99.70 100.0 99.55 100.0 100.0 97.85 97.23 98.80 

6 69.68 79.94 90.37 82.81 84.73 93.80 98.92 98.47 99.05 

7 86.46 90.04 92.47 77.94 97.71 99.47 93.82 91.78 93.23 

8 77.09 81.95 81.62 93.58 93.23 93.07 85.67 88.31 89.48 

9 86.05 97.32 100.0 71.84 99.89 96.67 98.58 98.80 99.67 

OA(%) 75.24 76.81 90.71 81.63 88.30 93.20 94.60 93.94 95.09 

AA(%) 80.26 76.94 90.20 83.86 93.76 91.60 93.96 93.32 95.86 

Kappa(

%) 

68.43 71.02 87.73 76.46 84.90 91.00 93.27 93.06 94.08 

3.3 Experimental Results  

Tables 1, 2, and 3 present the classification accuracies for the three datasets, including 

the accuracies for each class, OA, AA, and Kappa. It can be observed that the proposed 

model achieves superior results compared to other classification models. Compared 

with the latest state-of-the-art (SOTA) method, RPNet-RF, the proposed model 

demonstrates an accuracy improvement of nearly 3.5% on the India dataset and 

significant improvements on both the PU dataset and the KSC dataset. Additionally, by 

incorporating the attention mechanism, the model's performance improves by nearly 

1% compared to the model without the SE block. Furthermore, the results show less 

variability or fluctuation compared to other models, indicating that the proposed model 

performs well and produces reliable and accurate predictions. 
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Table 3. Classification accuracies for the proposed and compared HSI classification methods on 

the KSC dataset (the best accuracy in each row is shown in bold). Fifteen labeled samples per 

class were randomly selected for training. 

Class 

No 

3D-C

NN 

CA-G

AN 

DCF

SL 

3D 

VS-C

NN 

S-DM

M 

TC-G

AN 

RPNet-

RF 

DDF-

Net 

(no 

SE) 

DDF-

Net 

1 89.41 88.20 96.92 97.15 96.01 99.87 99.46 97.75 98.87 

2 86.40 85.53 86.40 91.28 88.84 100.0 96.20 96.87 98.12 

3 85.06 95.02 98.76 80.09 99.19 96.68 97.54 97.61 98.54 

4 54.01 90.72 82.28 42.29 54.96 86.08 98.32 97.73 98.67 

5 83.56 90.41 91.78 58.09 80.79 93.84 95.90 97.88 99.23 

6 76.64 94.39 97.66 70.59 96.35 100.0 91.53 96.12 97.25 

7 100.0 100.0 100.0 70.00 100.0 97.78 100.0 97.89 99.29 

8 92.55 86.78 100.0 62.81 99.29 96.63 98.14 97.07 98.04 

9 60.59 86.73 100.0 74.55 100.0 99.60 98.52 98.68 99.11 

10 93.32 86.12 99.74 61.48 100.0 99.49 99.06 97.87 98.83 

11 93.07 92.57 100.0 78.68 100.0 100.0 99.80 97.18 98.75 

12 93.85 88.52 99.18 78.24 98.99 97.95 99.16 97.93 99.22 

13 100.0 100.0 100.0 99.89 100.0 100.0 99.95 98.27 99.34 

OA(%) 87.18 91.17 97.59 80.15 95.83 98.39 98.51 97.68 98.71 

AA(%) 85.27 84.64 96.36 74.24 93.42 97.53 97.97 96.24 98.18 

Kappa(

%) 
85.73 90.20 97.31 77.81 95.35 98.20 98.33 97.65 98.68 

To conduct an ablation study, we evaluated the data from each stream separately. 

Specifically, we used standard real-valued data in the CV-CNN stream and FFT data in 

the CVNN stream. The results show that the 3D-CNN stream achieves an accuracy of 

95.1% on the PU dataset and 95.53% on the India dataset. On the other hand, the 

CV-CNN stream obtains a score of 94.74% on the PU dataset and 95.02% on the India 

dataset. However, when these features are fused together, the model's performance 

improves, with accuracy increases of more than 1% for all three datasets. Figures 5, 6, 

and 7 display the classification results for the three datasets. Compared to other 

methods, the proposed model exhibits visual quality that is closest to the real situation. 



 

 

Figure 5. IP dataset: (a) false-color image, (b) ground truth map, (c) legend. Classification maps 

obtained by the compared methods on the IP dataset: (d) 3D-CNN, (e) CA-GNN, (f)DCFSL, (g) 

3D VS-CNN(h) S-DMM, (i) TC-GAN, (j) RPNet-RF (k) DDF-Net(no SE),and (I) DDF-Net. 

Fifteen labeled samples per class were randomly selected for training. 
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Figure 6. PU dataset: (a) false-color image, (b) ground truth map, (c) legend.Classification maps 

obtained by the compared methods on the PU dataset: (d) 3D-CNN, (e) CA-GNN, (f)DCFSL, (g) 

3D VS-CNN(h) S-DMM, (i) TC-GAN, (j) RPNet-RF (k) DDF-Net(no SE),and (I) DDF-Net. 

Fifteen labeled samples per class were randomly selected for training. 



 

 

Figure 7. KSC dataset: (a) false-color image, (b) ground truth map, (c) legend. Classification 

maps obtained by the compared methods on the KSC dataset: (d) 3D-CNN, (e) CA-GNN, 

(f)DCFSL, (g) 3D VS-CNN(h) S-DMM, (i) TC-GAN, (j) RPNet-RF (k) DDF-Net(no SE),and (I) 

DDF-Net. Fifteen labeled samples per class were randomly selected for training. 

4 Conclusion  

This paper presents DDF-Net, a dual-branch deep feature fusion network with SE 

attention for few-shot hyperspectral image (HSI) classification. Integrating pre-trained 

CNN for multi-layer feature extraction, PCA for dimensionality reduction, and FFT for 

spectral processing of image patches, DDF-Net fuses spatial (3D-CNN stream) and 

frequency-domain (CV-CNN stream) information efficiently. Leveraging its 
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dual-branch architecture and SE blocks to enhance channel interdependencies, 

DDF-Net advances few-shot HSI classification performance. 

Experiments on three benchmark datasets show that DDF-Net outperforms 

state-of-the-art (SOTA) few-shot methods under limited training samples (5–25 per 

class), validating its design effectiveness and providing new methodologies for HSI 

classification research. Future work will focus on optimizing architecture and 

parameters to further improve generalization and performance. 
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1. Hycza, T.; Stere ńczak, K.; Bałazy, R. Potential Use of Hyperspectral Data to Classify 

Forest Tree Species. N. Z. J. For. Sci. 2018,48, 18.  

2. Vaidya, R.; Nalawade, D.; Kale, K. Hyperspectral Imagery for Crop Yield Estimation in 

Precision Agriculture Using Machine Learning Approaches: A Review. Int. J. Creat. 

Res.Thoughts 2022, 9, a777–a789. 

3. Suriguga; Bao, Y.; Bao, Y.; Jin, E. Application of Hyperspectral Remote Sensing in the 

Detection of Marine Oil Spill. Nat. Inn. Asia 2019, 4, 93–99.  

4. Li, Y.; Tang, H.; Xie, W.; Luo, W. Multidimensional Local Binary Pattern for 

Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. 

5. Dalla Mura, M.; Atli Benediktsson, J.; Waske, B.; Bruzzone, L. Extended Profiles with 

Morphological Attribute Filters for the Analysis of Hyperspectral Data. Int. J. Remote Sens. 

2010, 31, 5975–5991.  

6. Feng J, Liu L, Zhang X, et al. Hyperspectral image classification based on stacked marginal 

discriminative autoencoder[C]//2017 IEEE International Geoscience and Remote Sensing 

Symposium (IGARSS). IEEE, 2017: 3668-3671. 

7. Li J, Xi B, Li Y, et al. Hyperspectral classification based on texture feature enhancement 

and deep belief networks[J]. Remote Sensing, 2018, 10(3): 396. 

8. Lee, H.; Kwon, H. Going Deeper with Contextual CNN for Hyperspectral Image 

Classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. 

9. Li G D, Zhang C J, Gao F, Zhang X Y . Doubleconvpool-structured 3D-CNN for 

hyperspectral remote sensing image classification[J]. Journal of Image and Graphics, 2019, 

24(4): 639-654.  

10. Zhao W, Du S. Spectral–spatial feature extraction for hyperspectral image classification: 

A dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience 

and Remote Sensing, 2016, 54(8): 4544-4554. 



 

11. He X, Chen Y, Lin Z. Spatial-spectral transformer for hyperspectral image 

classification[J]. Remote Sensing, 2021, 13(3): 498. 

12. ChiYan Lee, Hideyuki Hasegawa, and Shangce Gao,“Complex-valued neural networks: 

A comprehensive survey,” IEEE/CAA Journal of Automatica Sinica, vol.9, no. 8, pp. 1406–

1426, 2022. 

13. F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional neural networks 

for the scene classification of high-resolution remote sensing imagery,” Remote Sens., vol. 

7, no. 11, pp. 14680–14707, Nov. 2015. 

14. Li Wang, Jiangtao Peng, and Weiwei Sun, “Spatial– spectral squeeze-and-excitation 

residual network for hyperspectral image classification,” Remote Sensing, vol. 11, no. 7, pp. 

884, 2019. 

15. Y. Liu, Y. Zhong, and Q. Qin, “Scene classification based on multiscale convolutional 

neural network,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 12, pp. 7109–7121, Dec. 

2018. 

16. Amina Ben Hamida, Alexandre Benoit, Patrick Lambert, and Chokri Ben Amar, “3-d 

deep learning approach for remote sensing image classification,” IEEE Transactions on 

geoscience and remote sensing, vol. 56, no. 8, pp. 4420–4434, 2018. 

17. Feng, J.; Feng, X.; Chen, J.; Cao, X.; Zhang, X.; Jiao, L.; Yu, T. Generative Adversarial 

Networks Based on Collaborative Learning and Attention Mechanism for Hyperspectral 

Image Classification. Remote Sens. 2020, 12, 1149. 

18. Li, Z.; Liu, M.; Chen, Y.; Xu, Y.; Li, W.; Du, Q. Deep Cross-Domain Few-Shot Learning 

for Hyperspectral Image Classification.IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. 

19. Hu, L.; Luo, X.; Wei, Y. Hyperspectral Image Classification of Convolutional Neural 

Network Combined with Valuable Samples.J. Phys. Conf. Ser. 2020, 1549, 052011. 

20. Deng, B.; Jia, S.; Shi, D. Deep Metric Learning-Based Feature Embedding for 

Hyperspectral Image Classification. IEEE Trans.Geosci. Remote Sens. 2020, 58, 1422–

1435. 

21. Bai, J.; Lu, J.; Xiao, Z.; Chen, Z.; Jiao, L. Generative Adversarial Networks Based on 

Transformer Encoder and Convolution Block for Hyperspectral Image Classification. 

Remote Sens. 2022, 14, 3426. 

22. Uchaev, D.; Uchaev, D. Small Sample Hyperspectral Image Classification Based on the 

Random Patches Network and Recursive Filtering. Sensors 2023, 23, 2499. 


