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Abstract. Computer Vision (CV) technology is crucial for intelligent classroom 

behavior monitoring. Current CV methods can only measure coarse-grained met-

rics like attendance rate and head-up rate, while gaze estimation enables fine-

grained monitoring of each student. However, existing gaze estimation algo-

rithms struggle in low-light classroom environments. To address this, we propose 

the LLSGE-Net framework, which integrates low-light image enhancement with 

gaze estimation. This multi-stage enhancement and calibration process signifi-

cantly improves image quality. Our method utilizes Local-Global Context Fusion 

(ALGCF) for better eye and face feature integration, and a feature enhancement 

technique combining 1D convolution and group normalization. The Enhanced 

Local Spatial and Global Channel Attention (ELSCA) improves the localization 

of regions of interest, while the Deep Feature Extraction Network (DFENet) re-

fines high-level features. Extensive experiments demonstrate the superiority of 

our approach in real-world low-light classroom scenarios for student attention 

detection and behavior monitoring. 

Keywords: Gaze Estimation, Classroom Behavior Monitoring, Local-Global 

Context Fusion, Attention Mechanism, Deep Feature Extraction Network. 

1 Introduction 

Intelligent classroom behavior analysis [1] is of great significance in the education field 

[2] , providing multi-dimensional data related to students' learning status [3], emotional 

responses [4] , attention levels [5] , and more. This data is essential for improving teach-

ing quality, promoting students' overall development, and optimizing teaching strate-

gies. Current classroom behavior monitoring systems focus on coarse-grained metrics 

such as seat occupancy and head-up rate [6]. However, the future of classroom behavior 

analysis lies in fine-grained monitoring, enabling detailed tracking of each student's 

behavior. 

Fine-grained classroom behavior monitoring can be divided into explicit and implicit 

monitoring. Explicit monitoring uses devices like eye trackers, smartwatches, and smart 

glasses, which are costly, suitable only for small-scale scenarios, and may interfere with 

students' behavior [7]. In contrast, implicit monitoring generally involves cameras to 



 

 

analyze students’ behavior without their awareness, minimizing the impact on their ac-

tions [8]. Gaze estimation is a key technology for implicit monitoring, as it allows for 

the detection and analysis of students' gaze direction, providing valuable insights into 

their attention and engagement. 

However, existing gaze estimation methods are primarily designed for ideal lighting 

conditions, such as in Human-Computer Interaction (HCI) [9], Virtual Reality (VR) 

[10], and Driver Attention Monitoring [11], making them unsuitable for classroom sce-

narios. In classrooms, lighting conditions are often poor, with only the teacher's area 

being well-lit, while students' positions typically suffer from low-light environments. 

Gaze estimation in such low-light conditions presents a significant challenge. 

To address this, we propose the LLSGE-Net framework, depicted in Fig. 1, which 

integrates image enhancement with gaze estimation in an end-to-end system. The en-

hancement module improves low-light image quality through a multi-stage process, 

while the gaze estimation module, based on an improved ResNet18 architecture, applies 

the novel ELSCA attention mechanism to focus on key eye regions. Additionally, the 

Deep Feature Extraction Network (DFENet) refines the feature extraction process. 

These innovations enhance gaze estimation accuracy, particularly in low-light class-

room scenarios, and represent a significant advancement in implicit monitoring for 

classroom behavior analysis. 

x

Input Low-Light Image 
Enhancement 

Module

Calibration 

Module

Gaze Estimation 

Module
Output Angle Error

Collaboration Mechansim

TrainingTraining

 

Fig. 1. The proposed end-to-end  LLSGE-Net model framework. 

The main contributions of this paper are as follows: 

We propose a synergistic image enhancement module that addresses the challenges 

posed by low-light conditions. The module enhances eye details by leveraging multi-

scale feature fusion and global context information, while preserving the overall image 

quality. A subsequent calibration module refines the image further, removing artifacts 

and making it closer to real-world classroom conditions. 

We introduce a novel gaze estimation model that integrates a deep attention mecha-

nism with feature extraction, specifically designed to work effectively in low-light 

classroom environments. This model significantly improves the accuracy and robust-

ness of gaze estimation by focusing on key eye regions, even under challenging lighting 

conditions. 

We propose a new research direction by integrating low-light image enhancement 

with gaze estimation, which provides a solution for real-world classroom behavior 

monitoring. This novel approach enhances the reliability and effectiveness of gaze es-

timation, offering a significant step forward in implicit monitoring systems for human-

computer interaction in practical, low-light scenarios. 
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2 Related Work 

2.1 Classic Gaze Estimation 

With the rapid development of deep learning, many appearance-based gaze estimation 

methods have been proposed, which typically map facial or eye images to gaze points. 

Some studies have focused on enhancing network architectures to improve estimation 

accuracy. Cheng et al. introduced dual-view interactive convolution blocks and trans-

formers to better integrate feature representations [12], while Nagpure et al. leveraged 

neural architecture search to design a compact and efficient model [13]. Wang et al. 

optimized facial feature extraction using capsule networks [14], and Jin et al. developed 

a personalized calibration pipeline to address the eyeball's rolling state [15]. 

Other research has aimed at improving cross-domain performance to enhance model 

generalization. Cai et al. explored uncertainty minimization techniques for domain ad-

aptation [16], Zhang et al. proposed a latent gaze pattern-based estimation approach 

[17], and Liu et al. introduced model variants combined with intra-group attention 

mechanisms for better adaptability [18]. Hisadome et al. further proposed a multi-view 

gaze estimation task and a cross-view feature fusion strategy to address variability 

across head poses [19]. 

In addition to architecture and generalization improvements, there has been growing 

attention on enhancing the practicality and robustness of gaze estimation systems. 

Zhang et al. proposed a real-time, single-stage, multi-person gaze estimation method 

[20], while Balim et al. developed a model capable of predicting 3D gaze direction 

directly from raw camera frames [21]. 

Despite these advances, the accuracy of gaze estimation remains heavily dependent 

on precisely capturing features from the eye region. Traditional attention mechanisms, 

such as SE [22], CBAM [23], ECA [24], and CA [25], have contributed to performance 

improvements but still face challenges in modeling global context and long-range de-

pendencies. SE enhances channel-wise information via global pooling but neglects spa-

tial details; ECA refines channel attention yet struggles with capturing complex de-

pendencies; CBAM incorporates spatial attention but remains limited in modeling long-

range spatial relationships; CA embeds spatial information into channel attention, but 

its generalization ability is weak and suffers from the reduction in channel dimensions. 

MSCA [26], although utilizing multi-scale convolutional kernels to improve receptive 

fields, introduces high computational complexity and inefficient feature fusion, making 

it less suitable for real-time applications. 

Furthermore, achieving high-precision gaze estimation under low-light conditions 

remains an open and significant challenge, as such environments introduce additional 

noise and variability that further complicate accurate feature extraction and prediction. 

2.2 Gaze Estimation in Low-Light Scenarios 

Gaze estimation in low-light conditions remains a significant challenge. The primary 

approaches are using infrared cameras or low-light RGB images for gaze regression 

tasks. While infrared cameras are effective, they are expensive and raise privacy con-

cerns. For low-light RGB gaze regression, X. Zhang et al. [27] trained models by ad-

justing illumination levels, and Tobias Fischer et al. [28] used grayscale conversion and 



 

 

histogram equalization for diverse lighting conditions. However, these deep networks 

still struggle to effectively capture eye details and lack robustness. 

3 Proposed Method 

We propose the LLSGE-Net model, a deep learning framework for gaze estimation in 

low-light environments. It integrates an image enhancement module with a gaze esti-

mation module. 

3.1 Low-light Image Enhancement Model 

Low-light image enhancement aims to reveal hidden information and improve image 

quality. Inspired by the Self-Calibrated Illumination (SCI) method [29], we introduce 

the ALGCF module in the enhancement network to address the dynamic nature of eye 

features in gaze estimation tasks. The image enhancement module (Fig. 2 (a)) boosts 

eye feature brightness and contrast by fusing multi-scale features and extracting global 

context information. The calibration module (Fig. 2 (b)) refines the image through mul-

tiple layers of convolution, batch normalization, and activation functions, enhancing 

high-level feature expressiveness and robustness. Dark blue indicates two of the oper-

ations and a residual link. This process enhances and calibrates the model synergisti-

cally. 
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Fig. 2. Overview of the low-light image enhancement framework. 

The enhancement module extracts multi-scale features from the input image and inte-
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grates them with global contextual information to ultimately achieve detail enhance-

ment and lighting balance. 

The input image passes through the initial convolutional layer, extracting the funda-

mental features 0F : 

 0 ( 0( ))F ReLU Conv I=  (1) 

Where 0Conv  is the initial convolutional layer that extracts features from the input 

image through convolutional kernels.  

The ALGCF module is then applied to fuse local and global information. The local 

feature extractor captures detailed information from the eye region: 

 01( )localF Conv F=  (2) 

Where 1Conv  is the convolutional layer of the local feature extractor. By using 3×3 

depthwise separable convolution, local details of each channel are independently ex-

tracted, focusing on capturing eye-specific details from the initial feature map. 

The global context information extractor captures overall facial illumination and 

structural information: 

 0( 2( ( )), )global localF In Conv AAP F size F= =  (3) 

Where the adaptive average pooling layer AAP  extracts illumination and structural in-

formation from the global context. 2Conv  uses a 1×1 convolution kernel to generate a 

global feature map. 

Local and global features are then combined to generate fusion weights. Adaptive 

feature fusion is performed using these fusion weights: 

 

( , )

( 3( ))

(1- )

fusion local global

fusion

ALGCF local global

F Concat F F

G Conv F

F G F G F



 =


=


=  + 

 (4) 

Where the Concat  operation combines local and global features into a fused feature 

map. 3Conv  is the convolution layer of the gating mechanism, where   represents the 

Sigmoid  function. The fused feature ALGCFF  adaptively combines local and global fea-

tures according to the weights G  and1 G− , ensuring global illumination consistency 

while preserving local eye details in the facial feature map. 

The fused feature map is further processed through multiple convolutional layers to 

extract more features: 

 1 ( ( ( )))i i i iF F ReLU BN Conv F+ = +  (5) 

Where iConv  represents the convolution layer of each convolutional block, BN  per-

forms feature normalization. Through residual connections (+), each convolutional 

block extracts features while preserving the integrity of the input features. 



 

 

The output convolution layer converts the fused feature map into an enhanced image: 

 
1( 4( ))output iF Conv F +=  (6) 

Where 4Conv  is the output convolution layer, converting the feature map into the final 

enhanced image. The activation function normalizes the pixel values to the range (0,1). 

Finally, the enhanced feature map is added to the input image to obtain the final 

enhanced image: 

 ( ,0,1)enhanced outputI Clamp F I= +  (7) 

Where the Clamp  function ensures that the pixel values of the enhanced image are 

within a reasonable range. 

The enhanced image enhancedI  passes through the initial convolution layer to obtain 

the calibrated feature map: 

 (0) ( ( 5( )))calib enhancedF ReLU BN Conv I=  (8) 

Where 5Conv  is the input convolution layer of the calibration network, extracting the 

calibrated feature map. 

The calibrated feature map (0)calibF  undergoes multiple convolutional blocks for illu-

mination and detail adjustment: 

 ( ) ( -1) ( -1)( ( ( )))calib i calib i i calib iF F ReLU BN Conv F= +  (9) 

Where ( -1)calib iF  represents the output feature map of layer ( 1)i − . ( )calib iF  is the output 

feature map of the convolutional block of layer i , combining the original input features 

( -1)calib iF  with the new features obtained through convolution, BN , and ReLU  pro-

cessing.  

The final calibrated feature map passes through the output convolution layer to gen-

erate the differential image: 

 ( )( ( ))out calib iI Conv F =  (10) 

Where outConv  is the output convolution layer, generating the final difference image 

through convolution. 

Finally, the differential image I  is subtracted from the enhanced input image to 

obtain the final calibrated image calibratedI : 

 calibrated enhancedI I I= −  (11) 

3.2 Synergistic Mechanism Model 

At each stage, the input image is first enhanced by the enhancement module to obtain 
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the enhanced image 
enhancedI . Then, the calibration module calibrates the enhanced im-

age to obtain the calibrated feature map I . The calibrated feature map is added to the 

input image to generate a new input image for the next stage of processing. 

 

( ) ( )

( ) ( )

( 1) ( )
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

=

=



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+





 (12) 

Where 
( )i

inputI  is the input image of the i th−  stage, ( )i

enhancedI is the enhanced image of the 

i th−  stage, and I  is the input image. 

As shown in Fig. 2, both the input and output in Fig. 2 (a) and Fig. 2 (b) undergo a 

single round of enhancement and calibration. Throughout the process, the model is en-

hanced and calibrated several times. This final image integrates multi-stage feature ex-

traction, enhancement, and calibration, resulting in the optimal output. Saving this final 

enhanced image ensures the higher quality input for subsequent gaze estimation. Ex-

perimental results validate that after three iterations, the resulting image can be re-

garded as the final enhanced output. 

3.3 Gaze Estimation Model 

Traditional gaze estimation methods struggle under low-light conditions due to signif-

icant image quality degradation, which impairs accurate eye feature extraction. To ad-

dress this challenge, we propose a gaze estimation model utilizing processed low-light 

images. The model is based on an improved ResNet18 (Fig. 3). ELSCA attention mech-

anism modules are integrated in the second, third, and fourth stages to enhance recog-

nition and processing of key eye regions under low-light conditions. Additionally, a 

DFENet deep feature extraction module is incorporated in later stages to further refine 

high-level features. This end-to-end integrated approach enables the LLSGE-Net model 

to deliver exceptional performance in gaze estimation tasks under low-light conditions. 
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Fig. 3. Overview of the gaze estimation framework. 

The accuracy of gaze estimation depends on capturing eye region features accurately. 

The proposed ELSCA attention mechanism, inspired by CA [25], improves both spatial 

and channel attention. By integrating feature correlation analysis, it effectively en-

hances eye features in low-light environments, improving the model's ability to handle 



 

 

long-range dependencies. The ELSCA mechanism is shown in Fig. 4. 
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Fig. 4. The ELSCA attention mechanism network architecture. 

Instead of global spatial pooling, strip pooling is used in the spatial dimension to extract 

feature vectors in horizontal and vertical directions. This maintains elongated kernel 

shapes to capture long-range dependencies. 

The input feature map is B C H WX    , where B  is the batch size, C  is the num-

ber of channels, and H  and wX  are the height and width of the feature map, respec-

tively. 

The width dimension is averaged to result in a feature map of size 1B C H   , 

denoted as hX . Then, a 1Conv d , GN , and Sigmoid  activation function are applied 

to obtain a feature map hX  of 1B C H   . 
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Where 
1B C H

hX    , 1B C H

hX    . Here, [:,:,:, ]X i  selects a sub-tensor of shape 

( , , )B C H , choosing only the i -th element along the W  dimension. GN  represents 

group normalization, with each group containing 16 channels. 1Conv d  denotes the 1D 

convolution operation with a kernel size of 7, capturing long-range dependencies. 

Then, the height dimension is averaged to result in a feature map of size 
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1B C W   , denoted as wX . Next, a 1Conv d , GN , and Sigmoid  activation func-

tion are applied to obtain a feature map wX  of size 1B C W   . 
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 (14) 

Where 
1B C W

wX    , 1B C W

wX    . Here, [:,:, ,:]X j  selects a sub-tensor of shape 

( , , )B C W , choosing only the j -th element along the H  dimension. 

The final input feature map X  is multiplied by the two attention feature maps hX  

and wX  to obtain the spatial attention feature map Y : 

 , B C H W

h wY X X X Y   =   (15) 

Where B C H WY    , and  represents element-wise multiplication. 

To further enhance the feature relationships between channels, we propose a channel 

attention mechanism. Adaptive average pooling reduces the feature values of each 

channel of the input feature map to a single value, resulting in a feature map of size 
1 1B CA    . Next, the average pooling result A  is processed, flattening the pooled 

feature map into a vector of size B C . 

The flattened feature map is processed by an MLP  network, which includes two 

fully connected layers and a ReLU  activation function. The processed result A  un-

dergoes Sigmoid  activation to obtain a weight map of size B CS  . The weight map 

is then reshaped to match the shape of the input feature map, resulting in a weight map 

of size 1 1B CS    . The final output is obtained by element-wise multiplication of the 

input feature map X  and the weight map S , producing the channel attention map Z . 

 

1 1

1 1

2 ( ),

2(Re ( 1( ))),

( ),

,

B C

B C

B C

B C H W

A AdaptiveAvgPool d X A

A FC LU FC A A

S A S

Z X S Z



  

  

  

  








= 

= 

= 

= 

 (16) 

Where 1 1B CA    , B CA  , and B C H WZ    . 

Channel attention evaluates the contribution of each channel to gaze estimation by 

enhancing important channel features, thereby optimizing the overall feature quality. 

Next, feature correlation analysis is proposed. This integrates spatial and channel 

attention and optimizes the interactions between features. The spatial and channel at-

tention-weighted features are concatenated along the channel dimension, resulting in 

feature concatF : 

 concat [ , ]F Y Z=  (17) 



 

 

Where Y  and Z  are the feature maps with spatial and channel weights applied, respec-

tively. 

Then, feature correlation analysis is performed on the merged features: 

 ( ) ( ( ( ( ( )))))concatR x Conv ReLU BN Conv F
 

=  (18) 

Where Conv


 is a dimension-reducing convolution layer that helps the module focus 

on capturing the most critical feature correlation information. Conv


 is an expanding 

convolution layer that generates the final feature adjustment weights. 

Through feature correlation analysis, the model can dynamically evaluate and adjust 

the relationships between features, highlighting important features while suppressing 

irrelevant features. 

Combining the above components, the enhanced feature ( )R xF  can be obtained 

through the following steps: 

 ( ) ( )R xF X R x W= +  (19) 

Where  represents element-wise multiplication. The feature correlation analysis 

module generates weights ( )R x , which are multiplied element-wise with the original 

input X . 

In the later stages of LLSGE-Net, DFENet is introduced to refine high-level features.  

The DFENet module consists of several convolution blocks. The output channels fol-

low this sequence: 64×2、128×3、256×3、512×3 and 1024. Max pooling is applied 

after the 2nd, 5th, and 8th convolution blocks to reduce feature map dimensions. Each 

convolution block includes batch normalization and activation. Finally, an adaptive av-

erage pooling layer adjusts feature maps to 1×1×1024. The DFENet structure is shown 

in Fig. 5. 
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Fig. 5. The DFENet module network architecture. 

3.4 Residual Connection Model 

In our improved ResNet18 model, attention mechanisms are applied after the 2nd, 3rd, 

and 4th residual modules. Additionally, a DFENet is introduced at the end of the resid-

ual blocks to integrate and extract high-level semantic features. Finally, fc  maps the 
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feature vector to a three-dimensional output vector. The first two elements are trans-

formed by the hyperbolic tangent function to obtain the horizontal angle hO  and verti-

cal angle vO  of the gaze. The third element is transformed by the Sigmoid  function 

and multiplied by   to obtain the gaze prediction uncertainty  . 

The loss function for this study, denoted as MSELoss  (mean squared error). A 

smaller MSELoss  indicates a smaller error. Therefore, The loss function of gaze esti-

mation is: 

 
2

2

1
gaze gt pred

n
 = −L  (20) 

Where the true value of the gaze is gt , and the predicted value of the gaze estimation 

is pred . 

4 Experimental Analysis 

4.1 Datasets 

To evaluate the performance of the proposed network model, we trained and tested it 

on the widely-used Gaze360 dataset [30], a standard in gaze estimation tasks. We used 

the data preprocessing method proposed by Zhang et al. [31] to ensure consistency and 

effectiveness. 

To simulate various low-light conditions, we applied four preprocessing strategies to 

the Gaze360 dataset: dark scenes (Dark_comp), extremely dark scenes (Dark_super), 

low illumination simulated by gamma correction (Dark_gamma), and dark scenes with 

unknown light source positions (Dark_light). These modifications allowed us to con-

struct a variant of Gaze360 that reflects different real-world low-light scenarios. 

Specifically, for Dark_comp and Dark_super, we adjusted brightness and contrast to 

enhance the realism of nighttime environments. Brightness was modified by compress-

ing the dynamic range of dark and bright regions, while contrast adjustments focused 

on narrowing the distribution of pixel intensities to strengthen the distinction between 

illuminated and dark areas. 

For Dark_gamma, we simulated low-light environments through gamma correction, 

selecting a gamma value of 0.7. Lower gamma values darken images, and a value of 

0.7 was chosen to realistically replicate low-light visual conditions while maintaining 

sufficient detail for gaze estimation. 

To further explore the challenges of gaze estimation under complex illumination set-

tings, we developed the Dark_light subset, simulating environments such as university 

lecture halls, planetariums, and nighttime driving scenarios. These scenes feature strong 

directional lighting and extensive dark regions, significantly increasing the difficulty of 

gaze estimation. 

To generate the Dark_light data, we applied a two-step processing pipeline: first, the 

overall image brightness was reduced to deepen dark regions; second, localized illumi-



 

 

nation patterns were introduced at random positions using Gaussian-blurred illumina-

tion masks, simulating point light sources such as streetlights. This approach enhanced 

the realism and spatial complexity of the scenes, creating more challenging and natu-

ralistic low-light conditions for evaluation. 

Using these methods, we successfully built a new dataset that captures a variety of 

low-light conditions, with sample results shown in Fig. 6. 

Dark_comp Dark_superNormal Dark_gamma Dark_light

 

Fig. 6. Low-light Image Processing Dataset. 

As shown in Fig. 6, the first row displays the visual effects after dataset processing, 

while the second row shows the results after enhancement by the low-light image en-

hancement model. 

We use the main evaluation index angle error of gaze estimation to compare the per-

formance with other gaze estimation models. Assuming the actual gaze direction is 
3g  and the estimated gaze direction is 3g , the angular error can be calculated 

as: 

 
angular

ˆ

|| |||| ||


=

g g

g g
L  (21) 

4.2 Experimental Results 

Analysis of Comparative study. The comparative experiments results are presented 

in Table 1.The proposed method achieves lower angular errors than other advanced 

methods under all low-light conditions, demonstrating superior performance. 

To visually demonstrate the superiority of our approach, we performed a visualiza-

tion analysis of the gaze estimation results using the image with the test set sequence 

number 186811.jpg from the Gaze360 dataset. The visualization results are shown in 

Fig. 7. 
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Table 1. Performance evaluation on the Gaze360 dataset under four designed low-light envron-

ments, the results are angular error (°). 

Module Dark_comp Dark_super Dark_gamma Dark_light 

FullFace [32] 16.82 17.21 15.91 16.51 

RT-Gene [28] 14.30 15.42 13.07 12.57 

Dilated-Net [33] 14.67 15.23 13.40 13.64 

Gaze360 [30] 12.99 13.92 12.46 11.94 

CA-Net [34] 12.55 13.46 12.25 11.78 

GazeTR [35] 12.36 12.67 11.05 11.55 

L2CS-Net [36] 12.26 13.87 12.24 11.86 

LLSGE-Net (ours) 11.75 12.17 10.43 11.27 
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Fig. 7. Visualization of the comparison results between LLSGE-Net and FullFace. 

As shown in Fig. 7, the blue arrows represent the ground truth gaze directions (Label), 

the red arrows indicate the predictions from the proposed LLSGE-Net model, and the 

green arrows correspond to the predictions from the classical FullFace [32]. It can be 

observed that the predictions of LLSGE-Net are generally closer to the ground truth, 

with noticeably smaller angular deviations compared to those of FullFace. This demon-

strates that the proposed model achieves higher prediction accuracy and stability across 

the four low-light conditions. 

The detailed visualization results are shown in Table 2. 

Table 2. Comparison of Experimental Results between LLSGE-Net and FullFace. 

Module Dark_comp Dark_super Dark_gamma Dark_light 

FullFace 16.32° 15.76° 22.49° 16.39° 

LLSGE-Net 14.40° 4.71° 13.43° 12.59° 

Analysis of Ablation Study. We used ResNet18 as the baseline model (B). First, we 

added the low-light image enhancement module (L). Next, the attention module (E) 

was added to the baseline and L modules. Finally, we added the deep feature extraction 

module (D) to refine high-level features further. The results of the ablation study are 

shown in Table 3. The best results are highlighted in bold. 



 

 

Table 3. Comparison of Experimental Results between LLSGE-Net and FullFace. 

Module Dark_comp Dark_super Dark_gamma Dark_light 

B 13.50 14.58 12.78 12.35 

B+L 12.64 13.29 12.14 11.92 

B+L+E 11.80 12.52 10.58 11.50 

B+L+E+D 11.75 12.17 10.43 11.27 

From the experimental results, it can be seen that using only ResNet18 as the baseline 

network (B) yields average performance. 

Analysis of ELSCA Attention Mechanism Effectiveness. We selected SE [22], 

CBAM [23], ECA [24], CA [25] and MSCA [26] for comparison. The baseline for this 

comparison is (B+L+D) from the ablation study, which includes all modules except the 

ELSCA attention mechanism. The evaluation results of different attention mechanisms 

are shown in Table 4, with the best results highlighted in bold. 

Table 4. Evaluation results of different attention mechanisms, the results are angular error (°). 

Attention Dark_comp Dark_super Dark_gamma  Dark_light 

SE [22] 12.34 12.56 11.85 11.9 

CBAM [23] 12.13 13.00 11.83 11.84 

ECA [24] 11.98 12.61 11.32 11.89 

CA [25] 11.95 12.87 11.21 11.79 

MSCA [26] 12.28 13.2 11.07 11.75 

ELSCA 11.75 12.17 10.43 11.27 

From the experiments, it can be observed that the ELSCA attention mechanism shows 

significant advantages over other traditional attentions. 

Analysis of Low-light Image Enhancement Model Effectiveness. We selected Full-

Face [32], RT-Gene [28], Dilated-Net [33], and Gaze360 [30] for validation. The base-

line for these experiments involves first processing through the low-light image en-

hancement module (L) and then through each respective network model. Experiments 

were conducted under four low-light conditions. The results are shown in Table 5. 

The experimental data shows that under four different lighting conditions, all models 

performed better after processing with the low-light image enhancement module (L). 

Analysis of Gaze Estimation Model Effectiveness. This paper focuses on gaze esti-

mation in low-light scenarios. To validate the effectiveness of the gaze estimation mod-

ule in all-day scenarios, additional experiments were conducted on the Gaze360 dataset. 

The results are shown in Table 6, with the best performance highlighted in bold. 
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Table 5. The results of different models’ evaluation with and without the low-light image en-

hancement module (L), the results are angular error (°). 

Models Dark_comp Dark_super Dark_gamma Dark_light 

FullFace 16.82 17.21 15.91 16.51 

L+FullFace 15.02 16.87 14.07 15.58 

RT-Gene  14.30 15.42 13.07 12.57 

L+RT-Gene  13.98 15.02 12.71 12.05 

Dilated-Net  14.67 15.23 13.40 13.64 

L+Dilated-Net  14.35 14.39 12.87 13.01 

Gaze360  12.99 13.92 12.46 11.94 

L+Gaze360  12.54 13.02 11.96 11.38 

Table 6. Performance evaluation of our gaze estimation method (ours) compared with advanced 

methods under the original Gaze360 dataset. The results are average angular error (°). 

Module Gaze360 

FullFace [32] 14.94 

RT-Gene [28] 12.73 

Dilated-Net [33] 13.73 

Gaze360 [30] 11.47 

CA-Net [34] 11.20 

GazeTR [35] 10.85 

L2CS-Net [36] 10.41 

(Ours) 10.23 

Based on the data in Table 6, our gaze estimation model (Ours) demonstrates excellent 

performance under the original Gaze360 dataset.  

5 Conclusion 

This paper proposes the LLSGE-Net framework, which combines low-light image en-

hancement with gaze estimation to address challenges in low-light classroom environ-

ments. It shifts gaze estimation from coarse-grained to fine-grained student behavior 

analysis. Unlike existing methods focused on near-field applications, LLSGE-Net en-

hances eye detail visibility and image quality through a synergistic enhancement and 

calibration module, offering a novel solution for classroom attention detection. The 

framework integrates multi-scale feature fusion, global information extraction, and the 

Enhanced Local Spatial and Global Channel Attention (ELSCA) mechanism to im-

prove accuracy and robustness. Extensive experiments on the Gaze360 dataset demon-

strate LLSGE-Net’s superiority in both low-light and well-lit conditions, making it a 

valuable tool for intelligent classroom behavior monitoring and human-computer inter-

action. 
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