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Abstract. Bearing surface defect detection is a key task in manufacturing quality 

control. However, traditional detection methods often fail to meet the require-

ments in terms of accuracy and efficiency when faced with defects of small size, 

diverse shapes and complex backgrounds. To solve this problem, this paper pro-

poses a lightweight multi-scale feature fusion network based on YOLOv11. 

Firstly, the lightweight New StarNet module is used as the backbone to extract 

features by stacking multiple star operation blocks, while downsampling is per-

formed using convolutional layers, and nonlinear mapping is achieved through 

element-wise multiplication. This improves the model's feature extraction capa-

bility while reducing inference overhead through lightweight calculation. Sec-

ondly, the IRMA attention module is embedded in the neck, so that the model 

can better extract important features of the bearing surface, while enhancing the 

small target detection capability and keeping the model lightweight. Finally, the 

improved AFPN module is used to optimize the detection head, which signifi-

cantly enhances the model's feature expression capability and effectively im-

proves the model's detection capability for multi-scale defects. Experiments show 

that the GFLOPs of the SIA-YOLO algorithm on ZC bearing dataset is reduced 

from 6.4GFLOPs of YOLOv11 to 4.2GFLOPs, a reduction of 34.4%. The 

mAP@0.5 of the SIA-YOLO algorithm increased by 1.6% from 87.5% to 

89.1% . A large number of ablation and comparative experiments have verified 

the effectiveness and generalization ability of the model in bearing surface defect 

detection. 

Keywords: Bearing Surface Defect Detection, YOLOv11, Multi-scale Feature 

Fusion, Lightweight, Attention Mechanism. 



 

 

1 Introduction 

Bearings are an indispensable key component in modern industry, and are of great sig-

nificance for ensuring the normal operation of mechanical equipment and improving 

production efficiency. Therefore, bearing surface defect detection is of great signifi-

cance for maintaining the normal operation of mechanical equipment, improving pro-

duction efficiency, reducing costs and ensuring safety. 

In recent years, bearing surface defect detection technology has made positive pro-

gress in quality control of industrial applications. However, in complex industrial sce-

narios, the types of defects are complex and diverse, such as cracks, inclusions, plaques, 

pitting, rolling scale, scratches, etc., which makes traditional detection methods face 

severe challenges in accuracy and efficiency. In addition, external factors such as the 

brightness of the defect surface and the complex background of the defect also affect 

the detection of bearing surface defects. The development of deep learning technology 

has provided new ideas for solving these problems. How to use deep learning algo-

rithms to achieve efficient and accurate bearing surface defect detection has become a 

research hotspot. Among them, the application of YOLO in industrial surface defect 

detection has steadily increased due to its fast and superior performance. Nevertheless, 

the direct application of existing methods to industrial bearing surface defect detection 

still has the following limitations: bearing surface defects usually have different scales 

and morphologies, and the influence of external factors on bearing surface defect de-

tection makes it difficult for the algorithm to detect subtle defects. For real-time, com-

plex, and real industrial scenarios, an efficient and lightweight bearing surface defect 

detection algorithm is of great significance. 

Some improved methods based on YOLO not only perform well in detection accu-

racy and robustness, but also significantly improve the efficiency and applicability of 

the model through lightweight design. For example, Fang et al. [1] proposed YOLOv7-

WDD, which improved the mAP by 3.1% compared with YOLOv7 on the NEU-DET 

dataset by optimizing the feature fusion network and introducing the DECA attention 

mechanism. Hu et al. [2] proposed a workpiece surface defect recognition method based 

on improved lightweight YOLOv4. By replacing the original backbone network with 

MobileNetV2 and introducing deep separable convolution, the model size was reduced 

by 82.1% and the detection speed was increased by 150% compared with the original 

YOLOv4 model. Shi et al. [3] proposed a welding robot workpiece surface defect de-

tection method based on machine vision technology, which extracted and classified the 

workpiece surface defect image through frequency domain feature extraction and near-

est neighbor classifier. The CFE-YOLOv8s model [4] proposed by Yang et al. signifi-

cantly enhances the precision by integrating the CBiF module of CNN and Trans-

former, the lightweight FC module, and the EFC module with the introduction of the 

attention mechanism. At the same time, it greatly reduces the model parameters and the 

amount of calculation, and achieves efficient and lightweight detection effects. The 

YOLO-DD model [5] proposed by Wang et al. significantly improves the defect detec-

tion performance of YOLOv5 by introducing the RDAT, IGFS and SE modules. Zou 

et al. [6] proposed an industrial scene clothing monitoring method based on improved 

YOLOv8n and DeepSORT, and significantly improved the small target detection 
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performance by introducing the FPN-PAN-FPN (FPF) structure, receptive field atten-

tion convolution (RFAConv) and focused linear attention (FLatten) mechanism. He et 

al. [7] introduced DDN, a deep learning-based system for steel surface defect detection 

which realizes accurate defect classification and positioning by fusing multi-level fea-

tures, making the model both high-precision and real-time. CAT-EDNet [8] proposed 

by Luo et al., by introducing the Cross Attention Transformer (CAT) and the Cross 

Attention Refinement Module (CARM), achieved high-precision defect integrity and 

boundary detail recognition in the detection of significant defects on the surface of strip 

steel, with a detection speed of 28 frames per second. Guo et al. [9] proposed an effi-

cient defect detection network EDD-Net, which significantly improved the detection 

performance of small-scale and low-contrast defects by introducing the improved fea-

ture pyramid module GCSA-BiFPN, combined with the global context and spatial at-

tention mechanism for the task of mobile phone surface defect detection. In previous 

studies, several researchers have enhanced the detection performance of YOLO models 

by introducing a range of architectural and algorithmic modifications, and improved 

the efficiency and applicability of the model. 

In order to improve the detection accuracy of bearing surface defects while ensuring 

the lightweight algorithm, this paper studies and develops a lightweight multi-scale fea-

ture fusion bearing surface defect detection algorithm. This method improves the defect 

detection accuracy while reducing the number of parameters, effectively improving the 

efficiency of bearing surface defect detection. This study makes the following key con-

tributions: 

1) First, the lightweight New StarNet module is used as the backbone to extract fea-

tures by stacking multiple star operation blocks, while using convolutional layers for 

downsampling and implementing nonlinear mapping through element-wise multiplica-

tion, which improves the model's feature extraction capability while reducing inference 

overhead through lightweight calculation. 

2) Secondly, the IRMA attention module is embedded in the neck, which allows the 

model to more effectively capture the critical features of the bearing surface, while en-

hancing the small target detection capability and keeping the model lightweight.  

3) Finally, the improved AFPN module is used to optimize the detection head, sig-

nificantly enhance the model's feature expression capabilities, and effectively 

strengthen the model's performance in detecting defects at different scales. 

The rest of this paper is organized as follows. The proposed SIA-YOLO network 

architecture for bearing surface defect detection is designed in detail in Section 2. Next, 

experimental analysis is conducted in Section 3 and conclusions are summarized in 

Section 4. 



 

 

2 Method 

2.1 SIA-YOLO 

The dimensions, morphology, and texture of bearing surface defects exhibit significant 

variability. To more effectively capture the salient features of the bearing surface, we 

introduce a lightweight multi-scale fusion model named SIA-YOLO. This model has 

strong feature expression capabilities and can effectively improve the model's detection 

capabilities for multi-scale defects when computing resources are limited. 

First, in order to ensure the model’s detection performance while being lightweight 

to the greatest extent possible, the proposed architecture utilizes the innovative StarNet 

backbone, which hierarchically extracts visual features through cascaded star-operation 

modules. Convolutional layers are used for downsampling, and nonlinear mapping is 

achieved through element-wise multiplication. Secondly, the IRMA attention module 

is embedded into the neck, so that the model can better extract important features of the 

bearing surface, enhance the small target detection capability, and keep the model light-

weight. Finally, the improved AFPN module is used to optimize the detection head, 

substantially strengthens the model's feature representation capacity while notably 

boosting its multi-scale defect detection performance. The overall Network architecture 

of SIA-YOLO is shown in Fig.1. 

 

Fig. 1. Network Architecture of SIA-YOLO. 

2.2 New StartNet 

StarNet [10] is a simple but powerful neural network prototype model that adopts a 

concise design concept and avoids complex structures and hyperparameter adjustments. 

The New StartNet proposed in this paper combines the efficient computing power of 

StarNet with the multi-scale feature extraction of YOLOv11, aiming to ensure that the 
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model can be lightweight while ensuring detection performance. The New StarNet 

structure mainly consists of a preliminary feature extraction layer and a deep feature 

extraction layer. Fig. 2 is the network architecture of New StarNet.  

 

Fig. 2. Network Architecture of New StarNet. 

In the initial feature extraction layer, the input image first uses 3×3 standard convo-

lution (stride=1) to expand the channel and combines BN (Batch Normalization) and 

ReLU6 activation functions to enhance the nonlinear expression ability. This method 

improves the initial feature representation ability while reducing the resolution and the 

amount of calculation. Formula (1) is used to calculate the image dimension after the 

3×3 convolution transformation. 



 

 

 𝑋 = 𝑅𝑒𝐿𝑈6(𝐵𝑁(𝐶𝑜𝑛𝑣3×3(𝑋)))                                   (1) 

In the deep feature extraction layer, multiple Star Blocks are used for feature extrac-

tion. Each Block consists of Depthwise Separable Convolution, MLP branch, element-

wise multiplication, and residual connection. First, local features are extracted through 

DWConv to reduce the amount of calculation. Then two MLP branches are used for 

feature conversion; then feature fusion is performed through element-wise multiplica-

tion to enhance feature expression capabilities. Finally, residual connection is used to 

maintain slider flow and improve stability. 

This paper uses the New StarNet structure as the backbone for feature extraction, 

extracts features by stacking multiple star operation blocks, uses convolutional layers 

for downsampling, and implements nonlinear mapping through element-wise multipli-

cation. It can achieve lightweight while ensuring detection performance, and is suitable 

for industrial bearing defect detection scenarios. 

2.3 IRMA 

To more effectively extract critical features from the bearing surface, particularly under 

constrained computing resources, the IRMA module is incorporated into the neck of 

the network to bolster feature representation. IRMA extends the EMA attention module 

[11] by integrating the inverted residual design from iRMB [12], resulting in a compact 

and effective multi-scale attention module. The IRMA attention mechanism includes 

Expand Layer, Depthwise Separable Convolution, Compress Layer and EMA attention 

module, which not only ensures computational efficiency, but also effectively extracts 

local features, so that the model can still accurately locate the target in a complex back-

ground. The module structure diagram of IRMA is shown in Fig. 3. 

First, in the Expand Layer, 1x1 convolution is used to expand the number of channels 

of the input feature from C to C×t (t is the expansion factor, usually 4 or 6), and the 

feature expression ability is improved by increasing the number of channels. Then 3×3 

Depthwise Separable Convolution is used to extract local spatial features to reduce the 

amount of calculation. Then enter the EMA core attention module to improve the de-

tection accuracy by enhancing the feature representation ability, multi-scale feature rep-

resentation and global information fusion. Finally, in the Compress Layer, 1×1 convo-

lution is used to compress the number of channels from C×t back to C, restore the num-

ber of channels of the feature map, and reduce the amount of calculation. 

In the EMA attention module, the input feature map is divided into multiple sub-

feature groups, each of which is processed independently, reducing the computational 

complexity. By grouping, the module can better capture different feature information 

and reduce the redundancy of the channel dimension. The module uses two parallel 

sub-networks to capture the channel attention and spatial attention of the feature map. 

The 1×1 convolution branch encodes the channel information in the horizontal and ver-

tical directions respectively through two global average pooling operations, and then 

captures the interaction information between channels through 1×1 convolution. This 

branch avoids the dimension reduction of the channel dimension while retaining the 

interaction information between channels. The 3×3 convolution branch captures multi-

scale feature representation through a 3×3 convolution kernel, increase the receptive 
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field size. The parallel branch structure optimizes channel weights and spatial weights 

simultaneously, enhancing the prominence of low-contrast elongated defects. The out-

put features of the two branches are then modulated by the sigmoid function and nor-

malization operation, and finally merged through the cross-dimensional interaction 

module to capture the pairwise relationship at the pixel level. After the final sigmoid 

adjustment, the output feature map is used to enhance or weaken the original input fea-

tures to obtain the final output. 

 

Fig. 3. Network Architecture of IRMA. 

This paper integrates the IRMA attention module into Neck to significantly improve 

the performance of YOLOv11 in industrial defect detection. The IRMA attention 



 

 

mechanism combines the inverted residual structure with the EMA attention, which 

enhances the small target detection capability while reducing the inference overhead 

through lightweight calculation. 

2.4 AFPN 

This paper improves the AFPN module [13] and introduces it into the model to optimize 

the detection head, which can effectively improve the model's detection ability for 

multi-scale defects. Especially in industrial scenarios, the size, shape and texture of 

defects vary greatly. The AFPN's feature fusion mechanism substantially improves the 

model's feature representation capacity. 

The improved AFPN architecture is shown in Fig. 4. During the bottom-up feature 

extraction process of the backbone network, AFPN asymptotically fuses the bottom, 

high, and top features, adopting a progressive fusion strategy to make the features more 

smoothly merged during the propagation process, rather than direct cascading or simple 

addition. The goal is to reduce information loss so that shallow features can fully utilize 

the information of deep features while avoiding conflicts caused by direct fusion. Spe-

cifically, AFPN first fuses the bottom-level features, then the deep features, and finally 

the top-level features, which are the most abstract features. In order to align the dimen-

sions and prepare for feature fusion, this paper uses 1×1 convolution and bilinear inter-

polation methods to upsample the features. On the other hand, downsampling is per-

formed using different convolution kernels and strides according to the required 

downsampling rate. 

This paper introduces the Adaptive Spatial Fusion Mechanism (ASFF) in the AFPN 

network [14], which introduces variable spatial weights during the multi-level feature 

fusion process to enhance the importance of key levels and suppress the influence of 

conflicting information from different objects. The adaptive spatial fusion mechanism 

is shown in Fig. 5. By inputting the features into the AFPN for processing, different 

levels of features can be obtained for fusion, and the results can be input into the detec-

tion head for prediction. This improved method aids the model in enhancing detection 

performance, particularly in handling conflicting information. 

 

Fig. 4. Network Architecture of AFPN. 
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Fig. 5. Adaptive Fusion Mechanism. 

In this paper, the AFPN network is improved to enhance the model's perception of 

fuzzy or unclear edge defects through more efficient information transmission paths. It 

can accommodate defects of different sizes and shapes, improve generalization capa-

bilities, and achieve faster inference speeds while maintaining high accuracy, making 

it suitable for industrial bearing inspection. 

3 Experiments and Results 

3.1 Experimental Environment and Parameter Settings 

All the experiments in this paper were conducted on the same computer, and the SIA-

YOLOv11 model architecture for bearing surface defect detection was constructed 

based on the Python3 deep learning framework with Python3 as the main programming 

language. In this study, YOLOv11n was used as the basic network, and various char-

acteristic ablation experiments and comparative experiments were carried out on 

YOLOv11n, and the proposed improvements were compared and analyzed. Table 1 

outlines the specific software and hardware configurations. Table 2 details the network 

training parameters employed during model training. 

3.2 Dataset 

YOLOv11n is used as the base network in this study, and various ablation experiments 

and comparative experiments are performed on YOLOv11n to compare and analyze 

the proposed improvements. To assess the detection efficacy of the proposed SIA-

YOLO framework, we selected two datasets for experiments: the ZC bearing dataset 

and the NEU-DET dataset. 

The ZC bearing dataset is a self-made bearing defect detection dataset. The dataset 

was collected and annotated independently in the laboratory. The bearing defect types 



 

 

include abrasions, scratches, and grooves. The ZC bearing dataset includes 5820 

640×640 high-resolution images. Each image has undergone a rigorous annotation pro-

cess to ensure the accuracy of defect category and location information. Fig. 6 shows 

the statistical visualization results of the dataset. The dataset is divided into a training 

set (4074 images), a validation set (1164 images), and a test set (582 images) in a ratio 

of 7:2:1 to support model training, validation, and testing. The construction of the ZC 

dataset fully considers the diversity and complexity of actual industrial scenarios, aim-

ing to provide high-quality data support for bearing defect detection tasks. 

Table 1. Software and hardware configuration details. 

Name parameter 

CPU Intel(R) Core(TM) i9-14900HX@2.20 GHz 

GPU NVIDIA RTX6000 

Memory capacity 192GB 

System disk 300GB 

SSD capacity 500GB 

Python version Python3.9.0 

Framework version Pytorch 1.10.0 

Table 2. Details of network training parameters. 

Name parameter 

learning rate 0.01 

the scale of the input image 640×640 

the number of iterations 200 

batch size 64 

weight attenuation 0.0005 

The NEU-DET dataset [15] is publicly released by Northeastern University and is 

specifically used for hot-rolled strip surface defect detection. The dataset contains a 

total of 1,800 images, covering six defect categories, with 300 samples for each defect 

category. The dataset is randomly divided into a training set (1,260 images), a valida-

tion set (360 images), and a test set (180 images) in a ratio of 7:2:1. 
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Fig. 6. Statistical visualization results of the ZC bearing dataset. 

3.3 Evaluation Indicators 

In the experiment, the performance of the algorithm is evaluated mainly through a series 

of indicators. The study employs five key evaluation metrics: Precision, Recall, 

mAP@0.5, Parameter count, and GFLOPs, to comprehensively assess model perfor-

mance. 

Precision measures the proportion of samples that are actually in the positive class 

among those determined by the classifier to be in the positive class. The calculation 

formula is shown in Formula 2: 

 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝐹

𝑇𝑃+𝐹𝑃
                                                     (2) 

Recall is defined as the proportion of actual positive samples that are correctly iden-

tified by the classifier as positive. The corresponding calculation formula is presented 

in Equation 3: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                            (3) 

Mean Average Precision (mAP) is the mean of the AP values of all categories. Its 

calculation formula is shown in Formula 4, where N is the number of categories. The 

detection performance is assessed by the mAP@0.5 metric, where the Intersection-

over-Union threshold is fixed at 0.5 for evaluation. 

 𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖
𝑁
𝑖=1

𝑁
                                                       (4) 

Parameters refer to the number of parameters that need to be learned in a neural 

network, usually including learnable weights and biases such as convolutional layers 

and fully connected layers. GFLOPs (Giga Floating-point Operations) quantifies the 

computational cost of a neural network during inference, representing the total floating-

point operations (FLOPs) executed in a single forward pass, measured in billions (10⁹). 



 

 

This indicator is essentially a metric for quantifying the load of computing tasks and 

can be used to effectively reflect the inherent complexity of the model when performing 

reasoning operations. 

3.4 Ablation Experiment 

This study conducted 6 sets of ablation experiments on the ZC bearing dataset to test 

its performance in terms of mAP@0.5, Paramters, Precision, Recall, and GFLOPs. Sub-

sequent experiments gradually added the New StarNet structure, IRMA attention mech-

anism, AFPN module, and the combination between modules to the modified network 

to assess their individual and combined contributions. The experimental outcomes are 

presented in Table 3. This paper abbreviates the New StarNet structure as S, the IRMA 

attention mechanism as I, and the AFPN module as A. 

Table 3. Conducted ablation analyses utilizing the ZC bearing dataset. 

Models mAP@0.5/% Paramters/106 P/% R/% GFLOPs/109 

YOLOv11 87.5 2.6 84.9 76.6 6.4 

S-YOLOv11 85.3 1.8 86.1 77.8 4.3 

I-YOLOv11 88.5 2.7 87.1 83.7 6.7 

A-YOLOv11 87.8 2.3 87.8 81.6 5.8 

IA-YOLOv11 90.1 2.5 88.1 82.6 6.2 

SIA-YOLOv11 89.1 1.7 88.3 82.6 4.2 

Table 3 illustrates that, in comparison to the baseline YOLOv11 model, S-YOLOv11 

significantly reduces computational complexity and model size, with GFLOPs and pa-

rameter count decreased by 32.8% and 30.8%, respectively, indicating that the use of 

the New StarNet structure as the backbone network achieves lightweight and improves 

the detection speed. The I-YOLOv11 model achieves a 1.0% mAP improvement, 

demonstrating the effectiveness of the IRMA attention mechanism in boosting detec-

tion accuracy. The mAP of the A-YOLOv11 model is improved by 0.3%, and the 

GFLOPs and parameter volume are reduced by 9.4% and 11.5% respectively, indicat-

ing that the use of the improved AFPN module to optimize the detection head can re-

duce the number of parameters while ensuring accuracy. The mAP of the IA-YOLOv11 

is improved by 2.6%, which proves that the combination of the IRMA attention module 

and the improved AFPN module is poised to significantly uplift the accuracy of defect 

recognition. Finally, In relation to the original YOLOv11 model, SIA-YOLOv11 model 

achieves a reduction of 34.4% in GFLOPs and 34.6% in the number of parameters, 

while improving the mAP by 1.6%. These results indicate that the proposed SIA-

YOLOv11 model offers a more lightweight architecture with enhanced detection accu-

racy. 

The performance of the SIA-YOLOv11 model is evaluated using the Precision-Re-

call curve shown in Fig. 7, which is plotted at an IOU threshold of 0.5. The figure shows 
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the curves of three different categories (abrasions, scratches, and grooves), as well as 

the average performance of all categories.The closer the curve is to the upper right cor-

ner, the better the model performance. As is clear from the figure, the category-wise 

curves are closer to the upper right corner, and the average precision rate mAP@0.5 of 

the model is 89.1%, indicating that this model has good precision and recall rates in 

different categories. In particular, the scratches category performs best. 

 

Fig. 7. Precision-Recall analysis conducted at an IoU of 0.5. 

In order to investigate the robustness and generalization of SIA-YOLOv11 across 

datasets, ablation studies were conducted with experiments conducted on the NEU-

DET steel surface inspection benchmark. The ablation test results are shown in Table 

4. Compared with the YOLOv11 model, the use of the New StarNet structure as the 

backbone network reduces the GFLOPs and parameters of the model by 32.8% and 

30.8% respectively. At the same time, embedding the IRMA attention model and opti-

mizing the detection head with the improved AFPN networks result in more effective 

gains in relation to detection precision level. SIA-YOLOv11 cuts 34.4% GFLOPs and 

34.6% parameters versus YOLOv11, with similar detection performance, while simul-

taneously improving the mAP by 1.3%. These enhancements demonstrate the enhanced 

generalization capability of the SIA-YOLOv11 model. 

 



 

 

Table 4. Conducted ablation analyses utilizing the NEU-DET dataset. 

Models mAP@0.5/% Paramters/106 P/% R/% GFLOPs/109 

YOLOv11 77.2 2.6 81.4 70.2 6.4 

S-YOLOv11 77.3 1.8 70.6 72.8 4.3 

I-YOLOv11 77.9 2.7 70.1 71.7 6.7 

A-YOLOv11 77.6 2.3 73.5 71.1 5.8 

IA-YOLOv11 78.1 2.5 78.6 70.6 6.2 

SIA-YOLOv11 78.5 1.7 76.6 71.5 4.2 

3.5 Comparison Experiments 

This study compares the New StarNet lightweight backbone network with other light-

weight networks to verify the impact of the New StarNet lightweight backbone network 

on model performance. MobileNetv3, ShuffleNetV2, and EfficientNet were selected as 

comparison references and compared on the ZC bearing dataset. In the comparative 

experiments, this paper abbreviates the MobileNetv3 module as M, the ShuffleNetv2 

module as S, the EfficientNet module as E, and the New StarNet module as SN. The 

experimental outcomes are presented in Table 5. When juxtaposed with other light-

weight network architectures, the New StarNet framework employed in this study as 

the feature extraction backbone can achieve lightweight while ensuring detection per-

formance, which is suitable for industrial bearing defect detection scenarios. 

Table 5. Comparative experiments on various backbones. 

Models mAP@0.5/% Paramters/106 FPS GFLOPs/109 

YOLOv11 87.5 2.6 72.6 6.4 

M-YOLOv11 85.4 2.2 43.9 5.3 

S-YOLOv11 83.9 1.7 40.9 4.1 

E-YOLOv11 85.3 3.5 44.1 8.0 

SN-YOLOv11 85.3 1.8 40.6 4.3 

To assess the effectiveness of the proposed IRMA attention mechanism, we conduct 

comparative experiments with three established attention approaches: SE, CBAM, and 

ECA as comparative references. These three attention mechanisms are integrated into 

Neck respectively, and comparative experiments are carried out on the ZC bearing da-

taset. The outcomes are detailed in Table 6. This paper denotes the SE module as S, the 

CBAM module as C, the EMA module as E, and the IRMA module as I. Data analysis 

demonstrates that this paper integrates the IRMA attention module into Neck, which 

significantly improves the performance of YOLOv11 in bearing surface defect detec-

tion. 
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Table 6. Comparative experiments on various attention mechanisms. 

Models mAP@0.5/% Paramters/106 P/% R/% GFLOPs/109 

YOLOv11 87.5 2.6 84.9 76.6 6.4 

S-YOLOv11 85.1 2.7 84.4 77.4 6.6 

C-YOLOv11 86.1 2.5 85.8 76.6 6.4 

E-YOLOv11 88.3 3.2 86.8 81.4 7.8 

I -YOLOv11 88.5 2.7 87.1 81.7 6.7 

To further evaluate the comprehensive performance of the SIA-YOLOv11 model 

regarding detection precision and computational intensity on the NEU-DET and ZC 

datasets, a comparative analysis was carried out against several detection models, in-

cluding YOLOv5s, YOLOv8s, YOLOv10n, Faster R-CNN, and YOLOv11n, with the 

corresponding results summarized in Table 7. To highlight the effectiveness of the pro-

posed SIA-YOLOv11 model regarding detection accuracy and efficiency, we compared 

its performance on the NEU-DET and ZC datasets with that of other mainstream object 

detectors. The compared models include YOLOv5s, YOLOv8s, YOLOv10n, Faster R-

CNN and YOLOv11n. The mAP of the SIA-YOLO model proposed in this paper 

reached 89.1%, which is higher than all the compared models. Since the SIA-YOLO 

model uses the New StarNet lightweight network as the model backbone, the number 

of parameters is only 1.7 and the GFLOPs is only 4.2. In summary, the SIA-YOLO 

model demonstrates notably high detection accuracy and low computational complex-

ity when applied to the bearing surface defect dataset. 

Table 7. Comparative Analysis of Experimental Results. 

Models mAP@0.5/% Paramters/106 P/% R/% GFLOPs/109 

YOLOv5s 85.1 7.2 85.4 73.9 17.0 

YOLOv8s 86.7 11.2 86.4 71.0 28.6 

YOLOv10n 86.9 2.4 84.2 81.3 6.8 

Faster R-CNN 83.7 66.0 79.8 78.6 180.3 

YOLOv11n 87.5 2.6 84.9 80.6 6.4 

SIA-YOLO(ours) 89.1 1.7 88.3 82.6 4.2 

In order to better evaluate the generalization ability of SIA-YOLO, the detection 

results of three bearing defects by YOLOv11n and SIA-YOLO models are shown in 

Fig.8. As depicted in Figure 8, the SIA-YOLO model introduced in this paper exhibits 

a more comprehensive capability for detecting defects on the bearing surface, such as 

abrasions, scratches, and grooves. The confidence scores for detected defect categories 



 

 

are higher in SIA-YOLO than in the baseline YOLOv11 model, underscoring its en-

hanced detection capabilities.  

 

Fig. 8. Bearing detection results. 

4 Conclusions 

This study introduces SIA-YOLO, a lightweight approach for multi-scale feature amal-

gamation designed for industrial bearing surface defect detection. This paper proposes 

a lightweight multi-scale feature fusion algorithm named SIA-YOLO. This method is 

applied to industrial bearing surface defect detection. It improves the defect detection 

accuracy while reducing the number of parameters, effectively improving the bearing 

surface defect detection efficiency. First, the proposed architecture employs a light-

weight New StarNet backbone to enhance feature extraction efficiency, reducing the 

inference overhead through lightweight calculation, reducing the complexity of the 

model. Secondly, the IRMA attention module is embedded in the neck, so that the 

model can better extract important features of the bearing surface, while enhancing the 

small target detection capability and keeping the model lightweight. Finally, the im-

proved AFPN module is used to optimize the detection head, significantly enhancing 

the model's feature representation capability, and effectively improving the model's 
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capability for detecting defects at various scales. The results of ablation experiments 

and comparative experiments show that the SIA-YOLO model realizes a 34.4% de-

crease in GFLOPs and a 34.6% cut in parameters, while improving mAP by 1.6% on 

the bearing dataset. Based on the NEU-DET benchmark dataset for steel defect inspec-

tion, the SIA-YOLOv11 model reduces GFLOPs by 34.4% and parameters by 34.6%, 

while increasing mAP by 1.3%. Compared to other detection algorithms, SIA-

YOLOv11 offers higher accuracy, faster speed, and a compact model size. 
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