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Abstract. Cardiovascular diseases pose a significant threat to global health, mak-

ing accu- rate cardiac MRI segmentation crucial. However, this task is hindered 

by complex anatomies, multi - scale integration issues, poor feature handling, 

long - range dependency problems, and limitations of existing methods. To ad-

dress these challenges, this study introduces the EFCIR - U architecture based on 

the clas- sic U - shaped encoder - decoder framework. Confronted with complex 

cardiac anatomies, it uses Recurrent RSU modules instead of traditional convo-

lutional layers for efficient multi - scale feature extraction and fine - grained de-

tail cap- ture. To solve multi - scale integration issues, EFCIR - U adopts early 

fusion strategies: in the encoder, Recurrent RSU - generated feature maps are 

fused with incoming data for the CIR module to integrate multi - scale infor-

mation, and in the decoder, up - scaled feature maps are fused with relevant ones 

in the CIR module during up - sampling for better cardiac region reconstruction. 

To handle poor feature extraction and perception, the CIR module in the U - 

shaped model integrates context through separation and reconfiguration to opti- 

mize these aspects. To tackle long - range dependency problems, the Mamba 

block in the decoder captures long - range dependencies and fuses multi - scale 

features. These components together enhance computational efficiency, feature 

representation, segmentation accuracy, and generalization, enabling EFCIR - U 

to overcome existing method limitations and provide a more efficient and accu- 

rate solution for high - quality cardiac image segmentation, thus contributing to 

better patient care considering the global threat of cardiovascular diseases. 
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1 Introduction 

Cardiovascular diseases pose a significant threat to global health, taking a heavy toll on  

human well - being. In  medical  diagnosis  and treatment,  precisely  segmenting high - 

quality cardiac magnetic resonance imaging (MRI) is of great significance as it offers 

crucial information about cardiac function, morphology, and potential patholo- gies, 

enabling medical professionals to intervene in a timely and accurate manner for patients 

[1, 2]. However, this task is fraught with difficulties. The complexity of car- diac 

anatomical structures, coupled with low image contrast, partial volume effects, and 

significant inter - patient anatomical variations, makes it extremely challenging to 

achieve high - fidelity segmentation. For instance, low contrast blurs the boundaries 

between different cardiac tissues, making it hard to accurately demarcate the left and 

right ventricles, and partial volume effects can distort tissue volume representation, 

leading to inaccuracies in quantitative analysis. 

Although the emergence of deep learning, especially convolutional neural networks 

(CNNs), has revolutionized cardiac MRI segmentation, with architectures like U - Net 

and its derivatives being popular for their ability to capture local and global con- 

text [6], contemporary deep - learning - based models still have limitations. Complex 

anatomical structures in high - quality cardiac images make it difficult to capture long- 

range dependencies and global context, as seen in models like SwinUNet and Tran- sUNet 

which struggle in regions with complex anatomical features [4]. Deep network archi-

tectures also come with high computational costs, large memory requirements, long 

training times, and issues like gradient vanishing or explosion that can hinder model 

convergence. Additionally, the loss of crucial details during network process- ing due 

to decreasing feature map resolution is a major setback for high - precision medical 

segmentation, especially for cardiac images where fine - grained details are essential for 

accurate diagnosis. 

To address these challenges, this study presents the EFCIR - U architecture based on 

the classic U - shaped encoder - decoder framework. EFCIR - U incorporates 

multiple innovative techniques. It uses Recurrent RSU modules instead of traditional 

convolutional layers, which are effective in capturing multi - scale features and extract- 

ing rich contextual information at different stages. By adjusting the sampling rate 

and fusing features through up - sampling, feature cascading, and convolution, the 

RSU minimizes detail loss, enhancing feature extraction and enabling precise capture of 

fine - grained details for accurate identification of cardiac structural details. The 

architecture also adopts early fusion strategies. In the encoder, the feature maps gen- 

erated by the Recurrent RSU modules are fused with the incoming data at an early 

encoding stage, providing the CIR module with more comprehensive multi - scale 

information. This early integration allows the model to better understand the cardiac 

image from the start. In the decoder, during the up - sampling process, the up - scaled 

feature maps are fused with relevant ones in the CIR module, refining the feature rep- 

resentation for better cardiac region reconstruction. This early fusion in the decoder 

improves segmentation accuracy and model generalization. The CIR module, embed- ded 

in the U - shaped model, optimizes feature extraction through separation and recon-

figuration operations, enhancing the model’s generalization ability and reducing noise. 
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Moreover, EFCIR - U strategically integrates the Mamba block in the decoder pathway, 

which has advantages such as capturing long - range dependencies and multi- scale feature 

fusion. Overall, this paper aims to introduce a novel network architec- ture that over-

comes the limitations of existing methods in high - quality cardiac image segmentation, 

providing a more efficient and accurate solution for medical diagnosis and treatment 

and contributing to better patient outcomes. 

2 METHOD 

2.1 Overall Frameworks 

This paper explores advanced reconstruction methods for high quality cardiac image 

segmentation in deep U - shaped networks and introduces the EFCIR - U architecture to 

enhance accuracy and efficiency with low model complexity (Fig.  1) .  The EFCIR - U 

starts with a high quality cardiac image input. 

In the encoder part, after the down - sampling stage using Recurrent RSU mod- ules 

for sequential down sampling and efficient feature extraction (while maintaining resid-

ual connections for smooth information flow), the resulting feature maps are fused with 

the image in the normal process that is meant to enter the CIR module. This early 

fusion in the encoder helps in better integrating the multi - scale information at an 

earlier stage, enhancing the model’s ability to capture complex features. 

Wavelet fusion is then used to integrate pre - sampling and in - process information into 

the CIR module to address challenges related to high - frequency detail preserva- tion and 

multi - scale information acquisition. The encoded feature maps then enter the decoder 

pathway with a Mamba block, which offers advantages such as capturing long - range 

dependencies, high - efficiency feature processing, excellent multi - scale fea- ture fusion, 

and strong adaptability to diverse datasets, thus improving segmentation accuracy and 

generalization. 

In the decoder stage, during the up - sampling process with bilinear interpolation, the 

up - scaled feature maps are again fused with the feature maps in the normal process 

within the CIR module. This early fusion in the decoder further refines the feature 

representation, enabling more accurate reconstruction of the cardiac region. Finally, 

feature fusion by concatenation generates a precise cardiac region mask. 

2.2 Residual Structure Unit (RSU) 

The RSU plays a vital role in improving cardiac image processing quality. It adeptly 

captures multi scale features and extracts abundant contextual information at differ- 

ent stages. When more encoders are incorporated, the RSU structure becomes deeper,and 

additional pooling operations expand its receptive field, empowering it to capture both 

local and global features. The RSU first gradually decreases the sampling rate and then 

fuses features into high resolution maps through up sampling, feature cas- cading, and 

convolution, thus minimizing the loss of details. In contrast to traditional convolutional 



 

 

methods, it remarkably improves feature extraction and propagation. Its weight trans-

formation and local feature fusion mechanisms enhance the feature representational 

ability, enabling the precise capture of fine grained details. In car- diac imaging, a 

model equipped with RSU can more effectively extract the intricate edge information 

and overall characteristics of cardiac structures, ensuring the accu- rate identification 

of structural details. The EFCIR-U that integrates RSU blocks can efficiently process 

multi scale features, enhancing the precision of identifying and segmenting various car-

diac regions, ranging from minute vascular structures to large anatomical areas. 

 

Fig. 1. The architecture of EFCIR-U

 

2.3 Contextual Information Reconstruction (CIR) 

In this section, we will offer a thorough and in-depth introduction to a brand-new CIR 

module. This module is embedded at certain designated positions within the U-shaped 

model, aiming to integrate contextual information for the purpose of reconstruction 

tasks. This particular approach demonstrates remarkable superiority in handling com- 

plex and dynamic high-quality cardiac medical images, enabling the extraction of 

more comprehensive and complete image features. An overall view of the framework is 

depicted in Figure 2. 

The CIR method cleverly combines separation and reconfiguration operations. By 

integrating these operations, it effectively extracts the vital contextual information 

from the feature maps. First and foremost, an advanced feature fusion operation is 

carried out on the feature maps that are fed into the CIR. After that, the fused 

features are input into the CIR for the separation process. Before this separation 

takes place, the input feature maps, represented as X, go through processing via Group 
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Normalization (GN) [10]. This step effectively differentiates between the feature regions 

that are rich in information and those that are sparse in information, thus  

 

 

Fig. 2. The architecture of Contextual Information Reconstruction (CIR).

 

increasing the sensitivity and discriminative ability of the feature representation. The 

specific formula is as follows: 

 
where, µ and σ represent the mean value and the standard deviation of X respectively. 

Meanwhile, βrepresents the learnable affine transformation parameter in the GN layer,  

and ε is a small constant added to ensure numerical stability. Subsequently, the channel 

weights Wγ, which are calculated by using the normalization scaling factor γ, are used to 

measure the importance of different feature maps. The specific formula is as follows: 

 
Subsequently, for the feature maps fused based on contextual information, a Sigmoid 

function along with a Threshold mechanism is applied to map the weights to binary 

values within the range of (0, 1). Specifically, information weights W1 above the thresh-

old are set to 1, while those below the threshold W2 are set to 0, as shown in Equation 

3. 

Next, for the feature maps that are fused based on contextual information, a com- 

bination of a Sigmoid function and a Threshold mechanism is applied. This is done 

to map the weights to binary values within the range of (0, 1). Specifically, the infor- 

mation weights W1 that are above the threshold are set to 1, while those weights W2 that 

are below the threshold are set to 0, as shown in Equation 3. 

 W = Gate(Sigmoid(W γ  Xt ))                                           (3)  



 

 

After that, these binary weights are utilized to partition the input feature map X into 

two components: the information-rich component X1
W

 and the information-poor com-

ponent X2
W

 . The calculation formulas for these two components are as follows: 

 

 X1
W

 = W1 ® X, 

 X2
W

 = W2 ® X, (4) 

where, ® represents the element-wise multiplication. Subsequently, the two feature maps 

are combined into a refined feature map through a cross-reconstruction oper- ation.  

The resulting refined feature map then undergoes a simple convolutional operation. This 

operation helps in efficient feature extraction, optimization of the computational 

process, enhancement of the model’s generalization ability, and aug- mentation of 

features as well as reduction of noise during context reconstruction. Right after that, 

the obtained feature map is divided into two parts, denoted as and, according to a pre-

set ratio α . The formula is shown as follows: 

 X 1  ,  X 2   = Split(Xw ,α )                                                (5) 

The spatially refined feature map is initially split into X1  and X2 , which are fur- 

ther divided for different operations:  the two parts from X1   undergo 1  × 1  and k ×k 

convolutions respectively and the results are summed, while the two segments of X2 

each have 1 × 1 convolutions and the outputs are concatenated. These operations effi- 

ciently extract and fuse multi scale features in cardiac images, capturing detailed and 

global information, enhancing the model’s robustness and expressiveness, especially 

suitable for high quality medical cardiac image processing in deep neural networks. 

The CIR method identifies important contextual features and dynamically adjusts 

feature distribution during reconfiguration based on weights, emphasizing key infor- 

mation, greatly improving the model’s ability to perceive complex spatial features 

and balance between fine grained details and global semantics, thus providing more 

comprehensive task support. 

3 Experiments 

3.1 Dataset 

This study utilizes two publicly available cardiac imaging datasets— Sunnybrook[1 1 ] ,  

and RVSC [19] datasets—to evaluate the performance of cardiac MRI image segmen- 

tation  algorithms.  The Sunnybrook dataset, derived from the 2009 Left Ventricle Seg-

mentation Challenge, contains 805 MRI images from 45 patients, covering four 

pathological states: healthy, left ventricular hypertrophy, heart failure with infarction, 

and heart failure without infarction. The dataset is randomly sampled into training, 

validation, and test sets to comprehensively assess algorithm performance. The RVSC 

dataset provides DICOM-standard cardiac MRI images from 48 patients, covering 

the entire cardiac cycle, with high-precision segmentation of the endocardium and 
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epicardium. It is divided into training, validation, and test sets, further supporting 

algorithm training and evaluation. These datasets provide a rich experimental foun- 

dation for the development and performance validation of cardiac image segmentation 

models. 

3.2 Evaluation Metrics 

Our evaluation framework incorporates the metrics specified by relevant challenges, 

including a range of specific segmentation indicators. The details are as follows: 

•  Dice (Dice Coefficient)  =  2  *  TP /  (FP + FN + 2 * TP),   

• IoU (Intersection Over Union) = TP / (FP + FN), 

• Acc (Accuracy) = (TN + TP) / (TN + TP + FN + FP), 

• HD95(Hausdorff Distance 95%): It is a measure of segmentation boundary quality, 

evaluating accuracy by calculating the maximum distance between the predicted 

boundary and the corresponding ground truth within the top 95.  

TP, FP, TN and FN were true positive, false positive, true negative and false negative 

respectively. For the RVSC dataset experiments, we use Accuracy (Acc), Intersection 

over Union (IoU) and Dice as evaluation metrics. For the Sunnybrook Dataset, we 

apply Dice,  IoU,  at the 95th percentile (HD95),  aligning with common practices in 

the field. 

3.3 Implementation 

All experiments were implemented with Python 3.9.5 and PyTorch 1.9.1, and model 

training was executed on the Quadro RTX 6000. In the EFCIR-U model, distinct data 

augmentation techniques and loss functions were applied to different datasets, such as the 

Sunnybrook dataset and the RVSC dataset. The hyperparameter configurations are as 

follows: 

• For the Sunnybrook dataset, the input size was set to 256 × 256, the batch size was 
2, the learning rate was 1e - 5, the optimizer was Adam with default β1   = 0.9, 

β2  = 0.999, ϵ = 1e - 8, and the loss function was Dice Coefficient Loss. The model 

was trained for 100 epochs. 

• Regarding the RVSC dataset, the input size was 128 × 128, the batch size was 64, 

the learning rate was 4e - 5, the optimizer was Adam with β1  = 0.9, β2  = 0.999, ϵ 

= 1e-8, and the loss function was a combination of Dice Loss and Cross Entropy Loss. 

The training was carried out for 150 epochs. 

3.4 Comparison with state-of-the-art approaches 

The EFCIR-U model proposed in this paper has achieved remarkable progress in ven- 

tricular segmentation. It reached optimal Dice Similarity Coefficient (Dice) values of 

87.59% and 95.62% on the important public datasets RVSC and SunnyBrook respec- 

tively, representing a significant performance improvement over existing methods. The  



 

 

 

Fig. 3. Visualization of segmentation results for EFCIR-U on the Sunnybrook Dataset. In the im-

ages,red represents the endocardial boundary, while yellow indicates the epicardial boundary. 

model has been optimized to have only 17.42 million parameters, reducing computa- 

tional costs and significantly decreasing the risk of overfitting. Despite having 24.89 

billion FLOPS, slightly lower than SwinUNet [5], EFCIR-U’s testing performance on 

these two datasets is significantly better, demonstrating its excellent balance between 

efficiency and performance. 

Table 1.    In the comparative experiment on the SunnyBrook dataset, we used Dice, IoU, and 

HD95 metrics to evaluate the performance of the proposed architectures. The best results are 

indicated in bold. 

Methods Params(M) Dice IoU HD95 

UNet [3] 31.04 90.00 86.00 2.33 

UNet++ [7]  36.17 93.86 89.77 2.29 

U2 Net [13] 44.00 92.70 82.38 3.84 

TransUNet [6] 66.80 92.66 89.34 2.38 

Swin-UNet [5] 27.14 85.11 81.22 5.81 

MedFormer [12] 28.07 93.92 90.26 2.26 

nnU-Net [18] 30.8 93.52 91.46 2.31 

TransCeption [15] 22.25 94.19 89.84 2.23 

LeViT-UNet [14] 35.09 92.76 87.29 4.16 

PVT CASCADE [16] 35.27 93.11 88.86 2.28 

MERIT [17] 82.50 94.43 89.83 2.37 

Ours 17.42 95.62 90.33 2.21 

 Experimental results on the Sunnybrook Dataset 

 We assessed EFCIR-U using the Sunnybrook MRI dataset, with the results detailed in 

Table 1. The quantitative results presented in Table 1 illustrate that the proposed  
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Fig. 4.  From top to bottom, the visualization results of the right ventricle on the RVSC dataset for 

the same patient during the same cardiac cycle are shown for different segmentation methods. Yellow 

indicates the endocardial boundary, while green represents the epicardial boundary. 

EFCIR-U outperforms in three evaluation metrics (Dice, IoU, HD95) for left ventric- 

ular tissue on the test set. This finding suggests that EFCIR-U has the potential to 

effectively manage pathological changes. Specifically, with a model size of 17.42 M, 

EFCIR-U achieved an average Dice score of 95.62%. EFCIR-U attains the highest aver- age 

values and the lowest standard deviations across the three segmentation metrics,reflecting 

its robustness in managing pathological changes in the left ventricle that could com-

plicate morphological feature extraction by neural networks. Additionally, we visual-

ized segmentation results for four distinct cardiac pathological conditions: N, HYP, 

HF-I,  and HF-NI.  As illustrated in Figure 3,  various diseases can impact patients’ 

hearts, resulting in abnormal morphological changes. Our Global context analysis 

module, EFCIR-U, has been demonstrated to be especially advantageous for cardiac seg-

mentation. 

 Experimental results on the RVSC Dataset.  

In this study, we divided the RVSC dataset into two independent test sets to evaluate the 

generalization capability of EFCIR-U.  Table 2  summarizes the average experi-  mental 

results of EFCIR-U on these two test sets. EFCIR-U performs exceptionally well on 

both RVSC test sets, achieving an average Dice coefficient of 87.59%, an IoU of 76.99%, 

and an accuracy of 93.30%, making it one of the best-performing models. This is pri-

marily due to the model’s design, which emphasizes enhancing global fea- ture analysis, 

reducing the number of parameters, and improving multi-scale feature extraction and 

fusion capabilities. 

Figure 3presents a visual analysis of the RVSC dataset, focusing on MRI images of the 

same patient across a single cardiac cycle. This analysis contrasts the performance of dif-

ferent segmentation models and provides a clear description of the differences in the 



 

 

delineation of the right ventricle (RV) boundary. The data in Table 2 and the visual 

results in Figure 3 together highlight the superior performance of EFCIR-U in terms 

of segmentation accuracy and boundary precision, significantly outperforming other 

competing methods. 

By  leveraging  the  power  of  convolution  operations  for  local  high-level  feature 

extraction and employing effective strategies to expand the receptive field, we signif- 

icantly reduce the false positive rate. Figure 5 demonstrates the superiority of our 

method: in the first row, the misidentification of the RV boundary (red box), in the 

second row, the error in epicardial identification by TransCeption [15] (green box), and 

in the third row, the erroneous identification of the RV endocardium by the UNet3+ [8] 

model (purple box) are all clearly visible. In the fourth row (blue box), our method 

significantly improves the segmentation and boundary accuracy of small structures dur-

ing the RV systolic phase. The comparative analysis confirms that EASNet signif- 

icantly enhances segmentation performance and boundary delineation. Unlike other 

models that struggle with the complex morphology of the RV, our design optimizes 

global boundary integration and reduces edge effects. 

By  utilizing  rich  feature  hierarchies  and  contextual  information,  our  model 

excels in accurately locating the RV boundary and performing overall morphological 

segmentation. 

Table 2. In the comparative experiments conducted on the RVSC dataset, we evaluated two separate 

test sets and recorded their average values. To assess the performance of the proposed architecture, we 

employed metrics including Dice, IoU, and Accuracy. The best results are indicated in bold. 

 

Methods Params(M) Dice IoU Accuracy 

UNet [3] 31.04 81.72 72.95 92.14 

UNet++ [7]  36.17 82.65 75.25 93.68 

UNet3+ [8] 26.97 75.89 67.60 91.65 

U2 Net [13] 44.00 80.63 72.69 92.21 

TransUNet [6] 66.80 72.82 63.12 85.41 

MT-UNet [9] 78.87 82.82 74.66 92.14 

MedFormer [12] 88.93 84.68 72.26 88.24 

TransCeption [15] 22.25 64.92 60.01 83.92 

MERIT [17] 82.5 78.06 60.22 71.94 

PVT CASCADE [16] 34.13 79.76 70.08 90.12 

Ours 17.42 87.59 76.99 93.30 
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3.5  Ablation Studies 

To comprehensively evaluate the necessity and effectiveness of the enhancements in 

EFCIR-U, we performed an extensive ablation study with the ACDC dataset. Using 

the Dice score as the primary metric, we quantified the impact of each proposed 

modification on segmentation accuracy. This rigorous analysis allowed us to system- 

atically determine the contribution of each improvement, thereby validating their role 

in enhancing the model’s performance and reliability. 

Table 3. In the ablation experiments for the ACDC dataset, we used the Dice coefficient as the met-

ric to evaluate the performance of the proposed modules, CIR and Mamba. 

 

 

Architecture 

Module  

Params(M)    Flops(G) 

 

Dice % CIR Mamba 

   44.00 28.83 87.04 

Model 2  √ 14.58 24.44 87.23 

Model 3 √  44.37 29.08 92.32 

Ours √ √ 17.42 24.89 94.25 

Effect of CIR and Mamba 

In the ablation experiments on the ACDC dataset, as presented in Table 3, the effects of 

CIR and Mamba are clearly visible. For CIR, when comparing Model 1 (lacking CIR, 

Dice coefficient 87.04%) with Model 2 (equipped with CIR, Dice coefficient 87.23%), a 

small performance boost is noted. In Table 5’s erosion visualization analysis, the model 

with CIR shows a 5.28% increase in segmentation accuracy with a marginal parameter 

rise. CIR optimizes feature extraction and spatial perception by integrating context 

through separation and reconfiguration. It also contributes to model lightweight ing, as 

seen in the reduction of parameters from 44.00M to 14.58M and FLOPs from 28.83G to 

24.44G when moving from Model 1 to Model 2. Regarding Mamba, comparing Model 1 

with Model 3 (featuring Mamba, Dice coefficient 92.32%) reveals a significant accuracy 

jump. Mamba captures long - range dependencies and fuses multi - scale features, 

crucial for handling cardiac MRI complexity. It only slightly increases parameters 

(from 44.00M to 44.37M) and FLOPs (from 28.83G to 29.08G). When CIR and Mamba 

are combined in our proposed method (Ours, Dice coefficient 94.25%), the synergy of 

CIR’s context optimization and Mamba’s long - range dependency handling further 

enhances performance. Our method also maintains a relatively small parameter count 

(17.42M) and FLOPs (24.89G) compared to Model 1 and Model 3. 

 

 

Model 

1 



 

 

Table 4. Effect of EFCIR-U with/without RSU block instead of traditional U-block. The best 

scores are highlighted. 

 

Methods Params(M)  Flops(G)  Dice %  

with RSU 17.42 24.89 94.25 

without RSU 16.16 30.37 88.12 

Effect of RSU 

The RSU module in EFCIR - U significantly impacts performance. It innovatively 

integrates receptive fields for efficient multi - scale feature extraction, combining global 

and local information. Its internal residual connections ensure seamless information 

flow, alleviating the gradient vanishing problem and enabling learning of intricate 

feature representations. The computationally - efficient design allows for increased 

network depth without a large computational burden. Table 4shows that without the 

RSU module, there’s a 6.13% drop in segmentation accuracy and a 5.48% increase in 

FLOPs, while the change in parameters is negligible.  This highlights the RSU 

module’s crucial role in high - quality segmentation, enhancing performance through 

its architecture and functionality rather than increased complexity, and making a 

substantial contribution to segmentation tasks in deep - learning models, especially in 

medical image analysis like cardiac MRI segmentation. 

Reasons for Achieving SOTA Performance while Maintaining a Lightweight 

Structure 

The EFCIR - U architecture achieves SOTA performance while remaining lightweight 

for several reasons. Firstly, it uses Recurrent RSU modules for efficient multi - scale 

feature extraction and early fusion strategies to integrate multi - scale information. The 

CIR module further optimizes feature extraction and spatial perception, handling car- 

diac anatomical complexity well. Secondly, the Mamba block in the decoder captures 

long - range dependencies and fuses multi - scale features, which is vital for addressing 

challenges like low image contrast and partial volume effects in cardiac MRI. Finally, 

the architecture optimally utilizes parameters. Instead of relying on a large number of 

parameters, it focuses on enhancing feature extraction efficiency, context integration, 

and long - range dependency capture. This enables the model to achieve high perfor- 

mance with a relatively small parameter count, resulting in a lightweight structure 

that still attains SOTA performance. 

4 CONCLUSION 

In this study, we proposed EFCIR-U, a novel deep-learning architecture specifically 

designed for high-quality cardiac MRI image segmentation. EFCIR-U integrates 

theRSU and the CIR module.  The RSU module enables efficient multi-scale feature ex-

traction, enhancing the network’s ability to capture fine details and complex spatial 

structures. The CIR module plays a crucial role in combining local and global infor- 
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mation, reducing computational complexity, and improving segmentation accuracy. 

Ablation studies conducted on the ACDC dataset further validated the contribution of 

the CIR module. This module significantly enhanced segmentation performance while 

reducing model complexity.In conclusion, EFCIR-U provides an efficient and effective 

solution for cardiac MRI image segmentation, addressing issues such as detail recovery, 

noise sensitivity, and class imbalance. Future research will focus on applying EFCIR-U to 

other medical imaging modalities and improving its generalization ability for more 

complex datasets. 
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