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Abstract. Large Language Models (LLMs) excel in various tasks, yet hallucina-

tion limits their applicability in high-accuracy, domain-specific scenarios. Re-

trieval-Augmented Generation (RAG) mitigates this issue by integrating external 

knowledge retrieval, but existing systems struggle with multimodal, multi-format 

corpora common in industrial settings, and targeted evaluation datasets remain 

scarce. This paper introduces UniversalRAG, a modular, plug-and-play RAG 

framework supporting diverse document formats with adaptive indexing, re-

trieval, and generation agents, enhancing RAG adaptability and output quality. 

To validate its effectiveness, we develop the FACT dataset (Fact-based Aug-

mented Corpus Testing) for RAG evaluation. Experimental results show that 

UniversalRAG, when paired with GPT-4o, achieves a 73.68 score, a 8.54-point 

improvement over the naive RAG baseline, significantly outperforming tradi-

tional methods. Ablation studies confirm the essential roles of indexing, retrieval, 

and generation agents in system performance. This work not only introduces a 

versatile RAG framework but also fills a critical gap in end-to-end evaluation, 

advancing RAG system development and assessment. 

Keywords: Large Language Model, Hallucination Mitigation, Information Re-

trieval. 

1 Introduction 

With the rapid advancement of natural language processing (NLP), large language 

models (LLMs) have shown remarkable performance and robustness across domains. 

However, their training paradigms inherently limit their ability to fully eliminate hallu-

cination [1], where generated content deviates from factual accuracy. This issue hinders 

their practical applicability, especially in high-accuracy domains like healthcare, law, 

and finance. Extensive research has thus focused on mitigating hallucination to enhance 

LLM reliability. 

Retrieval-Augmented Generation (RAG) [7] effectively addresses hallucination by 

incorporating external knowledge bases, improving factual accuracy. However, a gap 

persists between academic and industrial applications. Industrial retrieval involves mul-

timodal data sources—PowerPoint, PDF, and Word files—posing integration chal-

lenges. Conversely, academic RAG models primarily rely on clean, structured text, lim-

iting their real-world applicability. 

 



 

Fig. 1. The collaborative workflow of the UniversalRAG framework includes three 

core agents— Indexing Agent, Retrieval Agent and Generation Agent. 

 

To bridge this gap, we propose UniversalRAG, a framework accommodating diverse 

input formats (Fig. 1). Through automation and modular design, it standardizes heter-

ogeneous data for retrieval and generation. Additionally, it optimizes the three core 

RAG processes—indexing, retrieval, and generation—enhancing overall performance. 

The key contributions are: 

FACT Dataset: A specialized dataset for RAG evaluation in industrial scenarios, 

encompassing diverse formats and fact-intensive, domain-specific queries. It enables 

rigorous assessment of multimodal information handling and end-to-end RAG perfor-

mance. 

UniversalRAG Framework: A modular system that automates the processing of 

PPT, PDF, and Word files, converting them into a unified format for retrieval and gen-

eration. It features adaptive mechanisms and optimized indexing, retrieval, and gener-

ation agents, ensuring flexibility, efficiency, and seamless multimodal integration. 

 

2 RELATED WORK 

Retrieval-Augmented Generation (RAG) has gained significant traction with the rise 

of Transformer architectures, accelerating after the advent of ChatGPT. According to 

[3], RAG evolution can be categorized into three stages: Naive RAG, Advanced RAG, 

and Modular RAG. Naive RAG follows a traditional indexing-retrieval-generation 

pipeline but suffers from low retrieval accuracy, suboptimal generation quality, and 

limited information integration. Advanced RAG addresses these issues through en-

hanced indexing structures, query expressiveness, and candidate ranking [4]. Modular 
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RAG, the current mainstream paradigm, introduces iterative, recursive, and adaptive 

retrieval for greater flexibility and adaptability 

With these advancements, RAG applications have expanded across question answer-

ing, conversational generation, and document summarization. Future research is ex-

pected to focus on longer contextual inputs, robustness to noisy data, hybrid sparse-

dense retrieval, scalability, and multimodal adaptability. 

To support RAG development, various benchmarks and tools assess system perfor-

mance. RGB [7], RECALL [8], and CRUD [9] evaluate RAG models in generation 

tasks, while RAGAS [10] and ARES [11] leverage LLMs for quality assessment. These 

tools commonly employ Exact Match (EM), Accuracy, and BLEU as metrics. How-

ever, existing evaluations rely on well-structured, large-scale open-source text (e.g., 

Wikipedia) or LLM-generated synthetic data, neglecting the multimodal and multi-for-

mat nature of real-world domain-specific corpora. This evaluation gap limits their ef-

fectiveness in assessing indexing and retrieval capabilities for complex corpora, re-

stricting insights into RAG’s full potential. 

3 Dataset 

Existing RAG benchmarks mostly use well-structured text corpora, but real-world 

data often includes multimodal content (e.g., text, images, charts), which challenges 

file processing and reveals RAG frameworks' limitations. To address this, we introduce 

FACT (Fact-based Augmented Corpus Testing), a benchmark designed to evaluate 

RAG frameworks in industrial scenarios, with a specialized corpus and question set for 

assessing multimodal processing and complex reasoning. 

3.1 Corpus Details 

The FACT dataset consists of 115 files across multiple formats (PDF, Word, PPT), 

featuring diverse origins and complex content structures. It includes: 

─ Introduction Documents: Overview of a technology company's background, capa-

bilities, and strategic direction, providing industry insights and updates on emerging 

technologies. 

─ Programming Tutorials: Syntax rules, code examples, and applications of a pro-

prietary programming language, serving as key domain-specific technical resources. 

─ Certification Records: Technical certifications demonstrating the company’s ex-

pertise in specialized fields. 

─ Policy Documents: Policy interpretations, implementation guidelines, and industry 

regulations, offering timely regulatory insights. 

 

Although publicly accessible, this content is highly specialized, non-generic, and 

rarely encountered during LLM pretraining, making it an ideal corpus for evaluating 

RAG frameworks on domain-specific and unfamiliar information. To protect privacy, 



all entity information related to specific company names has been anonymized. Corpus 

analysis results are shown in Fig. 2. 

 

Fig. 2. Corpus Distribution. (left) illustrates the content distribution of the corpus. (right) shows 

the file type distribution, encompassing three formats with multimodal information such as text, 

images, and tables, posing significant challenges for the Indexing Agent. 

3.2 Question Set 

The question set consists of 180 questions categorized into three types to compre-

hensively assess the model’s capabilities: 

─ General Knowledge Questions: Answerable using the model’s internal knowledge 

without external retrieval. Example: “What type of hardware is specifically designed 

for image computation in computers?” 

─ Domain-Specific Factual Questions: Require the RAG framework to retrieve rel-

evant information for accurate responses. Example: “What key features are sup-

ported by Company XX’s proprietary programming language?” 

─ Domain-Specific Reasoning Questions: Involve logical reasoning or computation 

after retrieval. Example: “Based on the latest tax policy documents in Shanghai, 

what is the tax deduction amount for Company XX in 2024?” 

This structured design enables a thorough evaluation, from simple knowledge re-

trieval to complex reasoning and decision-making. We applied the same anonymization 

process to the question set as we did to the corpus, ensuring consistent entity mapping 

across both components. For each question, gold-label answer and key fact sets were 

created to support metric calculation, which will be detailed in the experimental section. 

4 Methods 

4.1 Task Formulation 

RAG is a task that integrates retrieval and generation to enhance the quality of answers 

by leveraging an external knowledge base  𝒟  Given a query  𝑞 ∈ 𝒬  (e.g., a natural 
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language question), [19] the RAG task can be formalized into two steps: retrieval and 

generation.   

In the retrieval step, the module identifies  𝑘   most relevant documents  

{𝑑1, 𝑑2, … , 𝑑𝑘}  from the knowledge base 𝒟 based on the query  𝑞 : 

 {𝑑1, 𝑑2, … , 𝑑𝑘} = Retrieval(𝑞, 𝒟) (1) 

where the retrieval process is typically implemented using either sparse vector mod-

els [13] (e.g., BM25) or dense vector models (e.g., Transformer-based embedding mod-

els) [14].   

In the generation step, the module conditions on  𝑞  and the retrieved documents  

{𝑑𝑖}  to generate the final answer 𝑎 : 

 𝑎 = Generate(𝑞, {𝑑1, 𝑑2, … , 𝑑𝑘}) (2) 

where the generation process is commonly performed using conditional language 

models [20] 

The objective of RAG is to jointly optimize the performance of the retrieval and 

generation components, maximizing the alignment between the generated answer 𝑎 

and the ground truth answer  𝑎∗ . This can be formulated as: 

 arg max
𝒟

∑  (𝑞,𝑎∗)∈𝒬 log 𝑃 (𝑎∗|𝑞, 𝒟; 𝜃) (3) 

where 𝜃 represents the set of model parameters and 𝒟 represents the information re-

trieved by the system. 

By integrating external retrieval with the generation module, RAG effectively ad-

dresses knowledge-intensive tasks, improving the accuracy and factual consistency of 

outputs [21]. 

4.2 Overviews 

This section introduces UniversalRAG, a modular, plug-and-play RAG system de-

signed for diverse corpus formats and easy offline deployment in specialized domains. 

Building upon the naive RAG pipeline, we comprehensively optimized the indexing, 

retrieval, and generation agents, enabling the system to adapt dynamically to varying 

question complexity and document volume. It addresses challenges in handling heter-

ogeneous, multimodal real-world retrieval sources (e.g., PPT, Word, PDF), which ex-

isting research overlooks. UniversalRAG natively supports multi-format and multi-

modal inputs, as outlined in Fig. 3 and detailed in the following sections. 

 



 

Fig. 3. The overview of UniversalRAG illustrates the detailed workflows of the Indexing 

Agent, Retrieval Agent, and Generation Agent. (Left) it highlights the collaboration between 

the Retrieval Agent and Generation Agent in efficiently retrieving and generating information, 

(Right) it demonstrates how the Indexing Agent processes various document formats and stores 

them in the vector database. 

4.3 Indexing Agent 

Universal Document Loader. The Universal document loader first separates docu-

ments (e.g., PDF, PPT, Word) into textual and image components [22]. For text, it an-

alyzes layouts (e.g., single/double-column, horizontal/vertical) to ensure accurate ex-

traction while minimizing formatting inconsistencies. For images, masking techniques 

prevent interference before Optical Character Recognition (OCR) [15] extracts text. A 

large language model then evaluates the extracted text’s relevance to remove redun-

dancy. Finally, textual data is stored in Markdown for maintainability, while charts and 

graphics are preserved in HTML for structural integrity. 

Information Source Identification and Text Block Labeling. During corpus index-

ing, filenames and section titles provide distinctive semantic value, serving as both file 

identifiers and text block labels. Traditional text chunking often omits such metadata, 

weakening contextual coherence. To address this, we embed filenames and section ti-

tles into the chunking process, strengthening semantic relationships. This enhances 

clarity and retrieval precision. 

4.4 Retrieval Agent 

Hybrid Retrieval. Traditional RAG systems rely on dense vector retrieval, but chal-

lenges arise with low-resource corpora (e.g., short texts, domain-specific terms). We 

propose a hybrid model combining BM25 for sparse retrieval and a pre-trained BGE 

model for dense retrieval, improving performance by leveraging both long-tail corpora 

and deep semantics. 

To optimize retrieval across tasks, we integrate both methods using a weighted score: 

 𝑆𝑓𝑖𝑛𝑎𝑙 = 𝛼 ⋅ 𝑆𝑠𝑝𝑎𝑟𝑠𝑒 + 𝛽 ⋅ 𝑆𝑑𝑒𝑛𝑠𝑒  (4) 
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where 𝛼 =  0.2 and 𝛽 =  0.8. These fusion balances precise keyword matching with 

deep semantic understanding, enhancing retrieval accuracy across diverse documents 

and tasks. 

 

Reranker Component and Optimization. Our framework integrates a BGE-based re-

ranker into the retrieval agent to refine candidate documents [17]. Unlike traditional 

rerankers that merely reorder results, ours also filters redundant content for better out-

put quality. To prevent irrelevant documents [24], we employ a threshold-based strat-

egy that re-scores candidates and retains only the top 50%. Inspired by [32], we arrange 

the final documents in reverse order, placing the most relevant ones nearest to the query 

to enhance response quality. 

4.5 Generation Agent 

Multi-query Strategy. To improve generation quality, our framework improves gen-

eration quality by using a multi-query approach, generating three queries for retrieval 

to enhance information coverage and reduce bias compared to single-query retrieval 

[25]. This approach boosts accuracy and completeness, especially for multimodal or 

long-text generation. To merge results efficiently, we use the Rank Fusion Framework 

(RFF) [18], optimizing relevance, coverage, and maintaining high accuracy. 

 

Self-Verification and Self-Correction Mechanism. We implement a self-verification 

and self-correction mechanism inspired by [6] to enhance answer accuracy and relia-

bility. After generating an initial answer, an LLM evaluates errors and reference confi-

dence using a verification prompt. If confidence is low, retrieval parameters (e.g., 

scope, document count) are adjusted, and the refined results are reprocessed to improve 

quality. 

5 Experiments 

5.1 Metric 

To comprehensively assess the quality of generated results, we designed two primary 

evaluation metrics that collectively evaluate performance from the dimensions of se-

mantic relevance and key fact relevance. 

 

Key Fact Relevance Score. This metric assesses whether the generated answer con-

tains predefined keyword groups specific to each question, derived through corpus anal-

ysis. A higher hit rate corresponds to a higher score, indicating stronger factual accu-

racy. More relevant keyword groups in the answer signify better alignment with key 

facts. 

 



To calculate the Key Fact Relevance Score (𝑺key), Let 𝐴  denote the generated an-

swer, and let  𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛} represent the predefined set of key fact phrases, where 

each 𝑓𝑖 corresponds to a specific key fact phrase. The formula for 𝑆key is expressed as: 

 𝑆key(𝐴, 𝐹) =
∑ 1(𝑓𝑖∈𝐴)𝑛

𝑖=1

𝑛
 (5) 

where: 

─ 1(𝑓𝑖 ∈ 𝐴) is an indicator function that equals 1 if 𝑓𝑖  is present in the answer 𝐴  and 

0 otherwise. 

─ 𝑛  is the total number of key fact phrases in 𝐹. 

 

Semantic Relevance Score. This metric evaluates the semantic similarity between the 

target answer and the generated answer by embedding both into a semantic space and 

calculating their cosine similarity. 

To compute the Semantic Relevance Score, let the target answer 𝑇  and the gener-

ated answer  𝐺  be embedded into the semantic space as vectors  𝒗𝑻 = Embed(𝑇) and  

𝒗𝑮 = Embed(𝐺), respectively, using an embedding model Embed(⋅). The cosine sim-

ilarity is then calculated as follows: 

 𝑆𝑐𝑜𝑠(𝐯𝐓, 𝐯𝐆) =
𝐯𝐓⋅𝐯𝐆

|𝐯𝐓||𝐯𝐆|
 (6) 

where: 

─ 𝒗𝑻 ⋅ 𝒗𝑮 is the dot product of vectors 𝒗𝑻 and 𝒗𝑮. 

─ |𝒗𝑻| and |𝒗𝑮| are the norms (i.e., magnitudes) of 𝒗𝑻 and 𝒗𝑮, respectively. 

The 𝑆𝑘𝑒𝑦(𝐯𝐓, 𝐯𝐆), ranges from 0 to 1. A score closer to 1 indicates a higher level of 

semantic similarity between the generated answer and the target answer. 

 

Final Score. Each question's score is calculated as a weighted combination of the Se-

mantic Relevance Score and the Key Fact Relevance Score. Specifically, the weight of 

the Semantic Relevance Score is set to 0.4, while the weight of the Key Fact Relevance 

Score is 0.6. 

For a given question 𝑖 , the score 𝑆𝑖 is defined as: 

 𝑆𝑖 = 0.4 × 𝑆𝑐𝑜𝑠 + 0.6 × 𝑆𝑘𝑒𝑦 (7) 

 𝑆final =
1

𝑁
∑ 𝑆𝑖

𝑁
𝑖=1  (8) 

where 𝑁 is the total number of questions in the dataset. This formula represents the 

mean score across all questions, serving as the ultimate evaluation metric for the sys-

tem’s overall performance. 
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5.2 Experiment Setup 

We evaluated our approach on the FACT dataset using RTX 3090 GPUs. Given its 

linguistic diversity, we employed multilingual models for embedding (i.e., bge-multi-

lingual-gemma2 [16] for dense text embeddings.) and ranking (i.e., bge-reranker-v2-

m3 [16]  for document re-ranking.) which were trained and open-sourced by Beijing 

Academy of Artificial Intelligence BAAI). And we employ Qwen2.5-7B-Instruct [28] 

and GPT-4o [27] as generation models. 

Furthermore, the length of inputs and outputs is capped at 2048 tokens, with greedy 

decoding ensuring deterministic evaluation. 

5.3 Baselines 

For evaluation on FACT, we designed four baseline settings to examine LLM per-

formance under different retrieval-augmented conditions: 

Zero-shot (LLM without Retrieval Augmentation): The model answers questions 

using only its internal knowledge, assessing knowledge retention without external re-

trieval. 

Few-shot (LLM without Retrieval Augmentation): Following In-context Learn-

ing (ICL), a few high-quality demonstrations assist the model in answering questions, 

evaluating Few-shot learning’s effectiveness.   

LLM + Sparse Retriever (BM25): The BM25 algorithm retrieves relevant docu-

ments based on keyword matching, providing context for LLM-generated answers. This 

setting assesses traditional keyword-based retrieval in retrieval-augmented generation.   

LLM + Dense Retriever (bge-multilingual-gemma2): The bge-multilingual-

gemma2 model generates dense semantic vectors to retrieve the most relevant docu-

ments, evaluating the impact of semantic retrieval on retrieval-augmented generation.   

LLM + naive RAG: Following the setup in , we implemented a naive RAG frame-

work consisting of standard indexing, retrieval, and generation components. Specifi-

cally, the indexing component directly reads the document text and generates embed-

ding representations using the bge-multilingual-gemma2 model. The retrieval compo-

nent selects the top three documents with the highest cosine similarity to the question. 

During the generation stage, the question and the retrieved documents are concatenated 

into a prompt and fed into a large language model to produce the final answer. 

5.4 Results 

The experimental results (Table 1) validate the effectiveness of UniversalRAG. Us-

ing Qwen2.5-7B-Instruct, UniversalRAG outperformed the naive RAG by 7.54 points. 

In contrast, the weakest performances came from LLM (Zero-shot) and LLM (Few-

shot), as expected. Since FACT contains numerous domain-specific factual and reason-

ing questions, these tasks rely heavily on high-relevance corpora. Without external 

knowledge, the LLM struggles to generate correct answers, leading to lower scores in 

these settings. 

 



Table 1. Performance comparison of different methods and models. The best performance is 

highlighted in bold. 

Method & Model 𝑆𝑐𝑜𝑠 𝑆𝑘𝑒𝑦 𝑆𝑓𝑖𝑛𝑎𝑙 

LLM (zero-shot) 40.0 47.3 44.38 

LLM (few-shot) 41.5 49.8 46.48 

LLM + Sparse Retrievers 51.7 56.0 54.28 

LLM + Dense Retrievers 56.1 54.3 55.02 

LLM + naive RAG 60.4 62.1 61.42 

LLM + UniversalRAG (ours) 65.3 71.4 68.96 

GPT-4o 45.2 52.7 50.10 

GPT-4o + naive RAG 62.5 66.9 65.14 

GPT-4o + UniversalRAG (ours)  69.6 76.4 73.68 

 

Further analysis shows that even GPT-4o, a state-of-the-art closed-source model, 

scores only 50.10 without external knowledge augmentation. However, with Univer-

salRAG, the score increases by 23.58 points to 73.68, outperforming the naive RAG by 

a significant margin of 8.54 points and achieving the best overall performance. This 

underscores UniversalRAG’s role in enhancing LLM capabilities for complex profes-

sional tasks, demonstrating the critical importance of external knowledge integration in 

improving generation quality. 

5.5 Ablation Study 

To assess the contributions of different agents in UniversalRAG, we conducted an 

ablation study (Table 2), analyzing performance changes as key agents were progres-

sively removed. It is worth noting that in the ablation experiments, “w/o [component]” 

refers to replacing our optimized module with the corresponding module from the naive 

RAG. 

Table 2. Ablation study results. 

Methods 𝑆𝑓𝑖𝑛𝑎𝑙 

UniversalRAG 68.96 

UniversalRAG w/o indexing agent 59.32 

UniversalRAG w/o retrieval agent 62.95 

UniversalRAG w/o generation agent 65.60 

Impact of Removing the Indexing Agent: Removing the Indexing Agent caused a 

10+ point drop, highlighting its importance. The loss of adaptive reading strategies and 

source identification weakened the corpus' semantic structure, impairing retrieval and 

generation quality. 

Impact of Removing the Retrieval or Generation Agent: Removing either the 

Retrieval Agent or Generation Agent caused significant performance declines. Without 

the Retrieval Agent, the framework failed to extract relevant information, limiting con-
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textual richness for downstream tasks. Without the Generation Agent, it could not syn-

thesize retrieved content into coherent, high-quality answers, impacting overall perfor-

mance. 

6 Conclusion and future work 

In this paper, we proposed UniversalRAG, a modular and plug-and-play RAG 

framework for multimodal and multi-format corpora. It enhances generation perfor-

mance through adaptive indexing, efficient retrieval, and a multi-query generation 

chain. To evaluate its effectiveness, the authors introduce the FACT dataset. Experi-

ments show that UniversalRAG outperforms traditional methods, especially with state-

of-the-art LLMs. Future work includes refining indexing, optimizing retrieval, improv-

ing generation with reinforcement learning, and expanding the FACT dataset for 

broader industry applications. 
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